1 | SUBROUTINE physiq( |
---|
2 | $ ngrid,nlayer,nq |
---|
3 | $ ,firstcall,lastcall |
---|
4 | $ ,pday,ptime,ptimestep |
---|
5 | $ ,pplev,pplay,pphi |
---|
6 | $ ,pu,pv,pt,pq |
---|
7 | $ ,pw |
---|
8 | $ ,pdu,pdv,pdt,pdq,pdpsrf,tracerdyn |
---|
9 | #ifdef MESOSCALE |
---|
10 | #include "meso_inc/meso_inc_invar.F" |
---|
11 | #endif |
---|
12 | $ ) |
---|
13 | |
---|
14 | |
---|
15 | IMPLICIT NONE |
---|
16 | c======================================================================= |
---|
17 | c |
---|
18 | c subject: |
---|
19 | c -------- |
---|
20 | c |
---|
21 | c Organisation of the physical parametrisations of the LMD |
---|
22 | c martian atmospheric general circulation model. |
---|
23 | c |
---|
24 | c The GCM can be run without or with tracer transport |
---|
25 | c depending on the value of Logical "tracer" in file "callphys.def" |
---|
26 | c Tracers may be water vapor, ice OR chemical species OR dust particles |
---|
27 | c |
---|
28 | c SEE comments in initracer.F about numbering of tracer species... |
---|
29 | c |
---|
30 | c It includes: |
---|
31 | c |
---|
32 | c 1. Initialization: |
---|
33 | c 1.1 First call initializations |
---|
34 | c 1.2 Initialization for every call to physiq |
---|
35 | c 1.2.5 Compute mean mass and cp, R and thermal conduction coeff. |
---|
36 | c 2. Compute radiative transfer tendencies |
---|
37 | c (longwave and shortwave) for CO2 and aerosols. |
---|
38 | c 3. Gravity wave and subgrid scale topography drag : |
---|
39 | c 4. Vertical diffusion (turbulent mixing): |
---|
40 | c 5. Convective adjustment |
---|
41 | c 6. Condensation and sublimation of carbon dioxide. |
---|
42 | c 7. TRACERS : |
---|
43 | c 7a. water and water ice |
---|
44 | c 7b. call for photochemistry when tracers are chemical species |
---|
45 | c 7c. other scheme for tracer (dust) transport (lifting, sedimentation) |
---|
46 | c 7d. updates (CO2 pressure variations, surface budget) |
---|
47 | c 8. Contribution to tendencies due to thermosphere |
---|
48 | c 9. Surface and sub-surface temperature calculations |
---|
49 | c 10. Write outputs : |
---|
50 | c - "startfi", "histfi" (if it's time) |
---|
51 | c - Saving statistics (if "callstats = .true.") |
---|
52 | c - Dumping eof (if "calleofdump = .true.") |
---|
53 | c - Output any needed variables in "diagfi" |
---|
54 | c 11. Diagnostic: mass conservation of tracers |
---|
55 | c |
---|
56 | c author: |
---|
57 | c ------- |
---|
58 | c Frederic Hourdin 15/10/93 |
---|
59 | c Francois Forget 1994 |
---|
60 | c Christophe Hourdin 02/1997 |
---|
61 | c Subroutine completly rewritten by F.Forget (01/2000) |
---|
62 | c Introduction of the photochemical module: S. Lebonnois (11/2002) |
---|
63 | c Introduction of the thermosphere module: M. Angelats i Coll (2002) |
---|
64 | c Water ice clouds: Franck Montmessin (update 06/2003) |
---|
65 | c Radiatively active tracers: J.-B. Madeleine (10/2008-06/2009) |
---|
66 | c Nb: See callradite.F for more information. |
---|
67 | c Mesoscale lines: Aymeric Spiga (2007 - 2011) -- check MESOSCALE flags |
---|
68 | c jul 2011 malv+fgg: Modified calls to NIR heating routine and 15 um cooling parameterization |
---|
69 | c |
---|
70 | c arguments: |
---|
71 | c ---------- |
---|
72 | c |
---|
73 | c input: |
---|
74 | c ------ |
---|
75 | c ecri period (in dynamical timestep) to write output |
---|
76 | c ngrid Size of the horizontal grid. |
---|
77 | c All internal loops are performed on that grid. |
---|
78 | c nlayer Number of vertical layers. |
---|
79 | c nq Number of advected fields |
---|
80 | c firstcall True at the first call |
---|
81 | c lastcall True at the last call |
---|
82 | c pday Number of days counted from the North. Spring |
---|
83 | c equinoxe. |
---|
84 | c ptime Universal time (0<ptime<1): ptime=0.5 at 12:00 UT |
---|
85 | c ptimestep timestep (s) |
---|
86 | c pplay(ngrid,nlayer) Pressure at the middle of the layers (Pa) |
---|
87 | c pplev(ngrid,nlayer+1) intermediate pressure levels (pa) |
---|
88 | c pphi(ngrid,nlayer) Geopotential at the middle of the layers (m2s-2) |
---|
89 | c pu(ngrid,nlayer) u component of the wind (ms-1) |
---|
90 | c pv(ngrid,nlayer) v component of the wind (ms-1) |
---|
91 | c pt(ngrid,nlayer) Temperature (K) |
---|
92 | c pq(ngrid,nlayer,nq) Advected fields |
---|
93 | c pudyn(ngrid,nlayer) | |
---|
94 | c pvdyn(ngrid,nlayer) | Dynamical temporal derivative for the |
---|
95 | c ptdyn(ngrid,nlayer) | corresponding variables |
---|
96 | c pqdyn(ngrid,nlayer,nq) | |
---|
97 | c pw(ngrid,?) vertical velocity |
---|
98 | c |
---|
99 | c output: |
---|
100 | c ------- |
---|
101 | c |
---|
102 | c pdu(ngrid,nlayermx) | |
---|
103 | c pdv(ngrid,nlayermx) | Temporal derivative of the corresponding |
---|
104 | c pdt(ngrid,nlayermx) | variables due to physical processes. |
---|
105 | c pdq(ngrid,nlayermx,nqmx) | |
---|
106 | c pdpsrf(ngrid) | |
---|
107 | c tracerdyn call tracer in dynamical part of GCM ? |
---|
108 | |
---|
109 | c |
---|
110 | c======================================================================= |
---|
111 | c |
---|
112 | c 0. Declarations : |
---|
113 | c ------------------ |
---|
114 | |
---|
115 | #include "dimensions.h" |
---|
116 | #include "dimphys.h" |
---|
117 | #include "comgeomfi.h" |
---|
118 | #include "surfdat.h" |
---|
119 | #include "comsoil.h" |
---|
120 | #include "comdiurn.h" |
---|
121 | #include "callkeys.h" |
---|
122 | #include "comcstfi.h" |
---|
123 | #include "planete.h" |
---|
124 | #include "comsaison.h" |
---|
125 | #include "control.h" |
---|
126 | #include "dimradmars.h" |
---|
127 | #include "comg1d.h" |
---|
128 | #include "tracer.h" |
---|
129 | #include "nlteparams.h" |
---|
130 | |
---|
131 | #include "chimiedata.h" |
---|
132 | #include "param.h" |
---|
133 | #include "param_v3.h" |
---|
134 | #include "conc.h" |
---|
135 | |
---|
136 | #include "netcdf.inc" |
---|
137 | |
---|
138 | #include "slope.h" |
---|
139 | |
---|
140 | #ifdef MESOSCALE |
---|
141 | #include "wrf_output_2d.h" |
---|
142 | #include "wrf_output_3d.h" |
---|
143 | #include "advtrac.h" !!! this is necessary for tracers (in dyn3d) |
---|
144 | #include "meso_inc/meso_inc_var.F" |
---|
145 | #endif |
---|
146 | |
---|
147 | c Arguments : |
---|
148 | c ----------- |
---|
149 | |
---|
150 | c inputs: |
---|
151 | c ------- |
---|
152 | INTEGER ngrid,nlayer,nq |
---|
153 | REAL ptimestep |
---|
154 | REAL pplev(ngridmx,nlayer+1),pplay(ngridmx,nlayer) |
---|
155 | REAL pphi(ngridmx,nlayer) |
---|
156 | REAL pu(ngridmx,nlayer),pv(ngridmx,nlayer) |
---|
157 | REAL pt(ngridmx,nlayer),pq(ngridmx,nlayer,nq) |
---|
158 | REAL pw(ngridmx,nlayer) !Mars pvervel transmit par dyn3d |
---|
159 | REAL zh(ngridmx,nlayermx) ! potential temperature (K) |
---|
160 | LOGICAL firstcall,lastcall |
---|
161 | |
---|
162 | REAL pday |
---|
163 | REAL ptime |
---|
164 | logical tracerdyn |
---|
165 | |
---|
166 | c outputs: |
---|
167 | c -------- |
---|
168 | c physical tendencies |
---|
169 | REAL pdu(ngridmx,nlayer),pdv(ngridmx,nlayer) |
---|
170 | REAL pdt(ngridmx,nlayer),pdq(ngridmx,nlayer,nq) |
---|
171 | REAL pdpsrf(ngridmx) ! surface pressure tendency |
---|
172 | |
---|
173 | |
---|
174 | c Local saved variables: |
---|
175 | c ---------------------- |
---|
176 | c aerosol (dust or ice) extinction optical depth at reference wavelength |
---|
177 | c "longrefvis" set in dimradmars.h , for one of the "naerkind" kind of |
---|
178 | c aerosol optical properties : |
---|
179 | REAL aerosol(ngridmx,nlayermx,naerkind) |
---|
180 | |
---|
181 | INTEGER day_ini ! Initial date of the run (sol since Ls=0) |
---|
182 | INTEGER icount ! counter of calls to physiq during the run. |
---|
183 | REAL tsurf(ngridmx) ! Surface temperature (K) |
---|
184 | REAL tsoil(ngridmx,nsoilmx) ! sub-surface temperatures (K) |
---|
185 | REAL co2ice(ngridmx) ! co2 ice surface layer (kg.m-2) |
---|
186 | REAL albedo(ngridmx,2) ! Surface albedo in each solar band |
---|
187 | REAL emis(ngridmx) ! Thermal IR surface emissivity |
---|
188 | REAL dtrad(ngridmx,nlayermx) ! Net atm. radiative heating rate (K.s-1) |
---|
189 | REAL fluxrad_sky(ngridmx) ! rad. flux from sky absorbed by surface (W.m-2) |
---|
190 | REAL fluxrad(ngridmx) ! Net radiative surface flux (W.m-2) |
---|
191 | REAL capcal(ngridmx) ! surface heat capacity (J m-2 K-1) |
---|
192 | REAL fluxgrd(ngridmx) ! surface conduction flux (W.m-2) |
---|
193 | REAL qsurf(ngridmx,nqmx) ! tracer on surface (e.g. kg.m-2) |
---|
194 | REAL q2(ngridmx,nlayermx+1) ! Turbulent Kinetic Energy |
---|
195 | |
---|
196 | REAL watercapflag(ngridmx) ! water cap flag |
---|
197 | |
---|
198 | c Variables used by the water ice microphysical scheme: |
---|
199 | REAL rice(ngridmx,nlayermx) ! Water ice geometric mean radius (m) |
---|
200 | REAL nuice(ngridmx,nlayermx) ! Estimated effective variance |
---|
201 | ! of the size distribution |
---|
202 | real rsedcloud(ngridmx,nlayermx) ! Cloud sedimentation radius |
---|
203 | real rhocloud(ngridmx,nlayermx) ! Cloud density (kg.m-3) |
---|
204 | REAL surfdust(ngridmx,nlayermx) ! dust surface area (m2/m3, if photochemistry) |
---|
205 | REAL surfice(ngridmx,nlayermx) ! ice surface area (m2/m3, if photochemistry) |
---|
206 | |
---|
207 | c Variables used by the slope model |
---|
208 | REAL sl_ls, sl_lct, sl_lat |
---|
209 | REAL sl_tau, sl_alb, sl_the, sl_psi |
---|
210 | REAL sl_fl0, sl_flu |
---|
211 | REAL sl_ra, sl_di0 |
---|
212 | REAL sky |
---|
213 | |
---|
214 | SAVE day_ini, icount |
---|
215 | SAVE aerosol, tsurf,tsoil |
---|
216 | SAVE co2ice,albedo,emis, q2 |
---|
217 | SAVE capcal,fluxgrd,dtrad,fluxrad,fluxrad_sky,qsurf |
---|
218 | |
---|
219 | REAL stephan |
---|
220 | DATA stephan/5.67e-08/ ! Stephan Boltzman constant |
---|
221 | SAVE stephan |
---|
222 | |
---|
223 | c Local variables : |
---|
224 | c ----------------- |
---|
225 | |
---|
226 | REAL CBRT |
---|
227 | EXTERNAL CBRT |
---|
228 | |
---|
229 | CHARACTER*80 fichier |
---|
230 | INTEGER l,ig,ierr,igout,iq,i, tapphys |
---|
231 | |
---|
232 | REAL fluxsurf_lw(ngridmx) !incident LW (IR) surface flux (W.m-2) |
---|
233 | REAL fluxsurf_sw(ngridmx,2) !incident SW (solar) surface flux (W.m-2) |
---|
234 | REAL fluxtop_lw(ngridmx) !Outgoing LW (IR) flux to space (W.m-2) |
---|
235 | REAL fluxtop_sw(ngridmx,2) !Outgoing SW (solar) flux to space (W.m-2) |
---|
236 | REAL tauref(ngridmx) ! Reference column optical depth at 700 Pa |
---|
237 | REAL tau(ngridmx,naerkind) ! Column dust optical depth at each point |
---|
238 | REAL zls ! solar longitude (rad) |
---|
239 | REAL zday ! date (time since Ls=0, in martian days) |
---|
240 | REAL zzlay(ngridmx,nlayermx) ! altitude at the middle of the layers |
---|
241 | REAL zzlev(ngridmx,nlayermx+1) ! altitude at layer boundaries |
---|
242 | REAL latvl1,lonvl1 ! Viking Lander 1 point (for diagnostic) |
---|
243 | |
---|
244 | c Tendancies due to various processes: |
---|
245 | REAL dqsurf(ngridmx,nqmx) |
---|
246 | REAL zdtlw(ngridmx,nlayermx) ! (K/s) |
---|
247 | REAL zdtsw(ngridmx,nlayermx) ! (K/s) |
---|
248 | REAL cldtlw(ngridmx,nlayermx) ! (K/s) LW heating rate for clear area |
