[234] | 1 | SUBROUTINE physiq( |
---|
[226] | 2 | $ ngrid,nlayer,nq |
---|
| 3 | $ ,firstcall,lastcall |
---|
| 4 | $ ,pday,ptime,ptimestep |
---|
| 5 | $ ,pplev,pplay,pphi |
---|
| 6 | $ ,pu,pv,pt,pq |
---|
| 7 | $ ,pw |
---|
| 8 | $ ,pdu,pdv,pdt,pdq,pdpsrf,tracerdyn |
---|
[86] | 9 | #ifdef MESOSCALE |
---|
[226] | 10 | #include "meso_inc/meso_inc_invar.F" |
---|
[86] | 11 | #endif |
---|
[226] | 12 | $ ) |
---|
[42] | 13 | |
---|
[1036] | 14 | use tracer_mod, only: noms, mmol, igcm_co2, igcm_n2, |
---|
| 15 | & igcm_co, igcm_o, igcm_h2o_vap, igcm_h2o_ice, |
---|
| 16 | & igcm_ccn_mass, igcm_ccn_number, |
---|
| 17 | & igcm_dust_mass, igcm_dust_number, igcm_h2o2, |
---|
| 18 | & nuice_ref, rho_ice, rho_dust, ref_r0 |
---|
[1047] | 19 | use comsoil_h, only: inertiedat, ! soil thermal inertia |
---|
| 20 | & nsoilmx ! number of subsurface layers |
---|
| 21 | use eofdump_mod, only: eofdump |
---|
| 22 | use comgeomfi_h, only: long, lati, area |
---|
| 23 | use comdiurn_h, only: sinlon, coslon, sinlat, coslat |
---|
| 24 | use surfdat_h, only: phisfi, albedodat, zmea, zstd, zsig, zgam, |
---|
| 25 | & zthe, z0, albedo_h2o_ice, |
---|
| 26 | & frost_albedo_threshold |
---|
| 27 | use comsaison_h, only: dist_sol, declin, mu0, fract |
---|
| 28 | use slope_mod, only: theta_sl, psi_sl |
---|
| 29 | use conc_mod, only: rnew, cpnew, mmean |
---|
[42] | 30 | IMPLICIT NONE |
---|
| 31 | c======================================================================= |
---|
| 32 | c |
---|
| 33 | c subject: |
---|
| 34 | c -------- |
---|
| 35 | c |
---|
| 36 | c Organisation of the physical parametrisations of the LMD |
---|
| 37 | c martian atmospheric general circulation model. |
---|
| 38 | c |
---|
| 39 | c The GCM can be run without or with tracer transport |
---|
| 40 | c depending on the value of Logical "tracer" in file "callphys.def" |
---|
| 41 | c Tracers may be water vapor, ice OR chemical species OR dust particles |
---|
| 42 | c |
---|
| 43 | c SEE comments in initracer.F about numbering of tracer species... |
---|
| 44 | c |
---|
| 45 | c It includes: |
---|
| 46 | c |
---|
| 47 | c 1. Initialization: |
---|
| 48 | c 1.1 First call initializations |
---|
| 49 | c 1.2 Initialization for every call to physiq |
---|
| 50 | c 1.2.5 Compute mean mass and cp, R and thermal conduction coeff. |
---|
| 51 | c 2. Compute radiative transfer tendencies |
---|
| 52 | c (longwave and shortwave) for CO2 and aerosols. |
---|
| 53 | c 3. Gravity wave and subgrid scale topography drag : |
---|
| 54 | c 4. Vertical diffusion (turbulent mixing): |
---|
| 55 | c 5. Convective adjustment |
---|
| 56 | c 6. Condensation and sublimation of carbon dioxide. |
---|
| 57 | c 7. TRACERS : |
---|
| 58 | c 7a. water and water ice |
---|
| 59 | c 7b. call for photochemistry when tracers are chemical species |
---|
| 60 | c 7c. other scheme for tracer (dust) transport (lifting, sedimentation) |
---|
| 61 | c 7d. updates (CO2 pressure variations, surface budget) |
---|
| 62 | c 8. Contribution to tendencies due to thermosphere |
---|