---|
249 | REAL cldtsw(ngridmx,nlayermx) ! (K/s) SW heating rate for clear area |
---|
250 | REAL zdtnirco2(ngridmx,nlayermx) ! (K/s) |
---|
251 | REAL zdtnlte(ngridmx,nlayermx) ! (K/s) |
---|
252 | REAL zdtsurf(ngridmx) ! (K/s) |
---|
253 | REAL zdtcloud(ngridmx,nlayermx) |
---|
254 | REAL zdvdif(ngridmx,nlayermx),zdudif(ngridmx,nlayermx) ! (m.s-2) |
---|
255 | REAL zdhdif(ngridmx,nlayermx), zdtsdif(ngridmx) ! (K/s) |
---|
256 | REAL zdvadj(ngridmx,nlayermx),zduadj(ngridmx,nlayermx) ! (m.s-2) |
---|
257 | REAL zdhadj(ngridmx,nlayermx) ! (K/s) |
---|
258 | REAL zdtgw(ngridmx,nlayermx) ! (K/s) |
---|
259 | REAL zdugw(ngridmx,nlayermx),zdvgw(ngridmx,nlayermx) ! (m.s-2) |
---|
260 | REAL zdtc(ngridmx,nlayermx),zdtsurfc(ngridmx) |
---|
261 | REAL zdvc(ngridmx,nlayermx),zduc(ngridmx,nlayermx) |
---|
262 | |
---|
263 | REAL zdqdif(ngridmx,nlayermx,nqmx), zdqsdif(ngridmx,nqmx) |
---|
264 | REAL zdqsed(ngridmx,nlayermx,nqmx), zdqssed(ngridmx,nqmx) |
---|
265 | REAL zdqdev(ngridmx,nlayermx,nqmx), zdqsdev(ngridmx,nqmx) |
---|
266 | REAL zdqadj(ngridmx,nlayermx,nqmx) |
---|
267 | REAL zdqc(ngridmx,nlayermx,nqmx) |
---|
268 | REAL zdqcloud(ngridmx,nlayermx,nqmx) |
---|
269 | REAL zdqscloud(ngridmx,nqmx) |
---|
270 | REAL zdqchim(ngridmx,nlayermx,nqmx) |
---|
271 | REAL zdqschim(ngridmx,nqmx) |
---|
272 | |
---|
273 | REAL zdteuv(ngridmx,nlayermx) ! (K/s) |
---|
274 | REAL zdtconduc(ngridmx,nlayermx) ! (K/s) |
---|
275 | REAL zdumolvis(ngridmx,nlayermx) |
---|
276 | REAL zdvmolvis(ngridmx,nlayermx) |
---|
277 | real zdqmoldiff(ngridmx,nlayermx,nqmx) |
---|
278 | |
---|
279 | c Local variable for local intermediate calcul: |
---|
280 | REAL zflubid(ngridmx) |
---|
281 | REAL zplanck(ngridmx),zpopsk(ngridmx,nlayermx) |
---|
282 | REAL zdum1(ngridmx,nlayermx) |
---|
283 | REAL zdum2(ngridmx,nlayermx) |
---|
284 | REAL ztim1,ztim2,ztim3, z1,z2 |
---|
285 | REAL ztime_fin |
---|
286 | REAL zdh(ngridmx,nlayermx) |
---|
287 | INTEGER length |
---|
288 | PARAMETER (length=100) |
---|
289 | |
---|
290 | c local variables only used for diagnostic (output in file "diagfi" or "stats") |
---|
291 | c ----------------------------------------------------------------------------- |
---|
292 | REAL ps(ngridmx), zt(ngridmx,nlayermx) |
---|
293 | REAL zu(ngridmx,nlayermx),zv(ngridmx,nlayermx) |
---|
294 | REAL zq(ngridmx,nlayermx,nqmx) |
---|
295 | REAL fluxtop_sw_tot(ngridmx), fluxsurf_sw_tot(ngridmx) |
---|
296 | character*2 str2 |
---|
297 | character*5 str5 |
---|
298 | real zdtdif(ngridmx,nlayermx), zdtadj(ngridmx,nlayermx) |
---|
299 | REAL tauscaling(ngridmx) ! Convertion factor for qdust and Ndust |
---|
300 | SAVE tauscaling ! in case iradia NE 1 |
---|
301 | real rdust(ngridmx,nlayermx) ! dust geometric mean radius (m) |
---|
302 | integer igmin, lmin |
---|
303 | logical tdiag |
---|
304 | |
---|
305 | real co2col(ngridmx) ! CO2 column |
---|
306 | REAL zplev(ngrid,nlayermx+1),zplay(ngrid,nlayermx) |
---|
307 | REAL zstress(ngrid), cd |
---|
308 | real hco2(nqmx),tmean, zlocal(nlayermx) |
---|
309 | real rho(ngridmx,nlayermx) ! density |
---|
310 | real vmr(ngridmx,nlayermx) ! volume mixing ratio |
---|
311 | real colden(ngridmx,nqmx) ! vertical column of tracers |
---|
312 | REAL mtot(ngridmx) ! Total mass of water vapor (kg/m2) |
---|
313 | REAL icetot(ngridmx) ! Total mass of water ice (kg/m2) |
---|
314 | REAL ccntot(ngridmx) ! Total number of ccn (nbr/m2) |
---|
315 | REAL rave(ngridmx) ! Mean water ice effective radius (m) |
---|
316 | REAL opTES(ngridmx,nlayermx)! abs optical depth at 825 cm-1 |
---|
317 | REAL tauTES(ngridmx) ! column optical depth at 825 cm-1 |
---|
318 | REAL Qabsice ! Water ice absorption coefficient |
---|
319 | REAL taucloudtes(ngridmx)! Cloud opacity at infrared |
---|
320 | ! reference wavelength using |
---|
321 | ! Qabs instead of Qext |
---|
322 | ! (direct comparison with TES) |
---|
323 | |
---|
324 | |
---|
325 | c Test 1d/3d scavenging |
---|
326 | real h2otot(ngridmx) |
---|
327 | REAL satu(ngridmx,nlayermx) ! satu ratio for output |
---|
328 | REAL zqsat(ngridmx,nlayermx) ! saturation |
---|
329 | |
---|
330 | REAL time_phys |
---|
331 | |
---|
332 | ! Added for new NLTE scheme |
---|
333 | |
---|
334 | real co2vmr_gcm(ngridmx,nlayermx) |
---|
335 | real n2vmr_gcm(ngridmx,nlayermx) |
---|
336 | real ovmr_gcm(ngridmx,nlayermx) |
---|
337 | real covmr_gcm(ngridmx,nlayermx) |
---|
338 | |
---|
339 | |
---|
340 | c Variables for PBL |
---|
341 | REAL zz1(ngridmx) |
---|
342 | REAL lmax_th_out(ngridmx),zmax_th(ngridmx) |
---|
343 | REAL, SAVE :: wstar(ngridmx) |
---|
344 | REAL, SAVE :: hfmax_th(ngridmx) |
---|
345 | REAL pdu_th(ngridmx,nlayermx),pdv_th(ngridmx,nlayermx) |
---|
346 | REAL pdt_th(ngridmx,nlayermx),pdq_th(ngridmx,nlayermx,nqmx) |
---|
347 | INTEGER lmax_th(ngridmx),dimout,n_out,n |
---|
348 | CHARACTER(50) zstring |
---|
349 | REAL dtke_th(ngridmx,nlayermx+1) |
---|
350 | REAL zcdv(ngridmx), zcdh(ngridmx) |
---|
351 | REAL, ALLOCATABLE, DIMENSION(:,:) :: Teta_out |
---|
352 | REAL, ALLOCATABLE, DIMENSION(:,:) :: u_out ! Interpolated teta and u at z_out |
---|
353 | REAL, ALLOCATABLE, DIMENSION(:) :: z_out ! height of interpolation between z0 and z1 [meters] |
---|
354 | REAL ustar(ngridmx),tstar(ngridmx) ! friction velocity and friction potential temp |
---|
355 | REAL L_mo(ngridmx),wstarpbl(ngridmx),vhf(ngridmx),vvv(ngridmx) |
---|
356 | REAL zu2(ngridmx) |
---|
357 | c======================================================================= |
---|
358 | |
---|
359 | c 1. Initialisation: |
---|
360 | c ----------------- |
---|
361 | |
---|
362 | c 1.1 Initialisation only at first call |
---|
363 | c --------------------------------------- |
---|
364 | IF (firstcall) THEN |
---|
365 | |
---|
366 | c variables set to 0 |
---|
367 | c ~~~~~~~~~~~~~~~~~~ |
---|
368 | aerosol(:,:,:)=0 |
---|
369 | dtrad(:,:)=0 |
---|
370 | fluxrad(:)=0 |
---|
371 | |
---|
372 | wstar(:)=0. |
---|
373 | |
---|
374 | c read startfi |
---|
375 | c ~~~~~~~~~~~~ |
---|
376 | #ifndef MESOSCALE |
---|
377 | ! Read netcdf initial physical parameters. |
---|
378 | CALL phyetat0 ("startfi.nc",0,0, |
---|
379 | & nsoilmx,nq, |
---|
380 | & day_ini,time_phys, |
---|
381 | & tsurf,tsoil,emis,q2,qsurf,co2ice) |
---|
382 | #else |
---|
383 | #include "meso_inc/meso_inc_ini.F" |
---|
384 | #endif |
---|
385 | |
---|
386 | if (pday.ne.day_ini) then |
---|
387 | write(*,*) "PHYSIQ: ERROR: bad synchronization between ", |
---|
388 | & "physics and dynamics" |
---|
389 | write(*,*) "dynamics day: ",pday |
---|
390 | write(*,*) "physics day: ",day_ini |
---|
391 | stop |
---|
392 | endif |
---|
393 | |
---|
394 | write (*,*) 'In physiq day_ini =', day_ini |
---|
395 | |
---|
396 | c initialize tracers |
---|
397 | c ~~~~~~~~~~~~~~~~~~ |
---|
398 | tracerdyn=tracer |
---|
399 | IF (tracer) THEN |
---|
400 | CALL initracer(qsurf,co2ice) |
---|
401 | ENDIF ! end tracer |
---|
402 | |
---|
403 | c Initialize albedo and orbital calculation |
---|
404 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
405 | CALL surfini(ngrid,co2ice,qsurf,albedo) |
---|
406 | CALL iniorbit(aphelie,periheli,year_day,peri_day,obliquit) |
---|
407 | |
---|
408 | c initialize soil |
---|
409 | c ~~~~~~~~~~~~~~~ |
---|
410 | IF (callsoil) THEN |
---|
411 | CALL soil(ngrid,nsoilmx,firstcall,inertiedat, |
---|
412 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
413 | ELSE |
---|
414 | PRINT*, |
---|
415 | & 'PHYSIQ WARNING! Thermal conduction in the soil turned off' |
---|
416 | DO ig=1,ngrid |
---|
417 | capcal(ig)=1.e5 |
---|
418 | fluxgrd(ig)=0. |
---|
419 | ENDDO |
---|
420 | ENDIF |
---|
421 | icount=1 |
---|
422 | |
---|
423 | #ifndef MESOSCALE |
---|
424 | c Initialize thermospheric parameters |
---|
425 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
426 | |
---|
427 | if (callthermos) call param_read |
---|
428 | #endif |
---|
429 | c Initialize R and Cp as constant |
---|
430 | |
---|
431 | if (.not.callthermos .and. .not.photochem) then |
---|
432 | do l=1,nlayermx |
---|
433 | do ig=1,ngridmx |
---|
434 | rnew(ig,l)=r |
---|
435 | cpnew(ig,l)=cpp |
---|
436 | mmean(ig,l)=mugaz |
---|
437 | enddo |
---|
438 | enddo |
---|
439 | endif |
---|
440 | |
---|
441 | if(callnlte.and.nltemodel.eq.2) call NLTE_leedat |
---|
442 | if(callnirco2.and.nircorr.eq.1) call NIR_leedat |
---|
443 | |
---|
444 | IF (tracer.AND.water.AND.(ngridmx.NE.1)) THEN |
---|
445 | write(*,*)"physiq: water_param Surface water ice albedo:", |
---|
446 | . albedo_h2o_ice |
---|
447 | ENDIF |
---|
448 | |
---|
449 | ENDIF ! (end of "if firstcall") |
---|
450 | |
---|
451 | |
---|
452 | c --------------------------------------------------- |
---|
453 | c 1.2 Initializations done at every physical timestep: |
---|
454 | c --------------------------------------------------- |
---|
455 | c |
---|
456 | IF (ngrid.NE.ngridmx) THEN |
---|
457 | PRINT*,'STOP in PHYSIQ' |
---|
458 | PRINT*,'Probleme de dimensions :' |
---|
459 | PRINT*,'ngrid = ',ngrid |
---|
460 | PRINT*,'ngridmx = ',ngridmx |
---|
461 | STOP |
---|
462 | ENDIF |
---|
463 | |
---|
464 | c Initialize various variables |
---|
465 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
466 | pdv(:,:)=0 |
---|
467 | pdu(:,:)=0 |
---|
468 | pdt(:,:)=0 |
---|
469 | pdq(:,:,:)=0 |
---|
470 | pdpsrf(:)=0 |
---|
471 | zflubid(:)=0 |
---|
472 | zdtsurf(:)=0 |
---|
473 | dqsurf(:,:)=0 |
---|
474 | igout=ngrid/2+1 |
---|
475 | |
---|
476 | |
---|
477 | zday=pday+ptime ! compute time, in sols (and fraction thereof) |
---|
478 | |
---|
479 | c Compute Solar Longitude (Ls) : |
---|
480 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
481 | if (season) then |
---|
482 | call solarlong(zday,zls) |
---|
483 | else |
---|
484 | call solarlong(float(day_ini),zls) |
---|
485 | end if |
---|
486 | |
---|
487 | c Compute geopotential at interlayers |
---|
488 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
489 | c ponderation des altitudes au niveau des couches en dp/p |
---|
490 | |
---|
491 | DO l=1,nlayer |
---|
492 | DO ig=1,ngrid |
---|
493 | zzlay(ig,l)=pphi(ig,l)/g |
---|
494 | ENDDO |
---|
495 | ENDDO |
---|
496 | DO ig=1,ngrid |
---|
497 | zzlev(ig,1)=0. |
---|
498 | zzlev(ig,nlayer+1)=1.e7 ! dummy top of last layer above 10000 km... |
---|
499 | ENDDO |
---|
500 | DO l=2,nlayer |
---|
501 | DO ig=1,ngrid |
---|
502 | z1=(pplay(ig,l-1)+pplev(ig,l))/(pplay(ig,l-1)-pplev(ig,l)) |
---|
503 | z2=(pplev(ig,l)+pplay(ig,l))/(pplev(ig,l)-pplay(ig,l)) |
---|
504 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
---|
505 | ENDDO |
---|
506 | ENDDO |
---|
507 | |
---|
508 | |
---|
509 | ! Potential temperature calculation not the same in physiq and dynamic |
---|
510 | |
---|
511 | c Compute potential temperature |
---|
512 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
513 | DO l=1,nlayer |
---|
514 | DO ig=1,ngrid |
---|
515 | zpopsk(ig,l)=(pplay(ig,l)/pplev(ig,1))**rcp |
---|
516 | zh(ig,l)=pt(ig,l)/zpopsk(ig,l) |
---|
517 | ENDDO |
---|
518 | ENDDO |
---|
519 | |
---|
520 | #ifndef MESOSCALE |
---|
521 | c----------------------------------------------------------------------- |
---|
522 | c 1.2.5 Compute mean mass, cp, and R |
---|
523 | c -------------------------------- |
---|
524 | |
---|
525 | if(photochem.or.callthermos) then |
---|
526 | call concentrations(pplay,pt,pdt,pq,pdq,ptimestep) |
---|
527 | endif |
---|
528 | #endif |
---|
529 | c----------------------------------------------------------------------- |
---|
530 | c 2. Compute radiative tendencies : |
---|
531 | c------------------------------------ |
---|
532 | |
---|
533 | |
---|
534 | IF (callrad) THEN |
---|
535 | IF( MOD(icount-1,iradia).EQ.0) THEN |
---|
536 | |
---|
537 | c Local Solar zenith angle |
---|
538 | c ~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
539 | CALL orbite(zls,dist_sol,declin) |
---|
540 | |
---|
541 | IF(diurnal) THEN |
---|
542 | ztim1=SIN(declin) |
---|
543 | ztim2=COS(declin)*COS(2.*pi*(zday-.5)) |
---|
544 | ztim3=-COS(declin)*SIN(2.*pi*(zday-.5)) |
---|
545 | |
---|
546 | CALL solang(ngrid,sinlon,coslon,sinlat,coslat, |
---|
547 | s ztim1,ztim2,ztim3, mu0,fract) |
---|
548 | |
---|
549 | ELSE |
---|
550 | CALL mucorr(ngrid,declin, lati, mu0, fract,10000.,rad) |
---|
551 | ENDIF |
---|
552 | |
---|
553 | c NLTE cooling from CO2 emission |
---|
554 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
555 | IF(callnlte) then |
---|
556 | if(nltemodel.eq.0.or.nltemodel.eq.1) then |
---|
557 | CALL nltecool(ngrid,nlayer,nq,pplay,pt,pq,zdtnlte) |
---|
558 | else if(nltemodel.eq.2) then |
---|
559 | do ig=1,ngrid |
---|
560 | do l=1,nlayer |
---|
561 | co2vmr_gcm(ig,l)=pq(ig,l,igcm_co2)* |
---|
562 | $ mmean(ig,l)/mmol(igcm_co2) |
---|
563 | n2vmr_gcm(ig,l)=pq(ig,l,igcm_n2)* |
---|
564 | $ mmean(ig,l)/mmol(igcm_n2) |
---|
565 | covmr_gcm(ig,l)=pq(ig,l,igcm_co)* |
---|
566 | $ mmean(ig,l)/mmol(igcm_co) |
---|
567 | ovmr_gcm(ig,l)=pq(ig,l,igcm_o)* |
---|
568 | $ mmean(ig,l)/mmol(igcm_o) |
---|
569 | enddo |
---|
570 | enddo |
---|
571 | |
---|
572 | CALL NLTEdlvr09_TCOOL(ngrid,nlayer,pplay*9.869e-6, |
---|
573 | $ pt,zzlay,co2vmr_gcm, n2vmr_gcm, covmr_gcm, |
---|
574 | $ ovmr_gcm, zdtnlte ) |
---|
575 | |
---|
576 | do ig=1,ngrid |
---|
577 | do l=1,nlayer |
---|
578 | zdtnlte(ig,l)=zdtnlte(ig,l)/86400. |
---|
579 | enddo |
---|
580 | enddo |
---|
581 | endif |
---|
582 | else |
---|
583 | zdtnlte(:,:)=0. |
---|
584 | endif |
---|
585 | |
---|
586 | c Find number of layers for LTE radiation calculations |
---|
587 | IF(MOD(iphysiq*(icount-1),day_step).EQ.0) |
---|
588 | & CALL nlthermeq(ngrid,nlayer,pplev,pplay) |
---|
589 | |
---|
590 | c Note: Dustopacity.F has been transferred to callradite.F |
---|
591 | |
---|
592 | c Call main radiative transfer scheme |
---|
593 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
594 | c Transfer through CO2 (except NIR CO2 absorption) |
---|
595 | c and aerosols (dust and water ice) |
---|
596 | |
---|
597 | c Radiative transfer |
---|
598 | c ------------------ |
---|
599 | CALL callradite(icount,ngrid,nlayer,nq,zday,zls,pq,albedo, |
---|
600 | $ emis,mu0,pplev,pplay,pt,tsurf,fract,dist_sol,igout, |
---|
601 | $ zdtlw,zdtsw,fluxsurf_lw,fluxsurf_sw,fluxtop_lw,fluxtop_sw, |
---|
602 | $ tauref,tau,aerosol,tauscaling,taucloudtes,rdust,rice, |
---|
603 | $ nuice,co2ice) |
---|
604 | |
---|
605 | c Outputs for basic check (middle of domain) |
---|
606 | c ------------------------------------------ |
---|
607 | print*, 'Ls =',zls*180./pi, |
---|
608 | & 'check lat lon', lati(igout)*180/pi, |
---|
609 | & long(igout)*180/pi |
---|
610 | print*, 'tauref(700 Pa) =',tauref(igout), |
---|
611 | & ' tau(700 Pa) =',tau(igout,1)*700./pplev(igout,1) |
---|
612 | |
---|
613 | c --------------------------------------------------------- |
---|
614 | c Call slope parameterization for direct and scattered flux |
---|
615 | c --------------------------------------------------------- |
---|
616 | IF(callslope) THEN |
---|
617 | print *, 'Slope scheme is on and computing...' |
---|
618 | DO ig=1,ngrid |
---|
619 | sl_the = theta_sl(ig) |
---|
620 | IF (sl_the .ne. 0.) THEN |
---|
621 | ztim1=fluxsurf_sw(ig,1)+fluxsurf_sw(ig,2) |
---|
622 | DO l=1,2 |
---|
623 | sl_lct = ptime*24. + 180.*long(ig)/pi/15. |
---|
624 | sl_ra = pi*(1.0-sl_lct/12.) |
---|
625 | sl_lat = 180.*lati(ig)/pi |
---|
626 | sl_tau = tau(ig,1) !il faudrait iaerdust(iaer) |
---|
627 | sl_alb = albedo(ig,l) |
---|
628 | sl_psi = psi_sl(ig) |
---|
629 | sl_fl0 = fluxsurf_sw(ig,l) |
---|
630 | sl_di0 = 0. |
---|
631 | if (mu0(ig) .gt. 0.) then |
---|
632 | sl_di0 = mu0(ig)*(exp(-sl_tau/mu0(ig))) |
---|
633 | sl_di0 = sl_di0*1370./dist_sol/dist_sol |
---|
634 | sl_di0 = sl_di0/ztim1 |
---|
635 | sl_di0 = fluxsurf_sw(ig,l)*sl_di0 |
---|
636 | endif |
---|
637 | ! you never know (roundup concern...) |
---|
638 | if (sl_fl0 .lt. sl_di0) sl_di0=sl_fl0 |
---|
639 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
640 | CALL param_slope( mu0(ig), declin, sl_ra, sl_lat, |
---|
641 | & sl_tau, sl_alb, sl_the, sl_psi, |
---|
642 | & sl_di0, sl_fl0, sl_flu ) |
---|
643 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
644 | fluxsurf_sw(ig,l) = sl_flu |
---|
645 | ENDDO |
---|
646 | !!! compute correction on IR flux as well |
---|
647 | sky= (1.+cos(pi*theta_sl(ig)/180.))/2. |
---|
648 | fluxsurf_lw(ig)= fluxsurf_lw(ig)*sky |
---|
649 | ENDIF |
---|
650 | ENDDO |
---|
651 | ENDIF |
---|
652 | |
---|
653 | c CO2 near infrared absorption |
---|
654 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
655 | zdtnirco2(:,:)=0 |
---|
656 | if (callnirco2) then |
---|
657 | call nirco2abs (ngrid,nlayer,pplay,dist_sol,nq,pq, |
---|
658 | . mu0,fract,declin, zdtnirco2) |
---|
659 | endif |
---|
660 | |
---|
661 | c Radiative flux from the sky absorbed by the surface (W.m-2) |
---|
662 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
663 | DO ig=1,ngrid |
---|
664 | fluxrad_sky(ig)=emis(ig)*fluxsurf_lw(ig) |
---|
665 | $ +fluxsurf_sw(ig,1)*(1.-albedo(ig,1)) |
---|
666 | $ +fluxsurf_sw(ig,2)*(1.-albedo(ig,2)) |
---|
667 | ENDDO |
---|
668 | |
---|
669 | |
---|
670 | c Net atmospheric radiative heating rate (K.s-1) |
---|
671 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
672 | IF(callnlte) THEN |
---|
673 | CALL blendrad(ngrid, nlayer, pplay, |
---|
674 | & zdtsw, zdtlw, zdtnirco2, zdtnlte, dtrad) |
---|
675 | ELSE |
---|
676 | DO l=1,nlayer |
---|
677 | DO ig=1,ngrid |
---|
678 | dtrad(ig,l)=zdtsw(ig,l)+zdtlw(ig,l) |
---|
679 | & +zdtnirco2(ig,l) |
---|
680 | ENDDO |
---|
681 | ENDDO |
---|
682 | ENDIF |
---|
683 | |
---|
684 | ENDIF ! of if(mod(icount-1,iradia).eq.0) |
---|
685 | |
---|
686 | c Transformation of the radiative tendencies: |
---|
687 | c ------------------------------------------- |
---|
688 | |
---|
689 | c Net radiative surface flux (W.m-2) |
---|
690 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
691 | c |
---|
692 | DO ig=1,ngrid |
---|
693 | zplanck(ig)=tsurf(ig)*tsurf(ig) |
---|
694 | zplanck(ig)=emis(ig)* |
---|
695 | $ stephan*zplanck(ig)*zplanck(ig) |
---|
696 | fluxrad(ig)=fluxrad_sky(ig)-zplanck(ig) |
---|
697 | IF(callslope) THEN |
---|
698 | sky= (1.+cos(pi*theta_sl(ig)/180.))/2. |
---|
699 | fluxrad(ig)=fluxrad(ig)+(1.-sky)*zplanck(ig) |
---|
700 | ENDIF |
---|
701 | ENDDO |
---|
702 | |
---|
703 | DO l=1,nlayer |
---|
704 | DO ig=1,ngrid |
---|
705 | pdt(ig,l)=pdt(ig,l)+dtrad(ig,l) |
---|
706 | ENDDO |
---|
707 | ENDDO |
---|
708 | |
---|
709 | ENDIF ! of IF (callrad) |
---|
710 | |
---|
711 | c----------------------------------------------------------------------- |
---|
712 | c 3. Gravity wave and subgrid scale topography drag : |
---|
713 | c ------------------------------------------------- |
---|
714 | |
---|
715 | |
---|
716 | IF(calllott)THEN |
---|
717 | |
---|
718 | CALL calldrag_noro(ngrid,nlayer,ptimestep, |
---|
719 | & pplay,pplev,pt,pu,pv,zdtgw,zdugw,zdvgw) |
---|
720 | |
---|
721 | DO l=1,nlayer |
---|
722 | DO ig=1,ngrid |
---|
723 | pdv(ig,l)=pdv(ig,l)+zdvgw(ig,l) |
---|
724 | pdu(ig,l)=pdu(ig,l)+zdugw(ig,l) |
---|
725 | pdt(ig,l)=pdt(ig,l)+zdtgw(ig,l) |
---|
726 | ENDDO |
---|
727 | ENDDO |
---|
728 | ENDIF |
---|
729 | |
---|
730 | c----------------------------------------------------------------------- |
---|
731 | c 4. Vertical diffusion (turbulent mixing): |
---|
732 | c ----------------------------------------- |
---|
733 | |
---|
734 | IF (calldifv) THEN |
---|
735 | |
---|
736 | DO ig=1,ngrid |
---|
737 | zflubid(ig)=fluxrad(ig)+fluxgrd(ig) |
---|
738 | ENDDO |
---|
739 | |
---|
740 | zdum1(:,:)=0 |
---|
741 | zdum2(:,:)=0 |
---|
742 | do l=1,nlayer |
---|
743 | do ig=1,ngrid |
---|
744 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) |
---|
745 | enddo |
---|
746 | enddo |
---|
747 | |
---|
748 | |
---|
749 | #ifdef MESOSCALE |
---|
750 | IF (.not.flag_LES) THEN |
---|
751 | #endif |
---|
752 | c ---------------------- |
---|
753 | c Treatment of a special case : using new surface layer (Richardson based) |
---|
754 | c without using the thermals in gcm and mesoscale can yield problems in |
---|
755 | c weakly unstable situations when winds are near to 0. For those cases, we add |
---|
756 | c a unit subgrid gustiness. Remember that thermals should be used we using the |
---|
757 | c Richardson based surface layer model. |
---|
758 | IF ( .not.calltherm .and. callrichsl ) THEN |
---|
759 | DO ig=1, ngridmx |
---|
760 | IF (zh(ig,1) .lt. tsurf(ig)) THEN |
---|
761 | wstar(ig)=1. |
---|
762 | hfmax_th(ig)=0.2 |
---|
763 | ELSE |
---|
764 | wstar(ig)=0. |
---|
765 | hfmax_th(ig)=0. |
---|
766 | ENDIF |
---|
767 | ENDDO |
---|
768 | ENDIF |
---|
769 | c ---------------------- |
---|
770 | #ifdef MESOSCALE |
---|
771 | ENDIF |
---|
772 | #endif |
---|
773 | |
---|
774 | IF (tke_heat_flux .ne. 0.) THEN |
---|
775 | zz1(:)=(pt(:,1)+pdt(:,1)*ptimestep)*(r/g)* |
---|
776 | & (-alog(pplay(:,1)/pplev(:,1))) |
---|
777 | pdt(:,1)=pdt(:,1) + (tke_heat_flux/zz1(:))*zpopsk(:,1) |
---|
778 | ENDIF |
---|
779 | |
---|
780 | c Calling vdif (Martian version WITH CO2 condensation) |
---|
781 | CALL vdifc(ngrid,nlayer,nq,co2ice,zpopsk, |
---|
782 | $ ptimestep,capcal,lwrite, |
---|
783 | $ pplay,pplev,zzlay,zzlev,z0, |
---|
784 | $ pu,pv,zh,pq,tsurf,emis,qsurf, |
---|
785 | $ zdum1,zdum2,zdh,pdq,zflubid, |
---|
786 | $ zdudif,zdvdif,zdhdif,zdtsdif,q2, |
---|
787 | & zdqdif,zdqsdif,wstar,zcdv,zcdh,hfmax_th |
---|
788 | #ifdef MESOSCALE |
---|
789 | & ,flag_LES |
---|
790 | #endif |
---|
791 | & ) |
---|
792 | |
---|
793 | |
---|
794 | #ifdef MESOSCALE |
---|
795 | #include "meso_inc/meso_inc_les.F" |
---|
796 | #endif |
---|
797 | DO l=1,nlayer |
---|
798 | DO ig=1,ngrid |
---|
799 | pdv(ig,l)=pdv(ig,l)+zdvdif(ig,l) |
---|
800 | pdu(ig,l)=pdu(ig,l)+zdudif(ig,l) |
---|
801 | pdt(ig,l)=pdt(ig,l)+zdhdif(ig,l)*zpopsk(ig,l) |
---|
802 | |
---|
803 | zdtdif(ig,l)=zdhdif(ig,l)*zpopsk(ig,l) ! for diagnostic only |
---|
804 | |
---|
805 | ENDDO |
---|
806 | ENDDO |
---|
807 | |
---|
808 | DO ig=1,ngrid |
---|
809 | zdtsurf(ig)=zdtsurf(ig)+zdtsdif(ig) |
---|
810 | ENDDO |
---|
811 | |
---|
812 | if (tracer) then |
---|
813 | DO iq=1, nq |
---|
814 | DO l=1,nlayer |
---|
815 | DO ig=1,ngrid |
---|
816 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdif(ig,l,iq) |
---|
817 | ENDDO |
---|
818 | ENDDO |
---|
819 | ENDDO |
---|
820 | DO iq=1, nq |
---|
821 | DO ig=1,ngrid |
---|
822 | dqsurf(ig,iq)=dqsurf(ig,iq) + zdqsdif(ig,iq) |
---|
823 | ENDDO |
---|
824 | ENDDO |
---|
825 | end if ! of if (tracer) |
---|
826 | |
---|
827 | ELSE |
---|
828 | DO ig=1,ngrid |
---|
829 | zdtsurf(ig)=zdtsurf(ig)+ |
---|
830 | s (fluxrad(ig)+fluxgrd(ig))/capcal(ig) |
---|
831 | ENDDO |
---|
832 | #ifdef MESOSCALE |
---|
833 | IF (flag_LES) THEN |
---|
834 | write(*,*) 'LES mode !' |
---|
835 | write(*,*) 'Please set calldifv to T in callphys.def' |
---|
836 | STOP |
---|
837 | ENDIF |
---|
838 | #endif |
---|
839 | ENDIF ! of IF (calldifv) |
---|
840 | |
---|
841 | c----------------------------------------------------------------------- |
---|
842 | c 5. Thermals : |
---|
843 | c ----------------------------- |
---|
844 | |
---|
845 | if(calltherm) then |
---|
846 | |
---|
847 | call calltherm_interface(firstcall, |
---|
848 | $ long,lati,zzlev,zzlay, |
---|
849 | $ ptimestep,pu,pv,pt,pq,pdu,pdv,pdt,pdq,q2, |
---|
850 | $ pplay,pplev,pphi,zpopsk, |
---|
851 | $ pdu_th,pdv_th,pdt_th,pdq_th,lmax_th,zmax_th, |
---|
852 | $ dtke_th,hfmax_th,wstar) |
---|
853 | |
---|
854 | DO l=1,nlayer |
---|
855 | DO ig=1,ngrid |
---|
856 | pdu(ig,l)=pdu(ig,l)+pdu_th(ig,l) |
---|
857 | pdv(ig,l)=pdv(ig,l)+pdv_th(ig,l) |
---|
858 | pdt(ig,l)=pdt(ig,l)+pdt_th(ig,l) |
---|
859 | q2(ig,l)=q2(ig,l)+dtke_th(ig,l)*ptimestep |
---|
860 | ENDDO |
---|
861 | ENDDO |
---|
862 | |
---|
863 | DO ig=1,ngrid |
---|
864 | q2(ig,nlayer+1)=q2(ig,nlayer+1)+dtke_th(ig,nlayer+1)*ptimestep |
---|
865 | ENDDO |
---|
866 | |
---|
867 | if (tracer) then |
---|
868 | DO iq=1,nq |
---|
869 | DO l=1,nlayer |
---|
870 | DO ig=1,ngrid |
---|
871 | pdq(ig,l,iq)=pdq(ig,l,iq)+pdq_th(ig,l,iq) |
---|
872 | ENDDO |
---|
873 | ENDDO |
---|
874 | ENDDO |
---|
875 | endif |
---|
876 | |
---|
877 | lmax_th_out(:)=real(lmax_th(:)) |
---|
878 | |
---|
879 | else !of if calltherm |
---|
880 | lmax_th(:)=0 |
---|
881 | wstar(:)=0. |
---|
882 | hfmax_th(:)=0. |
---|
883 | lmax_th_out(:)=0. |
---|
884 | end if |
---|
885 | |
---|
886 | c----------------------------------------------------------------------- |
---|
887 | c 5. Dry convective adjustment: |
---|
888 | c ----------------------------- |
---|
889 | |
---|
890 | IF(calladj) THEN |
---|
891 | |
---|
892 | DO l=1,nlayer |
---|
893 | DO ig=1,ngrid |
---|
894 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) |
---|
895 | ENDDO |
---|
896 | ENDDO |
---|
897 | zduadj(:,:)=0 |
---|
898 | zdvadj(:,:)=0 |
---|
899 | zdhadj(:,:)=0 |
---|
900 | |
---|
901 | CALL convadj(ngrid,nlayer,nq,ptimestep, |
---|
902 | $ pplay,pplev,zpopsk,lmax_th, |
---|
903 | $ pu,pv,zh,pq, |
---|
904 | $ pdu,pdv,zdh,pdq, |
---|
905 | $ zduadj,zdvadj,zdhadj, |
---|
906 | $ zdqadj) |
---|
907 | |
---|
908 | |
---|
909 | DO l=1,nlayer |
---|
910 | DO ig=1,ngrid |
---|
911 | pdu(ig,l)=pdu(ig,l)+zduadj(ig,l) |
---|
912 | pdv(ig,l)=pdv(ig,l)+zdvadj(ig,l) |
---|
913 | pdt(ig,l)=pdt(ig,l)+zdhadj(ig,l)*zpopsk(ig,l) |
---|
914 | |
---|
915 | zdtadj(ig,l)=zdhadj(ig,l)*zpopsk(ig,l) ! for diagnostic only |
---|
916 | ENDDO |
---|
917 | ENDDO |
---|
918 | |
---|
919 | if(tracer) then |
---|
920 | DO iq=1, nq |
---|
921 | DO l=1,nlayer |
---|
922 | DO ig=1,ngrid |
---|
923 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqadj(ig,l,iq) |
---|
924 | ENDDO |
---|
925 | ENDDO |
---|
926 | ENDDO |
---|
927 | end if |
---|
928 | ENDIF ! of IF(calladj) |
---|
929 | |
---|
930 | c----------------------------------------------------------------------- |
---|
931 | c 6. Carbon dioxide condensation-sublimation: |
---|
932 | c ------------------------------------------- |
---|
933 | |
---|
934 | IF (tituscap) THEN |
---|
935 | !!! get the actual co2 seasonal cap from Titus observations |
---|
936 | CALL geticecover( ngrid, 180.*zls/pi, |
---|
937 | . 180.*long/pi, 180.*lati/pi, co2ice ) |
---|
938 | co2ice = co2ice * 10000. |
---|
939 | ENDIF |
---|
940 | |
---|
941 | IF (callcond) THEN |
---|
942 | CALL newcondens(ngrid,nlayer,nq,ptimestep, |
---|
943 | $ capcal,pplay,pplev,tsurf,pt, |
---|
944 | $ pphi,pdt,pdu,pdv,zdtsurf,pu,pv,pq,pdq, |
---|
945 | $ co2ice,albedo,emis, |
---|
946 | $ zdtc,zdtsurfc,pdpsrf,zduc,zdvc,zdqc, |
---|
947 | $ fluxsurf_sw,zls) |
---|
948 | |
---|
949 | DO l=1,nlayer |
---|
950 | DO ig=1,ngrid |
---|
951 | pdt(ig,l)=pdt(ig,l)+zdtc(ig,l) |
---|
952 | pdv(ig,l)=pdv(ig,l)+zdvc(ig,l) |
---|
953 | pdu(ig,l)=pdu(ig,l)+zduc(ig,l) |
---|
954 | ENDDO |
---|
955 | ENDDO |
---|
956 | DO ig=1,ngrid |
---|
957 | zdtsurf(ig) = zdtsurf(ig) + zdtsurfc(ig) |
---|
958 | ENDDO |
---|
959 | |
---|
960 | IF (tracer) THEN |
---|
961 | DO iq=1, nq |
---|
962 | DO l=1,nlayer |
---|
963 | DO ig=1,ngrid |
---|
964 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqc(ig,l,iq) |
---|
965 | ENDDO |
---|
966 | ENDDO |
---|
967 | ENDDO |
---|
968 | ENDIF ! of IF (tracer) |
---|
969 | |
---|
970 | ENDIF ! of IF (callcond) |
---|
971 | |
---|
972 | c----------------------------------------------------------------------- |
---|
973 | c 7. Specific parameterizations for tracers |
---|
974 | c: ----------------------------------------- |
---|
975 | |
---|
976 | if (tracer) then |
---|
977 | |
---|
978 | c 7a. Water and ice |
---|
979 | c --------------- |
---|
980 | |
---|
981 | c --------------------------------------- |
---|
982 | c Water ice condensation in the atmosphere |
---|
983 | c ---------------------------------------- |
---|
984 | IF (water) THEN |
---|
985 | |
---|
986 | call watercloud(ngrid,nlayer,ptimestep, |
---|
987 | & pplev,pplay,pdpsrf,zzlev,zzlay, pt,pdt, |
---|
988 | & pq,pdq,zdqcloud,zdqscloud,zdtcloud, |
---|
989 | & nq,tau,tauscaling,rdust,rice,nuice, |
---|
990 | & rsedcloud,rhocloud) |
---|
991 | if (activice) then |
---|
992 | c Temperature variation due to latent heat release |
---|
993 | DO l=1,nlayer |
---|
994 | DO ig=1,ngrid |
---|
995 | pdt(ig,l)=pdt(ig,l)+zdtcloud(ig,l) |
---|
996 | ENDDO |
---|
997 | ENDDO |
---|
998 | endif |
---|
999 | |
---|
1000 | ! increment water vapour and ice atmospheric tracers tendencies |
---|
1001 | IF (water) THEN |
---|
1002 | DO l=1,nlayer |
---|
1003 | DO ig=1,ngrid |
---|
1004 | pdq(ig,l,igcm_h2o_vap)= |
---|
1005 | & pdq(ig,l,igcm_h2o_vap)+ |
---|
1006 | & zdqcloud(ig,l,igcm_h2o_vap) |
---|
1007 | pdq(ig,l,igcm_h2o_ice)= |
---|
1008 | & pdq(ig,l,igcm_h2o_ice)+ |
---|
1009 | & zdqcloud(ig,l,igcm_h2o_ice) |
---|
1010 | if (((pq(ig,l,igcm_h2o_ice) + |
---|
1011 | & pdq(ig,l,igcm_h2o_ice)*ptimestep)) .le. 0) |
---|
1012 | & then |
---|
1013 | pdq(ig,l,igcm_h2o_ice) = |
---|
1014 | & - pq(ig,l,igcm_h2o_ice)/ptimestep + 1e-30 |
---|
1015 | endif |
---|
1016 | IF (scavenging) THEN |
---|
1017 | pdq(ig,l,igcm_ccn_mass)= |
---|
1018 | & pdq(ig,l,igcm_ccn_mass)+ |
---|
1019 | & zdqcloud(ig,l,igcm_ccn_mass) |
---|
1020 | pdq(ig,l,igcm_ccn_number)= |
---|
1021 | & pdq(ig,l,igcm_ccn_number)+ |
---|
1022 | & zdqcloud(ig,l,igcm_ccn_number) |
---|
1023 | pdq(ig,l,igcm_dust_mass)= |
---|
1024 | & pdq(ig,l,igcm_dust_mass)+ |
---|
1025 | & zdqcloud(ig,l,igcm_dust_mass) |
---|
1026 | pdq(ig,l,igcm_dust_number)= |
---|
1027 | & pdq(ig,l,igcm_dust_number)+ |
---|
1028 | & zdqcloud(ig,l,igcm_dust_number) |
---|
1029 | !!!!!!!!!!!!!!!!!!!!! We need to check that we have Nccn & Ndust > 0 |
---|
1030 | !!!!!!!!!!!!!!!!!!!!! This is due to single precision rounding problems |
---|
1031 | if (((pq(ig,l,igcm_ccn_number) + |
---|
1032 | & pdq(ig,l,igcm_ccn_number)*ptimestep)) .le. 0) |
---|
1033 | & then |
---|
1034 | pdq(ig,l,igcm_ccn_number) = |
---|
1035 | & - pq(ig,l,igcm_ccn_number)/ptimestep + 1e-30 |
---|
1036 | pdq(ig,l,igcm_ccn_mass) = |
---|
1037 | & - pq(ig,l,igcm_ccn_mass)/ptimestep + 1e-30 |
---|
1038 | endif |
---|
1039 | if (((pq(ig,l,igcm_dust_number) + |
---|
1040 | & pdq(ig,l,igcm_dust_number)*ptimestep)) .le. 0) |
---|
1041 | & then |
---|
1042 | pdq(ig,l,igcm_dust_number) = |
---|
1043 | & - pq(ig,l,igcm_dust_number)/ptimestep + 1e-30 |
---|
1044 | pdq(ig,l,igcm_dust_mass) = |
---|
1045 | & - pq(ig,l,igcm_dust_mass)/ptimestep + 1e-30 |
---|
1046 | endif |
---|
1047 | !!!!!!!!!!!!!!!!!!!!! |
---|
1048 | !!!!!!!!!!!!!!!!!!!!! |
---|
1049 | ENDIF |
---|
1050 | ENDDO |
---|
1051 | ENDDO |
---|
1052 | ENDIF ! of IF (water) THEN |
---|
1053 | |
---|
1054 | ! Increment water ice surface tracer tendency |
---|
1055 | DO ig=1,ngrid |
---|
1056 | dqsurf(ig,igcm_h2o_ice)=dqsurf(ig,igcm_h2o_ice)+ |
---|
1057 | & zdqscloud(ig,igcm_h2o_ice) |
---|
1058 | ENDDO |
---|
1059 | |
---|
1060 | END IF ! of IF (water) |
---|
1061 | |
---|
1062 | c 7b. Aerosol particles |
---|
1063 | c ------------------- |
---|
1064 | |
---|
1065 | c ---------- |
---|
1066 | c Dust devil : |
---|
1067 | c ---------- |
---|
1068 | IF(callddevil) then |
---|
1069 | call dustdevil(ngrid,nlayer,nq, pplev,pu,pv,pt, tsurf,q2, |
---|
1070 | & zdqdev,zdqsdev) |
---|
1071 | |
---|
1072 | if (dustbin.ge.1) then |
---|
1073 | do iq=1,nq |
---|
1074 | DO l=1,nlayer |
---|
1075 | DO ig=1,ngrid |
---|
1076 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdev(ig,l,iq) |
---|
1077 | ENDDO |
---|
1078 | ENDDO |
---|
1079 | enddo |
---|
1080 | do iq=1,nq |
---|
1081 | DO ig=1,ngrid |
---|
1082 | dqsurf(ig,iq)= dqsurf(ig,iq) + zdqsdev(ig,iq) |
---|
1083 | ENDDO |
---|
1084 | enddo |
---|
1085 | endif ! of if (dustbin.ge.1) |
---|
1086 | |
---|
1087 | END IF ! of IF (callddevil) |
---|
1088 | |
---|
1089 | c ------------- |
---|
1090 | c Sedimentation : acts also on water ice |
---|
1091 | c ------------- |
---|
1092 | IF (sedimentation) THEN |
---|
1093 | !call zerophys(ngrid*nlayer*nq, zdqsed) |
---|
1094 | zdqsed(1:ngrid,1:nlayer,1:nq)=0 |
---|
1095 | !call zerophys(ngrid*nq, zdqssed) |
---|
1096 | zdqssed(1:ngrid,1:nq)=0 |
---|
1097 | |
---|
1098 | call callsedim(ngrid,nlayer, ptimestep, |
---|
1099 | & pplev,zzlev, zzlay, pt, rdust, rice, |
---|
1100 | & rsedcloud,rhocloud, |
---|
1101 | & pq, pdq, zdqsed, zdqssed,nq, |
---|
1102 | & tau,tauscaling) |
---|
1103 | |
---|
1104 | |
---|
1105 | !print*, 'h2o_ice zdqsed ds physiq', zdqsed(1,:,igcm_h2o_ice) |
---|
1106 | |
---|
1107 | DO iq=1, nq |
---|
1108 | DO l=1,nlayer |
---|
1109 | DO ig=1,ngrid |
---|
1110 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqsed(ig,l,iq) |
---|
1111 | ENDDO |
---|
1112 | ENDDO |
---|
1113 | ENDDO |
---|
1114 | DO iq=1, nq |
---|
1115 | DO ig=1,ngrid |
---|
1116 | dqsurf(ig,iq)= dqsurf(ig,iq) + zdqssed(ig,iq) |
---|
1117 | ENDDO |
---|
1118 | ENDDO |
---|
1119 | END IF ! of IF (sedimentation) |
---|
1120 | |
---|
1121 | c |
---|
1122 | c 7c. Chemical species |
---|
1123 | c ------------------ |
---|
1124 | |
---|
1125 | #ifndef MESOSCALE |
---|
1126 | c -------------- |
---|
1127 | c photochemistry : |
---|
1128 | c -------------- |
---|
1129 | IF (photochem .or. thermochem) then |
---|
1130 | |
---|
1131 | ! dust and ice surface area |
---|
1132 | call surfacearea(ngrid, nlayer, ptimestep, pplay, zzlay, |
---|
1133 | $ pt, pq, pdq, nq, |
---|
1134 | $ rdust, rice, tau, tauscaling, |
---|
1135 | $ surfdust, surfice) |
---|
1136 | ! call photochemistry |
---|
1137 | call calchim(ptimestep,pplay,pplev,pt,pdt,dist_sol,mu0, |
---|
1138 | $ zzlev,zzlay,zday,pq,pdq,zdqchim,zdqschim, |
---|
1139 | $ zdqcloud,zdqscloud,tauref,co2ice, |
---|
1140 | $ pu,pdu,pv,pdv,surfdust,surfice) |
---|
1141 | |
---|
1142 | ! increment values of tracers: |
---|
1143 | DO iq=1,nq ! loop on all tracers; tendencies for non-chemistry |
---|
1144 | ! tracers is zero anyways |
---|
1145 | DO l=1,nlayer |
---|
1146 | DO ig=1,ngrid |
---|
1147 | pdq(ig,l,iq)=pdq(ig,l,iq)+zdqchim(ig,l,iq) |
---|
1148 | ENDDO |
---|
1149 | ENDDO |
---|
1150 | ENDDO ! of DO iq=1,nq |
---|
1151 | |
---|
1152 | ! add condensation tendency for H2O2 |
---|
1153 | if (igcm_h2o2.ne.0) then |
---|
1154 | DO l=1,nlayer |
---|
1155 | DO ig=1,ngrid |
---|
1156 | pdq(ig,l,igcm_h2o2)=pdq(ig,l,igcm_h2o2) |
---|
1157 | & +zdqcloud(ig,l,igcm_h2o2) |
---|
1158 | ENDDO |
---|
1159 | ENDDO |
---|
1160 | endif |
---|
1161 | |
---|
1162 | ! increment surface values of tracers: |
---|
1163 | DO iq=1,nq ! loop on all tracers; tendencies for non-chemistry |
---|
1164 | ! tracers is zero anyways |
---|
1165 | DO ig=1,ngrid |
---|
1166 | dqsurf(ig,iq)=dqsurf(ig,iq)+zdqschim(ig,iq) |
---|
1167 | ENDDO |
---|
1168 | ENDDO ! of DO iq=1,nq |
---|
1169 | |
---|
1170 | ! add condensation tendency for H2O2 |
---|
1171 | if (igcm_h2o2.ne.0) then |
---|
1172 | DO ig=1,ngrid |
---|
1173 | dqsurf(ig,igcm_h2o2)=dqsurf(ig,igcm_h2o2) |
---|
1174 | & +zdqscloud(ig,igcm_h2o2) |
---|
1175 | ENDDO |
---|
1176 | endif |
---|
1177 | |
---|
1178 | END IF ! of IF (photochem.or.thermochem) |
---|
1179 | #endif |
---|
1180 | |
---|
1181 | c 7d. Updates |
---|
1182 | c --------- |
---|
1183 | |
---|
1184 | DO iq=1, nq |
---|
1185 | DO ig=1,ngrid |
---|
1186 | |
---|
1187 | c --------------------------------- |
---|
1188 | c Updating tracer budget on surface |
---|
1189 | c --------------------------------- |
---|
1190 | qsurf(ig,iq)=qsurf(ig,iq)+ptimestep*dqsurf(ig,iq) |
---|
1191 | |
---|
1192 | ENDDO ! (ig) |
---|
1193 | ENDDO ! (iq) |
---|
1194 | |
---|
1195 | endif ! of if (tracer) |
---|
1196 | |
---|
1197 | #ifndef MESOSCALE |
---|
1198 | c----------------------------------------------------------------------- |
---|
1199 | c 8. THERMOSPHERE CALCULATION |
---|
1200 | c----------------------------------------------------------------------- |
---|
1201 | |
---|
1202 | if (callthermos) then |
---|
1203 | call thermosphere(pplev,pplay,dist_sol, |
---|
1204 | $ mu0,ptimestep,ptime,zday,tsurf,zzlev,zzlay, |
---|
1205 | & pt,pq,pu,pv,pdt,pdq, |
---|
1206 | $ zdteuv,zdtconduc,zdumolvis,zdvmolvis,zdqmoldiff) |
---|
1207 | |
---|
1208 | DO l=1,nlayer |
---|
1209 | DO ig=1,ngrid |
---|
1210 | dtrad(ig,l)=dtrad(ig,l)+zdteuv(ig,l) |
---|
1211 | pdt(ig,l)=pdt(ig,l)+zdtconduc(ig,l) |
---|
1212 | & +zdteuv(ig,l) |
---|
1213 | pdv(ig,l)=pdv(ig,l)+zdvmolvis(ig,l) |
---|
1214 | pdu(ig,l)=pdu(ig,l)+zdumolvis(ig,l) |
---|
1215 | DO iq=1, nq |
---|
1216 | pdq(ig,l,iq)=pdq(ig,l,iq)+zdqmoldiff(ig,l,iq) |
---|
1217 | ENDDO |
---|
1218 | ENDDO |
---|
1219 | ENDDO |
---|
1220 | |
---|
1221 | endif ! of if (callthermos) |
---|
1222 | #endif |
---|
1223 | |
---|
1224 | c----------------------------------------------------------------------- |
---|
1225 | c 9. Surface and sub-surface soil temperature |
---|
1226 | c----------------------------------------------------------------------- |
---|
1227 | c |
---|
1228 | c |
---|
1229 | c 9.1 Increment Surface temperature: |
---|
1230 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1231 | |
---|
1232 | DO ig=1,ngrid |
---|
1233 | tsurf(ig)=tsurf(ig)+ptimestep*zdtsurf(ig) |
---|
1234 | ENDDO |
---|
1235 | |
---|
1236 | c Prescribe a cold trap at south pole (except at high obliquity !!) |
---|
1237 | c Temperature at the surface is set there to be the temperature |
---|
1238 | c corresponding to equilibrium temperature between phases of CO2 |
---|
1239 | |
---|
1240 | |
---|
1241 | IF (tracer.AND.water.AND.(ngridmx.NE.1)) THEN |
---|
1242 | #ifndef MESOSCALE |
---|
1243 | if (caps.and.(obliquit.lt.27.)) then |
---|
1244 | ! NB: Updated surface pressure, at grid point 'ngrid', is |
---|
1245 | ! ps(ngrid)=pplev(ngrid,1)+pdpsrf(ngrid)*ptimestep |
---|
1246 | tsurf(ngrid)=1./(1./136.27-r/5.9e+5*alog(0.0095* |
---|
1247 | & (pplev(ngrid,1)+pdpsrf(ngrid)*ptimestep))) |
---|
1248 | endif |
---|
1249 | #endif |
---|
1250 | c ------------------------------------------------------------- |
---|
1251 | c Change of surface albedo in case of ground frost |
---|
1252 | c everywhere except on the north permanent cap and in regions |
---|
1253 | c covered by dry ice. |
---|
1254 | c ALWAYS PLACE these lines after newcondens !!! |
---|
1255 | c ------------------------------------------------------------- |
---|
1256 | do ig=1,ngrid |
---|
1257 | if ((co2ice(ig).eq.0).and. |
---|
1258 | & (qsurf(ig,igcm_h2o_ice).gt.frost_albedo_threshold)) then |
---|
1259 | albedo(ig,1) = albedo_h2o_ice |
---|
1260 | albedo(ig,2) = albedo_h2o_ice |
---|
1261 | c write(*,*) "frost thickness", qsurf(ig,igcm_h2o_ice) |
---|
1262 | c write(*,*) "physiq.F frost :" |
---|
1263 | c & ,lati(ig)*180./pi, long(ig)*180./pi |
---|
1264 | endif |
---|
1265 | enddo ! of do ig=1,ngrid |
---|
1266 | ENDIF ! of IF (tracer.AND.water.AND.(ngridmx.NE.1)) |
---|
1267 | |
---|
1268 | c |
---|
1269 | c 9.2 Compute soil temperatures and subsurface heat flux: |
---|
1270 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1271 | IF (callsoil) THEN |
---|
1272 | CALL soil(ngrid,nsoilmx,.false.,inertiedat, |
---|
1273 | & ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
1274 | ENDIF |
---|
1275 | |
---|
1276 | |
---|
1277 | c----------------------------------------------------------------------- |
---|
1278 | c 10. Write output files |
---|
1279 | c ---------------------- |
---|
1280 | |
---|
1281 | c ------------------------------- |
---|
1282 | c Dynamical fields incrementation |
---|
1283 | c ------------------------------- |
---|
1284 | c (FOR OUTPUT ONLY : the actual model integration is performed in the dynamics) |
---|
1285 | ! temperature, zonal and meridional wind |
---|
1286 | DO l=1,nlayer |
---|
1287 | DO ig=1,ngrid |
---|
1288 | zt(ig,l)=pt(ig,l) + pdt(ig,l)*ptimestep |
---|
1289 | zu(ig,l)=pu(ig,l) + pdu(ig,l)*ptimestep |
---|
1290 | zv(ig,l)=pv(ig,l) + pdv(ig,l)*ptimestep |
---|
1291 | ENDDO |
---|
1292 | ENDDO |
---|
1293 | |
---|
1294 | ! tracers |
---|
1295 | DO iq=1, nq |
---|
1296 | DO l=1,nlayer |
---|
1297 | DO ig=1,ngrid |
---|
1298 | zq(ig,l,iq)=pq(ig,l,iq) +pdq(ig,l,iq)*ptimestep |
---|
1299 | ENDDO |
---|
1300 | ENDDO |
---|
1301 | ENDDO |
---|
1302 | |
---|
1303 | ! surface pressure |
---|
1304 | DO ig=1,ngrid |
---|
1305 | ps(ig)=pplev(ig,1) + pdpsrf(ig)*ptimestep |
---|
1306 | ENDDO |
---|
1307 | |
---|
1308 | ! pressure |
---|
1309 | DO l=1,nlayer |
---|
1310 | DO ig=1,ngrid |
---|
1311 | zplev(ig,l)=pplev(ig,l)/pplev(ig,1)*ps(ig) |
---|
1312 | zplay(ig,l)=pplay(ig,l)/pplev(ig,1)*ps(ig) |
---|
1313 | ENDDO |
---|
1314 | ENDDO |
---|
1315 | |
---|
1316 | ! Density |
---|
1317 | DO l=1,nlayer |
---|
1318 | DO ig=1,ngrid |
---|
1319 | rho(ig,l) = zplay(ig,l)/(rnew(ig,l)*zt(ig,l)) |
---|
1320 | ENDDO |
---|
1321 | ENDDO |
---|
1322 | |
---|
1323 | ! Potential Temperature |
---|
1324 | |
---|
1325 | DO ig=1,ngridmx |
---|
1326 | DO l=1,nlayermx |
---|
1327 | zh(ig,l) = zt(ig,l)*(zplev(ig,1)/zplay(ig,l))**rcp |
---|
1328 | ENDDO |
---|
1329 | ENDDO |
---|
1330 | |
---|
1331 | |
---|
1332 | c Compute surface stress : (NB: z0 is a common in surfdat.h) |
---|
1333 | c DO ig=1,ngrid |
---|
1334 | c cd = (0.4/log(zzlay(ig,1)/z0(ig)))**2 |
---|
1335 | c zstress(ig) = rho(ig,1)*cd*(zu(ig,1)**2 + zv(ig,1)**2) |
---|
1336 | c ENDDO |
---|
1337 | |
---|
1338 | c Sum of fluxes in solar spectral bands (for output only) |
---|
1339 | DO ig=1,ngrid |
---|
1340 | fluxtop_sw_tot(ig)=fluxtop_sw(ig,1) + fluxtop_sw(ig,2) |
---|
1341 | fluxsurf_sw_tot(ig)=fluxsurf_sw(ig,1) + fluxsurf_sw(ig,2) |
---|
1342 | ENDDO |
---|
1343 | c ******* TEST ****************************************************** |
---|
1344 | ztim1 = 999 |
---|
1345 | DO l=1,nlayer |
---|
1346 | DO ig=1,ngrid |
---|
1347 | if (pt(ig,l).lt.ztim1) then |
---|
1348 | ztim1 = pt(ig,l) |
---|
1349 | igmin = ig |
---|
1350 | lmin = l |
---|
1351 | end if |
---|
1352 | ENDDO |
---|
1353 | ENDDO |
---|
1354 | if(min(pt(igmin,lmin),zt(igmin,lmin)).lt.70.) then |
---|
1355 | write(*,*) 'PHYSIQ: stability WARNING :' |
---|
1356 | write(*,*) 'pt, zt Tmin = ', pt(igmin,lmin), zt(igmin,lmin), |
---|
1357 | & 'ig l =', igmin, lmin |
---|
1358 | end if |
---|
1359 | c ******************************************************************* |
---|
1360 | |
---|
1361 | c --------------------- |
---|
1362 | c Outputs to the screen |
---|
1363 | c --------------------- |
---|
1364 | |
---|
1365 | IF (lwrite) THEN |
---|
1366 | PRINT*,'Global diagnostics for the physics' |
---|
1367 | PRINT*,'Variables and their increments x and dx/dt * dt' |
---|
1368 | WRITE(*,'(a6,a10,2a15)') 'Ts','dTs','ps','dps' |
---|
1369 | WRITE(*,'(2f10.5,2f15.5)') |
---|
1370 | s tsurf(igout),zdtsurf(igout)*ptimestep, |
---|
1371 | s pplev(igout,1),pdpsrf(igout)*ptimestep |
---|
1372 | WRITE(*,'(a4,a6,5a10)') 'l','u','du','v','dv','T','dT' |
---|
1373 | WRITE(*,'(i4,6f10.5)') (l, |
---|
1374 | s pu(igout,l),pdu(igout,l)*ptimestep, |
---|
1375 | s pv(igout,l),pdv(igout,l)*ptimestep, |
---|
1376 | s pt(igout,l),pdt(igout,l)*ptimestep, |
---|
1377 | s l=1,nlayer) |
---|
1378 | ENDIF ! of IF (lwrite) |
---|
1379 | |
---|
1380 | c ---------------------------------------------------------- |
---|
1381 | c ---------------------------------------------------------- |
---|
1382 | c INTERPOLATIONS IN THE SURFACE-LAYER |
---|
1383 | c ---------------------------------------------------------- |
---|
1384 | c ---------------------------------------------------------- |
---|
1385 | |
---|
1386 | IF (1 .eq. 0.) THEN |
---|
1387 | IF (callrichsl) THEN |
---|
1388 | n_out=5 |
---|
1389 | |
---|
1390 | ALLOCATE(z_out(n_out)) |
---|
1391 | ALLOCATE(Teta_out(ngrid,n_out)) |
---|
1392 | ALLOCATE(u_out(ngrid,n_out)) |
---|
1393 | |
---|
1394 | z_out(:)=[0.001,0.05,0.1,0.5,1.] |
---|
1395 | u_out(:,:)=0. |
---|
1396 | Teta_out(:,:)=0. |
---|
1397 | |
---|
1398 | call pbl_parameters(ngrid,nlayer,ps,zplay,z0, |
---|
1399 | & g,zzlay,zzlev,zu,zv,wstar,hfmax_th,zmax_th,tsurf,zh,z_out,n_out, |
---|
1400 | & Teta_out,u_out,ustar,tstar,wstarpbl,L_mo,vhf,vvv) |
---|
1401 | |
---|
1402 | #ifndef MESOSCALE |
---|
1403 | IF (ngrid .eq. 1) THEN |
---|
1404 | dimout=0 |
---|
1405 | ELSE |
---|
1406 | dimout=2 |
---|
1407 | ENDIF |
---|
1408 | DO n=1,n_out |
---|
1409 | write(zstring, '(F9.6)') z_out(n) |
---|
1410 | call WRITEDIAGFI(ngrid,'Teta_out_'//trim(zstring), |
---|
1411 | & 'potential temperature at z_out','K',dimout,Teta_out(:,n)) |
---|
1412 | call WRITEDIAGFI(ngrid,'u_out_'//trim(zstring), |
---|
1413 | & 'horizontal velocity norm at z_out','m/s',dimout,u_out(:,n)) |
---|
1414 | ENDDO |
---|
1415 | call WRITEDIAGFI(ngrid,'u_star', |
---|
1416 | & 'friction velocity','m/s',dimout,ustar) |
---|
1417 | call WRITEDIAGFI(ngrid,'teta_star', |
---|
1418 | & 'friction potential temperature','K',dimout,tstar) |
---|
1419 | call WRITEDIAGFI(ngrid,'L', |
---|
1420 | & 'Monin Obukhov length','m',dimout,L_mo) |
---|
1421 | call WRITEDIAGFI(ngrid,'vvv', |
---|
1422 | & 'Vertical velocity variance at zout','m',dimout,vvv) |
---|
1423 | call WRITEDIAGFI(ngrid,'vhf', |
---|
1424 | & 'Vertical heat flux at zout','m',dimout,vhf) |
---|
1425 | #endif |
---|
1426 | |
---|
1427 | ENDIF |
---|
1428 | ENDIF ! of pbl interpolation outputs |
---|
1429 | |
---|
1430 | c ---------------------------------------------------------- |
---|
1431 | c ---------------------------------------------------------- |
---|
1432 | c END OF SURFACE LAYER INTERPOLATIONS |
---|
1433 | c ---------------------------------------------------------- |
---|
1434 | c ---------------------------------------------------------- |
---|
1435 | |
---|
1436 | IF (ngrid.NE.1) THEN |
---|
1437 | |
---|
1438 | #ifndef MESOSCALE |
---|
1439 | c ------------------------------------------------------------------- |
---|
1440 | c Writing NetCDF file "RESTARTFI" at the end of the run |
---|
1441 | c ------------------------------------------------------------------- |
---|
1442 | c Note: 'restartfi' is stored just before dynamics are stored |
---|
1443 | c in 'restart'. Between now and the writting of 'restart', |
---|
1444 | c there will have been the itau=itau+1 instruction and |
---|
1445 | c a reset of 'time' (lastacll = .true. when itau+1= itaufin) |
---|
1446 | c thus we store for time=time+dtvr |
---|
1447 | |
---|
1448 | IF(lastcall) THEN |
---|
1449 | ztime_fin = ptime + ptimestep/(float(iphysiq)*daysec) |
---|
1450 | write(*,*)'PHYSIQ: for physdem ztime_fin =',ztime_fin |
---|
1451 | call physdem1("restartfi.nc",long,lati,nsoilmx,nq, |
---|
1452 | . ptimestep,pday, |
---|
1453 | . ztime_fin,tsurf,tsoil,co2ice,emis,q2,qsurf, |
---|
1454 | . area,albedodat,inertiedat,zmea,zstd,zsig, |
---|
1455 | . zgam,zthe) |
---|
1456 | ENDIF |
---|
1457 | #endif |
---|
1458 | |
---|
1459 | c ------------------------------------------------------------------- |
---|
1460 | c Calculation of diagnostic variables written in both stats and |
---|
1461 | c diagfi files |
---|
1462 | c ------------------------------------------------------------------- |
---|
1463 | |
---|
1464 | if (tracer) then |
---|
1465 | if (water) then |
---|
1466 | |
---|
1467 | if (scavenging) then |
---|
1468 | ccntot(:)= 0 |
---|
1469 | do ig=1,ngrid |
---|
1470 | do l=1,nlayermx |
---|
1471 | ccntot(ig) = ccntot(ig) + |
---|
1472 | & zq(ig,l,igcm_ccn_number)*tauscaling(ig) |
---|
1473 | & *(pplev(ig,l) - pplev(ig,l+1)) / g |
---|
1474 | enddo |
---|
1475 | enddo |
---|
1476 | endif |
---|
1477 | |
---|
1478 | mtot(:)=0 |
---|
1479 | icetot(:)=0 |
---|
1480 | rave(:)=0 |
---|
1481 | tauTES(:)=0 |
---|
1482 | do ig=1,ngrid |
---|
1483 | do l=1,nlayermx |
---|
1484 | mtot(ig) = mtot(ig) + |
---|
1485 | & zq(ig,l,igcm_h2o_vap) * |
---|
1486 | & (pplev(ig,l) - pplev(ig,l+1)) / g |
---|
1487 | icetot(ig) = icetot(ig) + |
---|
1488 | & zq(ig,l,igcm_h2o_ice) * |
---|
1489 | & (pplev(ig,l) - pplev(ig,l+1)) / g |
---|
1490 | rave(ig) = rave(ig) + |
---|
1491 | & zq(ig,l,igcm_h2o_ice) * |
---|
1492 | & (pplev(ig,l) - pplev(ig,l+1)) / g * |
---|
1493 | & rice(ig,l) * (1.+nuice_ref) |
---|
1494 | c Computing abs optical depth at 825 cm-1 in each |
---|
1495 | c layer to simulate NEW TES retrieval |
---|
1496 | Qabsice = min( |
---|
1497 | & max(0.4e6*rice(ig,l)*(1.+nuice_ref)-0.05 ,0.),1.2 |
---|
1498 | & ) |
---|
1499 | opTES(ig,l)= 0.75 * Qabsice * |
---|
1500 | & zq(ig,l,igcm_h2o_ice) * |
---|
1501 | & (pplev(ig,l) - pplev(ig,l+1)) / g |
---|
1502 | & / (rho_ice * rice(ig,l) * (1.+nuice_ref)) |
---|
1503 | tauTES(ig)=tauTES(ig)+ opTES(ig,l) |
---|
1504 | enddo |
---|
1505 | rave(ig)=rave(ig)/max(icetot(ig),1.e-30) |
---|
1506 | if (icetot(ig)*1e3.lt.0.01) rave(ig)=0. |
---|
1507 | enddo |
---|
1508 | |
---|
1509 | endif ! of if (water) |
---|
1510 | endif ! of if (tracer) |
---|
1511 | |
---|
1512 | c ----------------------------------------------------------------- |
---|
1513 | c WSTATS: Saving statistics |
---|
1514 | c ----------------------------------------------------------------- |
---|
1515 | c ("stats" stores and accumulates 8 key variables in file "stats.nc" |
---|
1516 | c which can later be used to make the statistic files of the run: |
---|
1517 | c "stats") only possible in 3D runs ! |
---|
1518 | |
---|
1519 | IF (callstats) THEN |
---|
1520 | |
---|
1521 | call wstats(ngrid,"ps","Surface pressure","Pa",2,ps) |
---|
1522 | call wstats(ngrid,"tsurf","Surface temperature","K",2,tsurf) |
---|
1523 | call wstats(ngrid,"co2ice","CO2 ice cover", |
---|
1524 | & "kg.m-2",2,co2ice) |
---|
1525 | call wstats(ngrid,"fluxsurf_lw", |
---|
1526 | & "Thermal IR radiative flux to surface","W.m-2",2, |
---|
1527 | & fluxsurf_lw) |
---|
1528 | call wstats(ngrid,"fluxsurf_sw", |
---|
1529 | & "Solar radiative flux to surface","W.m-2",2, |
---|
1530 | & fluxsurf_sw_tot) |
---|
1531 | call wstats(ngrid,"fluxtop_lw", |
---|
1532 | & "Thermal IR radiative flux to space","W.m-2",2, |
---|
1533 | & fluxtop_lw) |
---|
1534 | call wstats(ngrid,"fluxtop_sw", |
---|
1535 | & "Solar radiative flux to space","W.m-2",2, |
---|
1536 | & fluxtop_sw_tot) |
---|
1537 | call wstats(ngrid,"temp","Atmospheric temperature","K",3,zt) |
---|
1538 | call wstats(ngrid,"u","Zonal (East-West) wind","m.s-1",3,zu) |
---|
1539 | call wstats(ngrid,"v","Meridional (North-South) wind", |
---|
1540 | & "m.s-1",3,zv) |
---|
1541 | c call wstats(ngrid,"w","Vertical (down-up) wind", |
---|
1542 | c & "m.s-1",3,pw) |
---|
1543 | call wstats(ngrid,"rho","Atmospheric density","kg/m3",3,rho) |
---|
1544 | c call wstats(ngrid,"pressure","Pressure","Pa",3,pplay) |
---|
1545 | c call wstats(ngrid,"q2", |
---|
1546 | c & "Boundary layer eddy kinetic energy", |
---|
1547 | c & "m2.s-2",3,q2) |
---|
1548 | c call wstats(ngrid,"emis","Surface emissivity","w.m-1",2, |
---|
1549 | c & emis) |
---|
1550 | c call wstats(ngrid,"ssurf","Surface stress","N.m-2", |
---|
1551 | c & 2,zstress) |
---|
1552 | c call wstats(ngrid,"sw_htrt","sw heat.rate", |
---|
1553 | c & "W.m-2",3,zdtsw) |
---|
1554 | c call wstats(ngrid,"lw_htrt","lw heat.rate", |
---|
1555 | c & "W.m-2",3,zdtlw) |
---|
1556 | |
---|
1557 | if (tracer) then |
---|
1558 | if (water) then |
---|
1559 | vmr=zq(1:ngridmx,1:nlayermx,igcm_h2o_vap) |
---|
1560 | & *mugaz/mmol(igcm_h2o_vap) |
---|
1561 | call wstats(ngrid,"vmr_h2ovapor", |
---|
1562 | & "H2O vapor volume mixing ratio","mol/mol", |
---|
1563 | & 3,vmr) |
---|
1564 | vmr=zq(1:ngridmx,1:nlayermx,igcm_h2o_ice) |
---|
1565 | & *mugaz/mmol(igcm_h2o_ice) |
---|
1566 | call wstats(ngrid,"vmr_h2oice", |
---|
1567 | & "H2O ice volume mixing ratio","mol/mol", |
---|
1568 | & 3,vmr) |
---|
1569 | call wstats(ngrid,"h2o_ice_s", |
---|
1570 | & "surface h2o_ice","kg/m2", |
---|
1571 | & 2,qsurf(1,igcm_h2o_ice)) |
---|
1572 | call wstats(ngrid,'albedo', |
---|
1573 | & 'albedo', |
---|
1574 | & '',2,albedo(1:ngridmx,1)) |
---|
1575 | call wstats(ngrid,"mtot", |
---|
1576 | & "total mass of water vapor","kg/m2", |
---|
1577 | & 2,mtot) |
---|
1578 | call wstats(ngrid,"icetot", |
---|
1579 | & "total mass of water ice","kg/m2", |
---|
1580 | & 2,icetot) |
---|
1581 | call wstats(ngrid,"reffice", |
---|
1582 | & "Mean reff","m", |
---|
1583 | & 2,rave) |
---|
1584 | call wstats(ngrid,"ccntot", |
---|
1585 | & "condensation nuclei","Nbr/m2", |
---|
1586 | & 2,ccntot) |
---|
1587 | call wstats(ngrid,"rice", |
---|
1588 | & "Ice particle size","m", |
---|
1589 | & 3,rice) |
---|
1590 | if (.not.activice) then |
---|
1591 | call wstats(ngrid,"tauTESap", |
---|
1592 | & "tau abs 825 cm-1","", |
---|
1593 | & 2,tauTES) |
---|
1594 | else |
---|
1595 | call wstats(ngridmx,'tauTES', |
---|
1596 | & 'tau abs 825 cm-1', |
---|
1597 | & '',2,taucloudtes) |
---|
1598 | endif |
---|
1599 | |
---|
1600 | endif ! of if (water) |
---|
1601 | |
---|
1602 | if (thermochem.or.photochem) then |
---|
1603 | do iq=1,nq |
---|
1604 | if (noms(iq) .ne. "dust_mass" .and. |
---|
1605 | $ noms(iq) .ne. "dust_number" .and. |
---|
1606 | $ noms(iq) .ne. "ccn_mass" .and. |
---|
1607 | $ noms(iq) .ne. "ccn_number") then |
---|
1608 | do l=1,nlayer |
---|
1609 | do ig=1,ngrid |
---|
1610 | vmr(ig,l)=zq(ig,l,iq)*mmean(ig,l)/mmol(iq) |
---|
1611 | end do |
---|
1612 | end do |
---|
1613 | call wstats(ngrid,"vmr_"//trim(noms(iq)), |
---|
1614 | $ "Volume mixing ratio","mol/mol",3,vmr) |
---|
1615 | if ((noms(iq).eq."o") .or. (noms(iq).eq."co2").or. |
---|
1616 | $ (noms(iq).eq."o3")) then |
---|
1617 | call writediagfi(ngrid,"vmr_"//trim(noms(iq)), |
---|
1618 | $ "Volume mixing ratio","mol/mol",3,vmr) |
---|
1619 | end if |
---|
1620 | do ig = 1,ngrid |
---|
1621 | colden(ig,iq) = 0. |
---|
1622 | end do |
---|
1623 | do l=1,nlayer |
---|
1624 | do ig=1,ngrid |
---|
1625 | colden(ig,iq) = colden(ig,iq) + zq(ig,l,iq) |
---|
1626 | $ *(pplev(ig,l)-pplev(ig,l+1)) |
---|
1627 | $ *6.022e22/(mmol(iq)*g) |
---|
1628 | end do |
---|
1629 | end do |
---|
1630 | call wstats(ngrid,"c_"//trim(noms(iq)), |
---|
1631 | $ "column","mol cm-2",2,colden(1,iq)) |
---|
1632 | call writediagfi(ngrid,"c_"//trim(noms(iq)), |
---|
1633 | $ "column","mol cm-2",2,colden(1,iq)) |
---|
1634 | end if ! of if (noms(iq) .ne. "dust_mass" ...) |
---|
1635 | end do ! of do iq=1,nq |
---|
1636 | end if ! of if (thermochem.or.photochem) |
---|
1637 | |
---|
1638 | end if ! of if (tracer) |
---|
1639 | |
---|
1640 | IF(lastcall) THEN |
---|
1641 | write (*,*) "Writing stats..." |
---|
1642 | call mkstats(ierr) |
---|
1643 | ENDIF |
---|
1644 | |
---|
1645 | ENDIF !if callstats |
---|
1646 | |
---|
1647 | c (Store EOF for Mars Climate database software) |
---|
1648 | IF (calleofdump) THEN |
---|
1649 | CALL eofdump(ngrid, nlayer, zu, zv, zt, rho, ps) |
---|
1650 | ENDIF |
---|
1651 | |
---|
1652 | |
---|
1653 | #ifdef MESOSCALE |
---|
1654 | !!! |
---|
1655 | !!! OUTPUT FIELDS |
---|
1656 | !!! |
---|
1657 | wtsurf(1:ngrid) = tsurf(1:ngrid) !! surface temperature |
---|
1658 | wco2ice(1:ngrid) = co2ice(1:ngrid) !! co2 ice |
---|
1659 | mtot(1:ngrid) = mtot(1:ngrid) * 1.e6 / rho_ice |
---|
1660 | icetot(1:ngrid) = icetot(1:ngrid) * 1.e6 / rho_ice |
---|
1661 | !! JF |
---|
1662 | TAU_lay(:)=tau(:,1)!!true opacity (not a reference like tauref) |
---|
1663 | IF (igcm_dust_mass .ne. 0) THEN |
---|
1664 | qsurfice_dust(1:ngrid) = qsurf(1:ngrid,igcm_dust_mass) |
---|
1665 | ENDIF |
---|
1666 | IF (igcm_h2o_ice .ne. 0) THEN |
---|
1667 | qsurfice(1:ngrid) = qsurf(1:ngrid,igcm_h2o_ice) |
---|
1668 | vmr=1.e6 * zq(1:ngrid,1:nlayer,igcm_h2o_ice) |
---|
1669 | . * mugaz / mmol(igcm_h2o_ice) |
---|
1670 | ENDIF |
---|
1671 | !! Dust quantity integration along the vertical axe |
---|
1672 | dustot(:)=0 |
---|
1673 | do ig=1,ngrid |
---|
1674 | do l=1,nlayermx |
---|
1675 | dustot(ig) = dustot(ig) + |
---|
1676 | & zq(ig,l,igcm_dust_mass) |
---|
1677 | & * (pplev(ig,l) - pplev(ig,l+1)) / g |
---|
1678 | enddo |
---|
1679 | enddo |
---|
1680 | !! TAU water ice as seen by TES |
---|
1681 | if (activice) tauTES = taucloudtes |
---|
1682 | c AUTOMATICALLY GENERATED FROM REGISTRY |
---|
1683 | #include "fill_save.inc" |
---|
1684 | #else |
---|
1685 | #ifndef MESOINI |
---|
1686 | |
---|
1687 | c ========================================================== |
---|
1688 | c WRITEDIAGFI: Outputs in netcdf file "DIAGFI", containing |
---|
1689 | c any variable for diagnostic (output with period |
---|
1690 | c "ecritphy", set in "run.def") |
---|
1691 | c ========================================================== |
---|
1692 | c WRITEDIAGFI can ALSO be called from any other subroutines |
---|
1693 | c for any variables !! |
---|
1694 | c call WRITEDIAGFI(ngrid,"emis","Surface emissivity","w.m-1",2, |
---|
1695 | c & emis) |
---|
1696 | c call WRITEDIAGFI(ngrid,"pplay","Pressure","Pa",3,zplay) |
---|
1697 | c call WRITEDIAGFI(ngrid,"pplev","Pressure","Pa",3,zplev) |
---|
1698 | call WRITEDIAGFI(ngrid,"tsurf","Surface temperature","K",2, |
---|
1699 | & tsurf) |
---|
1700 | call WRITEDIAGFI(ngrid,"ps","surface pressure","Pa",2,ps) |
---|
1701 | call WRITEDIAGFI(ngrid,"co2ice","co2 ice thickness","kg.m-2",2, |
---|
1702 | & co2ice) |
---|
1703 | |
---|
1704 | c call WRITEDIAGFI(ngrid,"temp7","temperature in layer 7", |
---|
1705 | c & "K",2,zt(1,7)) |
---|
1706 | c call WRITEDIAGFI(ngrid,"fluxsurf_lw","fluxsurf_lw","W.m-2",2, |
---|
1707 | c & fluxsurf_lw) |
---|
1708 | c call WRITEDIAGFI(ngrid,"fluxsurf_sw","fluxsurf_sw","W.m-2",2, |
---|
1709 | c & fluxsurf_sw_tot) |
---|
1710 | c call WRITEDIAGFI(ngrid,"fluxtop_lw","fluxtop_lw","W.m-2",2, |
---|
1711 | c & fluxtop_lw) |
---|
1712 | c call WRITEDIAGFI(ngrid,"fluxtop_sw","fluxtop_sw","W.m-2",2, |
---|
1713 | c & fluxtop_sw_tot) |
---|
1714 | c call WRITEDIAGFI(ngrid,"temp","temperature","K",3,zt) |
---|
1715 | c call WRITEDIAGFI(ngrid,"u","Zonal wind","m.s-1",3,zu) |
---|
1716 | c call WRITEDIAGFI(ngrid,"v","Meridional wind","m.s-1",3,zv) |
---|
1717 | c call WRITEDIAGFI(ngrid,"w","Vertical wind","m.s-1",3,pw) |
---|
1718 | c call WRITEDIAGFI(ngrid,"rho","density","none",3,rho) |
---|
1719 | c call WRITEDIAGFI(ngrid,"q2","q2","kg.m-3",3,q2) |
---|
1720 | c call WRITEDIAGFI(ngrid,'Teta','T potentielle','K',3,zh) |
---|
1721 | c call WRITEDIAGFI(ngrid,"pressure","Pressure","Pa",3,pplay) |
---|
1722 | c call WRITEDIAGFI(ngrid,"ssurf","Surface stress","N.m-2",2, |
---|
1723 | c & zstress) |
---|
1724 | c call WRITEDIAGFI(ngridmx,'sw_htrt','sw heat. rate', |
---|
1725 | c & 'w.m-2',3,zdtsw) |
---|
1726 | c call WRITEDIAGFI(ngridmx,'lw_htrt','lw heat. rate', |
---|
1727 | c & 'w.m-2',3,zdtlw) |
---|
1728 | if (.not.activice) then |
---|
1729 | CALL WRITEDIAGFI(ngridmx,'tauTESap', |
---|
1730 | & 'tau abs 825 cm-1', |
---|
1731 | & '',2,tauTES) |
---|
1732 | else |
---|
1733 | CALL WRITEDIAGFI(ngridmx,'tauTES', |
---|
1734 | & 'tau abs 825 cm-1', |
---|
1735 | & '',2,taucloudtes) |
---|
1736 | endif |
---|
1737 | |
---|
1738 | #else |
---|
1739 | !!! this is to ensure correct initialisation of mesoscale model |
---|
1740 | call WRITEDIAGFI(ngrid,"tsurf","Surface temperature","K",2, |
---|
1741 | & tsurf) |
---|
1742 | call WRITEDIAGFI(ngrid,"ps","surface pressure","Pa",2,ps) |
---|
1743 | call WRITEDIAGFI(ngrid,"co2ice","co2 ice thickness","kg.m-2",2, |
---|
1744 | & co2ice) |
---|
1745 | call WRITEDIAGFI(ngrid,"temp","temperature","K",3,zt) |
---|
1746 | call WRITEDIAGFI(ngrid,"u","Zonal wind","m.s-1",3,zu) |
---|
1747 | call WRITEDIAGFI(ngrid,"v","Meridional wind","m.s-1",3,zv) |
---|
1748 | call WRITEDIAGFI(ngrid,"emis","Surface emissivity","w.m-1",2, |
---|
1749 | & emis) |
---|
1750 | call WRITEDIAGFI(ngrid,"tsoil","Soil temperature", |
---|
1751 | & "K",3,tsoil) |
---|
1752 | call WRITEDIAGFI(ngrid,"inertiedat","Soil inertia", |
---|
1753 | & "K",3,inertiedat) |
---|
1754 | #endif |
---|
1755 | |
---|
1756 | |
---|
1757 | c ---------------------------------------------------------- |
---|
1758 | c Outputs of the CO2 cycle |
---|
1759 | c ---------------------------------------------------------- |
---|
1760 | |
---|
1761 | if (tracer.and.(igcm_co2.ne.0)) then |
---|
1762 | ! call WRITEDIAGFI(ngrid,"co2_l1","co2 mix. ratio in 1st layer", |
---|
1763 | ! & "kg/kg",2,zq(1,1,igcm_co2)) |
---|
1764 | ! call WRITEDIAGFI(ngrid,"co2","co2 mass mixing ratio", |
---|
1765 | ! & "kg/kg",3,zq(1,1,igcm_co2)) |
---|
1766 | |
---|
1767 | ! Compute co2 column |
---|
1768 | co2col(:)=0 |
---|
1769 | do l=1,nlayermx |
---|
1770 | do ig=1,ngrid |
---|
1771 | co2col(ig)=co2col(ig)+ |
---|
1772 | & zq(ig,l,igcm_co2)*(pplev(ig,l)-pplev(ig,l+1))/g |
---|
1773 | enddo |
---|
1774 | enddo |
---|
1775 | call WRITEDIAGFI(ngrid,"co2col","CO2 column","kg.m-2",2, |
---|
1776 | & co2col) |
---|
1777 | endif ! of if (tracer.and.(igcm_co2.ne.0)) |
---|
1778 | |
---|
1779 | c ---------------------------------------------------------- |
---|
1780 | c Outputs of the water cycle |
---|
1781 | c ---------------------------------------------------------- |
---|
1782 | if (tracer) then |
---|
1783 | if (water) then |
---|
1784 | |
---|
1785 | #ifdef MESOINI |
---|
1786 | !!!! waterice = q01, voir readmeteo.F90 |
---|
1787 | call WRITEDIAGFI(ngridmx,'q01',noms(igcm_h2o_ice), |
---|
1788 | & 'kg/kg',3, |
---|
1789 | & zq(1:ngridmx,1:nlayermx,igcm_h2o_ice)) |
---|
1790 | !!!! watervapor = q02, voir readmeteo.F90 |
---|
1791 | call WRITEDIAGFI(ngridmx,'q02',noms(igcm_h2o_vap), |
---|
1792 | & 'kg/kg',3, |
---|
1793 | & zq(1:ngridmx,1:nlayermx,igcm_h2o_vap)) |
---|
1794 | !!!! surface waterice qsurf02 (voir readmeteo) |
---|
1795 | call WRITEDIAGFI(ngridmx,'qsurf02','surface tracer', |
---|
1796 | & 'kg.m-2',2, |
---|
1797 | & qsurf(1:ngridmx,igcm_h2o_ice)) |
---|
1798 | #endif |
---|
1799 | |
---|
1800 | CALL WRITEDIAGFI(ngridmx,'mtot', |
---|
1801 | & 'total mass of water vapor', |
---|
1802 | & 'kg/m2',2,mtot) |
---|
1803 | CALL WRITEDIAGFI(ngridmx,'icetot', |
---|
1804 | & 'total mass of water ice', |
---|
1805 | & 'kg/m2',2,icetot) |
---|
1806 | c vmr=zq(1:ngridmx,1:nlayermx,igcm_h2o_ice) |
---|
1807 | c & *mugaz/mmol(igcm_h2o_ice) |
---|
1808 | c call WRITEDIAGFI(ngridmx,'vmr_h2oice','h2o ice vmr', |
---|
1809 | c & 'mol/mol',3,vmr) |
---|
1810 | c vmr=zq(1:ngridmx,1:nlayermx,igcm_h2o_vap) |
---|
1811 | c & *mugaz/mmol(igcm_h2o_vap) |
---|
1812 | c call WRITEDIAGFI(ngridmx,'vmr_h2ovap','h2o vap vmr', |
---|
1813 | c & 'mol/mol',3,vmr) |
---|
1814 | c CALL WRITEDIAGFI(ngridmx,'reffice', |
---|
1815 | c & 'Mean reff', |
---|
1816 | c & 'm',2,rave) |
---|
1817 | c CALL WRITEDIAGFI(ngrid,"ccntot", |
---|
1818 | c & "condensation nuclei","Nbr/m2", |
---|
1819 | c & 2,ccntot) |
---|
1820 | c call WRITEDIAGFI(ngridmx,'rice','Ice particle size', |
---|
1821 | c & 'm',3,rice) |
---|
1822 | call WRITEDIAGFI(ngridmx,'h2o_ice_s', |
---|
1823 | & 'surface h2o_ice', |
---|
1824 | & 'kg.m-2',2,qsurf(1,igcm_h2o_ice)) |
---|
1825 | |
---|
1826 | c if (caps) then |
---|
1827 | c do ig=1,ngridmx |
---|
1828 | c if (watercaptag(ig)) watercapflag(ig) = 1 |
---|
1829 | c enddo |
---|
1830 | c CALL WRITEDIAGFI(ngridmx,'watercaptag', |
---|
1831 | c & 'Ice water caps', |
---|
1832 | c & '',2,watercapflag) |
---|
1833 | cs endif |
---|
1834 | c CALL WRITEDIAGFI(ngridmx,'albedo', |
---|
1835 | c & 'albedo', |
---|
1836 | c & '',2,albedo(1:ngridmx,1)) |
---|
1837 | endif !(water) |
---|
1838 | |
---|
1839 | |
---|
1840 | if (water.and..not.photochem) then |
---|
1841 | iq=nq |
---|
1842 | c write(str2(1:2),'(i2.2)') iq |
---|
1843 | c call WRITEDIAGFI(ngridmx,'dqs'//str2,'dqscloud', |
---|
1844 | c & 'kg.m-2',2,zdqscloud(1,iq)) |
---|
1845 | c call WRITEDIAGFI(ngridmx,'dqch'//str2,'var chim', |
---|
1846 | c & 'kg/kg',3,zdqchim(1,1,iq)) |
---|
1847 | c call WRITEDIAGFI(ngridmx,'dqd'//str2,'var dif', |
---|
1848 | c & 'kg/kg',3,zdqdif(1,1,iq)) |
---|
1849 | c call WRITEDIAGFI(ngridmx,'dqa'//str2,'var adj', |
---|
1850 | c & 'kg/kg',3,zdqadj(1,1,iq)) |
---|
1851 | c call WRITEDIAGFI(ngridmx,'dqc'//str2,'var c', |
---|
1852 | c & 'kg/kg',3,zdqc(1,1,iq)) |
---|
1853 | endif !(water.and..not.photochem) |
---|
1854 | endif |
---|
1855 | |
---|
1856 | c ---------------------------------------------------------- |
---|
1857 | c Outputs of the dust cycle |
---|
1858 | c ---------------------------------------------------------- |
---|
1859 | |
---|
1860 | c call WRITEDIAGFI(ngridmx,'tauref', |
---|
1861 | c & 'Dust ref opt depth','NU',2,tauref) |
---|
1862 | |
---|
1863 | if (tracer.and.(dustbin.ne.0)) then |
---|
1864 | c call WRITEDIAGFI(ngridmx,'tau','taudust','SI',2,tau(1,1)) |
---|
1865 | if (doubleq) then |
---|
1866 | c call WRITEDIAGFI(ngridmx,'qsurf','qsurf', |
---|
1867 | c & 'kg.m-2',2,qsurf(1,igcm_dust_mass)) |
---|
1868 | c call WRITEDIAGFI(ngridmx,'Nsurf','N particles', |
---|
1869 | c & 'N.m-2',2,qsurf(1,igcm_dust_number)) |
---|
1870 | c call WRITEDIAGFI(ngridmx,'dqsdev','ddevil lift', |
---|
1871 | c & 'kg.m-2.s-1',2,zdqsdev(1,1)) |
---|
1872 | c call WRITEDIAGFI(ngridmx,'dqssed','sedimentation', |
---|
1873 | c & 'kg.m-2.s-1',2,zdqssed(1,1)) |
---|
1874 | c call WRITEDIAGFI(ngridmx,'dqsdif','diffusion', |
---|
1875 | c & 'kg.m-2.s-1',2,zdqsdif(1,1)) |
---|
1876 | c call WRITEDIAGFI(ngridmx,'reffdust','reffdust', |
---|
1877 | c & 'm',3,rdust*ref_r0) |
---|
1878 | c call WRITEDIAGFI(ngridmx,'dustq','Dust mass mr', |
---|
1879 | c & 'kg/kg',3,pq(1,1,igcm_dust_mass)) |
---|
1880 | c call WRITEDIAGFI(ngridmx,'dustN','Dust number', |
---|
1881 | c & 'part/kg',3,pq(1,1,igcm_dust_number)) |
---|
1882 | #ifdef MESOINI |
---|
1883 | call WRITEDIAGFI(ngridmx,'dustq','Dust mass mr', |
---|
1884 | & 'kg/kg',3,pq(1,1,igcm_dust_mass)) |
---|
1885 | call WRITEDIAGFI(ngridmx,'dustN','Dust number', |
---|
1886 | & 'part/kg',3,pq(1,1,igcm_dust_number)) |
---|
1887 | call WRITEDIAGFI(ngridmx,'ccn','Nuclei mass mr', |
---|
1888 | & 'kg/kg',3,pq(1,1,igcm_ccn_mass)) |
---|
1889 | call WRITEDIAGFI(ngridmx,'ccnN','Nuclei number', |
---|
1890 | & 'part/kg',3,pq(1,1,igcm_ccn_number)) |
---|
1891 | #endif |
---|
1892 | else |
---|
1893 | do iq=1,dustbin |
---|
1894 | write(str2(1:2),'(i2.2)') iq |
---|
1895 | call WRITEDIAGFI(ngridmx,'q'//str2,'mix. ratio', |
---|
1896 | & 'kg/kg',3,zq(1,1,iq)) |
---|
1897 | call WRITEDIAGFI(ngridmx,'qsurf'//str2,'qsurf', |
---|
1898 | & 'kg.m-2',2,qsurf(1,iq)) |
---|
1899 | end do |
---|
1900 | endif ! (doubleq) |
---|
1901 | |
---|
1902 | if (scavenging) then |
---|
1903 | c call WRITEDIAGFI(ngridmx,'ccnq','CCN mass mr', |
---|
1904 | c & 'kg/kg',3,pq(1,1,igcm_ccn_mass)) |
---|
1905 | c call WRITEDIAGFI(ngridmx,'ccnN','CCN number', |
---|
1906 | c & 'part/kg',3,pq(1,1,igcm_ccn_number)) |
---|
1907 | endif ! (scavenging) |
---|
1908 | |
---|
1909 | c if (submicron) then |
---|
1910 | c call WRITEDIAGFI(ngridmx,'dustsubm','subm mass mr', |
---|
1911 | c & 'kg/kg',3,pq(1,1,igcm_dust_submicron)) |
---|
1912 | c endif ! (submicron) |
---|
1913 | end if ! (tracer.and.(dustbin.ne.0)) |
---|
1914 | |
---|
1915 | c ---------------------------------------------------------- |
---|
1916 | c ---------------------------------------------------------- |
---|
1917 | c PBL OUTPUS |
---|
1918 | c ---------------------------------------------------------- |
---|
1919 | c ---------------------------------------------------------- |
---|
1920 | |
---|
1921 | c ---------------------------------------------------------- |
---|
1922 | c Outputs of thermals |
---|
1923 | c ---------------------------------------------------------- |
---|
1924 | if (calltherm) then |
---|
1925 | |
---|
1926 | ! call WRITEDIAGFI(ngrid,'dtke', |
---|
1927 | ! & 'tendance tke thermiques','m**2/s**2', |
---|
1928 | ! & 3,dtke_th) |
---|
1929 | ! call WRITEDIAGFI(ngrid,'d_u_ajs', |
---|
1930 | ! & 'tendance u thermiques','m/s', |
---|
1931 | ! & 3,pdu_th*ptimestep) |
---|
1932 | ! call WRITEDIAGFI(ngrid,'d_v_ajs', |
---|
1933 | ! & 'tendance v thermiques','m/s', |
---|
1934 | ! & 3,pdv_th*ptimestep) |
---|
1935 | ! if (tracer) then |
---|
1936 | ! if (nq .eq. 2) then |
---|
1937 | ! call WRITEDIAGFI(ngrid,'deltaq_th', |
---|
1938 | ! & 'delta q thermiques','kg/kg', |
---|
1939 | ! & 3,ptimestep*pdq_th(:,:,2)) |
---|
1940 | ! endif |
---|
1941 | ! endif |
---|
1942 | |
---|
1943 | call WRITEDIAGFI(ngridmx,'zmax_th', |
---|
1944 | & 'hauteur du thermique','m', |
---|
1945 | & 2,zmax_th) |
---|
1946 | call WRITEDIAGFI(ngridmx,'hfmax_th', |
---|
1947 | & 'maximum TH heat flux','K.m/s', |
---|
1948 | & 2,hfmax_th) |
---|
1949 | call WRITEDIAGFI(ngridmx,'wstar', |
---|
1950 | & 'maximum TH vertical velocity','m/s', |
---|
1951 | & 2,wstar) |
---|
1952 | |
---|
1953 | endif |
---|
1954 | |
---|
1955 | c ---------------------------------------------------------- |
---|
1956 | c ---------------------------------------------------------- |
---|
1957 | c END OF PBL OUTPUS |
---|
1958 | c ---------------------------------------------------------- |
---|
1959 | c ---------------------------------------------------------- |
---|
1960 | |
---|
1961 | |
---|
1962 | c ---------------------------------------------------------- |
---|
1963 | c Output in netcdf file "diagsoil.nc" for subterranean |
---|
1964 | c variables (output every "ecritphy", as for writediagfi) |
---|
1965 | c ---------------------------------------------------------- |
---|
1966 | |
---|
1967 | ! Write soil temperature |
---|
1968 | ! call writediagsoil(ngrid,"soiltemp","Soil temperature","K", |
---|
1969 | ! & 3,tsoil) |
---|
1970 | ! Write surface temperature |
---|
1971 | ! call writediagsoil(ngrid,"tsurf","Surface temperature","K", |
---|
1972 | ! & 2,tsurf) |
---|
1973 | |
---|
1974 | c ========================================================== |
---|
1975 | c END OF WRITEDIAGFI |
---|
1976 | c ========================================================== |
---|
1977 | #endif |
---|
1978 | |
---|
1979 | ELSE ! if(ngrid.eq.1) |
---|
1980 | |
---|
1981 | print*,'Ls =',zls*180./pi, |
---|
1982 | & ' tauref(700 Pa) =',tauref |
---|
1983 | c ---------------------------------------------------------------------- |
---|
1984 | c Output in grads file "g1d" (ONLY when using testphys1d) |
---|
1985 | c (output at every X physical timestep) |
---|
1986 | c ---------------------------------------------------------------------- |
---|
1987 | c |
---|
1988 | c CALL writeg1d(ngrid,1,fluxsurf_lw,'Fs_ir','W.m-2') |
---|
1989 | c CALL writeg1d(ngrid,1,tsurf,'tsurf','K') |
---|
1990 | c CALL writeg1d(ngrid,1,ps,'ps','Pa') |
---|
1991 | |
---|
1992 | c CALL writeg1d(ngrid,nlayer,zt,'T','K') |
---|
1993 | c CALL writeg1d(ngrid,nlayer,pu,'u','m.s-1') |
---|
1994 | c CALL writeg1d(ngrid,nlayer,pv,'v','m.s-1') |
---|
1995 | c CALL writeg1d(ngrid,nlayer,pw,'w','m.s-1') |
---|
1996 | |
---|
1997 | ! THERMALS STUFF 1D |
---|
1998 | if(calltherm) then |
---|
1999 | |
---|
2000 | call WRITEDIAGFI(ngridmx,'lmax_th', |
---|
2001 | & 'hauteur du thermique','point', |
---|
2002 | & 0,lmax_th_out) |
---|
2003 | call WRITEDIAGFI(ngridmx,'zmax_th', |
---|
2004 | & 'hauteur du thermique','m', |
---|
2005 | & 0,zmax_th) |
---|
2006 | call WRITEDIAGFI(ngridmx,'hfmax_th', |
---|
2007 | & 'maximum TH heat flux','K.m/s', |
---|
2008 | & 0,hfmax_th) |
---|
2009 | call WRITEDIAGFI(ngridmx,'wstar', |
---|
2010 | & 'maximum TH vertical velocity','m/s', |
---|
2011 | & 0,wstar) |
---|
2012 | |
---|
2013 | co2col(:)=0. |
---|
2014 | if (tracer) then |
---|
2015 | do l=1,nlayermx |
---|
2016 | do ig=1,ngrid |
---|
2017 | co2col(ig)=co2col(ig)+ |
---|
2018 | & zq(ig,l,1)*(pplev(ig,l)-pplev(ig,l+1))/g |
---|
2019 | enddo |
---|
2020 | enddo |
---|
2021 | |
---|
2022 | end if |
---|
2023 | call WRITEDIAGFI(ngrid,'co2col','integrated co2 mass' & |
---|
2024 | & ,'kg/m-2',0,co2col) |
---|
2025 | endif |
---|
2026 | call WRITEDIAGFI(ngrid,'w','vertical velocity' & |
---|
2027 | & ,'m/s',1,pw) |
---|
2028 | call WRITEDIAGFI(ngrid,"q2","q2","kg.m-3",1,q2) |
---|
2029 | call WRITEDIAGFI(ngrid,"tsurf","Surface temperature","K",0, |
---|
2030 | & tsurf) |
---|
2031 | call WRITEDIAGFI(ngrid,"u","u wind","m/s",1,zu) |
---|
2032 | call WRITEDIAGFI(ngrid,"v","v wind","m/s",1,zv) |
---|
2033 | |
---|
2034 | call WRITEDIAGFI(ngrid,"pplay","Pressure","Pa",1,zplay) |
---|
2035 | call WRITEDIAGFI(ngrid,"pplev","Pressure","Pa",1,zplev) |
---|
2036 | call WRITEDIAGFI(ngrid,"rho","rho","kg.m-3",1,rho) |
---|
2037 | ! call WRITEDIAGFI(ngrid,"dtrad","rad. heat. rate", & |
---|
2038 | ! & "K.s-1",1,dtrad/zpopsk) |
---|
2039 | ! call WRITEDIAGFI(ngridmx,'sw_htrt','sw heat. rate', |
---|
2040 | ! & 'w.m-2',1,zdtsw/zpopsk) |
---|
2041 | ! call WRITEDIAGFI(ngridmx,'lw_htrt','lw heat. rate', |
---|
2042 | ! & 'w.m-2',1,zdtlw/zpopsk) |
---|
2043 | |
---|
2044 | ! or output in diagfi.nc (for testphys1d) |
---|
2045 | call WRITEDIAGFI(ngridmx,'ps','Surface pressure','Pa',0,ps) |
---|
2046 | call WRITEDIAGFI(ngridmx,'temp','Temperature', |
---|
2047 | & 'K',1,zt) |
---|
2048 | |
---|
2049 | if(tracer) then |
---|
2050 | c CALL writeg1d(ngrid,1,tau,'tau','SI') |
---|
2051 | do iq=1,nq |
---|
2052 | c CALL writeg1d(ngrid,nlayer,zq(1,1,iq),noms(iq),'kg/kg') |
---|
2053 | call WRITEDIAGFI(ngridmx,trim(noms(iq)), |
---|
2054 | & trim(noms(iq)),'kg/kg',1,zq(1,1,iq)) |
---|
2055 | end do |
---|
2056 | if (doubleq) then |
---|
2057 | call WRITEDIAGFI(ngridmx,'rdust','rdust', |
---|
2058 | & 'm',1,rdust) |
---|
2059 | endif |
---|
2060 | end if |
---|
2061 | |
---|
2062 | cccccccccccccccccc scavenging & water outputs 1D TN ccccccccccccccc |
---|
2063 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
2064 | IF (water) THEN |
---|
2065 | CALL WRITEDIAGFI(ngridmx,'tauTESap', |
---|
2066 | & 'tau abs 825 cm-1', |
---|
2067 | & '',0,tauTES) |
---|
2068 | |
---|
2069 | CALL WRITEDIAGFI(ngridmx,'tauTES', |
---|
2070 | & 'tau abs 825 cm-1', |
---|
2071 | & '',0,taucloudtes) |
---|
2072 | |
---|
2073 | mtot = 0 |
---|
2074 | icetot = 0 |
---|
2075 | h2otot = qsurf(1,igcm_h2o_ice) |
---|
2076 | rave = 0 |
---|
2077 | do l=1,nlayer |
---|
2078 | mtot = mtot + zq(1,l,igcm_h2o_vap) |
---|
2079 | & * (pplev(1,l) - pplev(1,l+1)) / g |
---|
2080 | icetot = icetot + zq(1,l,igcm_h2o_ice) |
---|
2081 | & * (pplev(1,l) - pplev(1,l+1)) / g |
---|
2082 | rave = rave + zq(1,l,igcm_h2o_ice) |
---|
2083 | & * (pplev(1,l) - pplev(1,l+1)) / g |
---|
2084 | & * rice(1,l) * (1.+nuice_ref) |
---|
2085 | end do |
---|
2086 | rave=rave/max(icetot,1.e-30) |
---|
2087 | h2otot = h2otot+mtot+icetot |
---|
2088 | |
---|
2089 | |
---|
2090 | if (scavenging) then |
---|
2091 | ccntot= 0 |
---|
2092 | call watersat(ngridmx*nlayermx,zt,pplay,zqsat) |
---|
2093 | do l=1,nlayermx |
---|
2094 | ccntot = ccntot + |
---|
2095 | & zq(1,l,igcm_ccn_number)*tauscaling(1) |
---|
2096 | & *(pplev(1,l) - pplev(1,l+1)) / g |
---|
2097 | satu(1,l) = zq(1,l,igcm_h2o_vap)/zqsat(1,l) |
---|
2098 | satu(1,l) = (max(satu(1,l),float(1))-1) |
---|
2099 | ! & * zq(1,l,igcm_h2o_vap) * |
---|
2100 | ! & (pplev(1,l) - pplev(1,l+1)) / g |
---|
2101 | enddo |
---|
2102 | |
---|
2103 | CALL WRITEDIAGFI(ngridmx,'ccntot', |
---|
2104 | & 'ccntot', |
---|
2105 | & 'nbr/m2',0,ccntot) |
---|
2106 | endif |
---|
2107 | |
---|
2108 | |
---|
2109 | CALL WRITEDIAGFI(ngridmx,'h2otot', |
---|
2110 | & 'h2otot', |
---|
2111 | & 'kg/m2',0,h2otot) |
---|
2112 | CALL WRITEDIAGFI(ngridmx,'mtot', |
---|
2113 | & 'mtot', |
---|
2114 | & 'kg/m2',0,mtot) |
---|
2115 | CALL WRITEDIAGFI(ngridmx,'icetot', |
---|
2116 | & 'icetot', |
---|
2117 | & 'kg/m2',0,icetot) |
---|
2118 | CALL WRITEDIAGFI(ngridmx,'reffice', |
---|
2119 | & 'reffice', |
---|
2120 | & 'm',0,rave) |
---|
2121 | |
---|
2122 | |
---|
2123 | do iq=1,nq |
---|
2124 | call WRITEDIAGFI(ngridmx,trim(noms(iq))//'_s', |
---|
2125 | & trim(noms(iq))//'_s','kg/kg',0,qsurf(1,iq)) |
---|
2126 | end do |
---|
2127 | |
---|
2128 | |
---|
2129 | call WRITEDIAGFI(ngridmx,'zdqsed_dustq','sedimentation q', |
---|
2130 | & 'kg.m-2.s-1',1,zdqsed(1,:,igcm_dust_mass)) |
---|
2131 | call WRITEDIAGFI(ngridmx,'zdqsed_dustN','sedimentation N', |
---|
2132 | & 'Nbr.m-2.s-1',1,zdqsed(1,:,igcm_dust_number)) |
---|
2133 | |
---|
2134 | call WRITEDIAGFI(ngridmx,'zdqcloud*dt ice','cloud ice', |
---|
2135 | & 'kg.m-2.s-1',1,zdqcloud(1,:,igcm_h2o_ice)*ptimestep) |
---|
2136 | call WRITEDIAGFI(ngridmx,'zdqcloud*dt vap','cloud vap', |
---|
2137 | & 'kg.m-2.s-1',1,zdqcloud(1,:,igcm_h2o_vap)*ptimestep) |
---|
2138 | call WRITEDIAGFI(ngridmx,'zdqdif*dt ice','dif ice', |
---|
2139 | & 'kg.m-2.s-1',1,zdqdif(1,:,igcm_h2o_ice)*ptimestep) |
---|
2140 | call WRITEDIAGFI(ngridmx,'zdqdif*dt vap','dif vap', |
---|
2141 | & 'kg.m-2.s-1',1,zdqdif(1,:,igcm_h2o_vap)*ptimestep) |
---|
2142 | call WRITEDIAGFI(ngridmx,'zdqdif*dt vap 0','dif vap', |
---|
2143 | & 'kg.m-2.s-1',0,zdqdif(1,1,igcm_h2o_vap)*ptimestep) |
---|
2144 | |
---|
2145 | ! if (scavenging) then |
---|
2146 | ! call WRITEDIAGFI(ngridmx,'zdqsed_ccnq','sedimentation q', |
---|
2147 | ! & 'kg.m-2.s-1',1,zdqsed(1,:,igcm_ccn_mass)) |
---|
2148 | ! call WRITEDIAGFI(ngridmx,'zdqsed_ccnN','sedimentation N', |
---|
2149 | ! & 'Nbr.m-2.s-1',1,zdqsed(1,:,igcm_ccn_number)) |
---|
2150 | ! endif |
---|
2151 | ! call WRITEDIAGFI(ngridmx,'zdqsed_ice','sedimentation q', |
---|
2152 | ! & 'kg.m-2.s-1',1,zdqsed(1,:,igcm_h2o_ice)) |
---|
2153 | ! |
---|
2154 | |
---|
2155 | call WRITEDIAGFI(ngrid,"rice","ice radius","m",1, |
---|
2156 | & rice) |
---|
2157 | call WRITEDIAGFI(ngrid,"satu","vap in satu","kg/kg",1, |
---|
2158 | & satu) |
---|
2159 | ENDIF ! of IF (water) |
---|
2160 | |
---|
2161 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
2162 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
2163 | |
---|
2164 | |
---|
2165 | zlocal(1)=-log(pplay(1,1)/pplev(1,1))* Rnew(1,1)*zt(1,1)/g |
---|
2166 | |
---|
2167 | do l=2,nlayer-1 |
---|
2168 | tmean=zt(1,l) |
---|
2169 | if(zt(1,l).ne.zt(1,l-1)) |
---|
2170 | & tmean=(zt(1,l)-zt(1,l-1))/log(zt(1,l)/zt(1,l-1)) |
---|
2171 | zlocal(l)= zlocal(l-1) |
---|
2172 | & -log(pplay(1,l)/pplay(1,l-1))*rnew(1,l)*tmean/g |
---|
2173 | enddo |
---|
2174 | zlocal(nlayer)= zlocal(nlayer-1)- |
---|
2175 | & log(pplay(1,nlayer)/pplay(1,nlayer-1))* |
---|
2176 | & rnew(1,nlayer)*tmean/g |
---|
2177 | |
---|
2178 | END IF ! if(ngrid.ne.1) |
---|
2179 | |
---|
2180 | icount=icount+1 |
---|
2181 | RETURN |
---|
2182 | END |
---|