| 63 | c 9. Surface and sub-surface temperature calculations |
---|
| 64 | c 10. Write outputs : |
---|
| 65 | c - "startfi", "histfi" (if it's time) |
---|
| 66 | c - Saving statistics (if "callstats = .true.") |
---|
| 67 | c - Dumping eof (if "calleofdump = .true.") |
---|
| 68 | c - Output any needed variables in "diagfi" |
---|
| 69 | c 11. Diagnostic: mass conservation of tracers |
---|
| 70 | c |
---|
| 71 | c author: |
---|
| 72 | c ------- |
---|
| 73 | c Frederic Hourdin 15/10/93 |
---|
| 74 | c Francois Forget 1994 |
---|
| 75 | c Christophe Hourdin 02/1997 |
---|
| 76 | c Subroutine completly rewritten by F.Forget (01/2000) |
---|
| 77 | c Introduction of the photochemical module: S. Lebonnois (11/2002) |
---|
| 78 | c Introduction of the thermosphere module: M. Angelats i Coll (2002) |
---|
| 79 | c Water ice clouds: Franck Montmessin (update 06/2003) |
---|
| 80 | c Radiatively active tracers: J.-B. Madeleine (10/2008-06/2009) |
---|
| 81 | c Nb: See callradite.F for more information. |
---|
[234] | 82 | c Mesoscale lines: Aymeric Spiga (2007 - 2011) -- check MESOSCALE flags |
---|
[414] | 83 | c jul 2011 malv+fgg: Modified calls to NIR heating routine and 15 um cooling parameterization |
---|
[42] | 84 | c |
---|
| 85 | c arguments: |
---|
| 86 | c ---------- |
---|
| 87 | c |
---|
| 88 | c input: |
---|
| 89 | c ------ |
---|
| 90 | c ecri period (in dynamical timestep) to write output |
---|
| 91 | c ngrid Size of the horizontal grid. |
---|
| 92 | c All internal loops are performed on that grid. |
---|
| 93 | c nlayer Number of vertical layers. |
---|
| 94 | c nq Number of advected fields |
---|
| 95 | c firstcall True at the first call |
---|
| 96 | c lastcall True at the last call |
---|
| 97 | c pday Number of days counted from the North. Spring |
---|
| 98 | c equinoxe. |
---|
| 99 | c ptime Universal time (0<ptime<1): ptime=0.5 at 12:00 UT |
---|
| 100 | c ptimestep timestep (s) |
---|
| 101 | c pplay(ngrid,nlayer) Pressure at the middle of the layers (Pa) |
---|
| 102 | c pplev(ngrid,nlayer+1) intermediate pressure levels (pa) |
---|
| 103 | c pphi(ngrid,nlayer) Geopotential at the middle of the layers (m2s-2) |
---|
| 104 | c pu(ngrid,nlayer) u component of the wind (ms-1) |
---|
| 105 | c pv(ngrid,nlayer) v component of the wind (ms-1) |
---|
| 106 | c pt(ngrid,nlayer) Temperature (K) |
---|
| 107 | c pq(ngrid,nlayer,nq) Advected fields |
---|
[330] | 108 | c pudyn(ngrid,nlayer) | |
---|
| 109 | c pvdyn(ngrid,nlayer) | Dynamical temporal derivative for the |
---|
| 110 | c ptdyn(ngrid,nlayer) | corresponding variables |
---|
| 111 | c pqdyn(ngrid,nlayer,nq) | |
---|
[42] | 112 | c pw(ngrid,?) vertical velocity |
---|
| 113 | c |
---|
| 114 | c output: |
---|
| 115 | c ------- |
---|
| 116 | c |
---|
[1047] | 117 | c pdu(ngrid,nlayer) | |
---|
| 118 | c pdv(ngrid,nlayer) | Temporal derivative of the corresponding |
---|
| 119 | c pdt(ngrid,nlayer) | variables due to physical processes. |
---|
| 120 | c pdq(ngrid,nlayer,nq) | |
---|
| 121 | c pdpsrf(ngrid) | |
---|
[42] | 122 | c tracerdyn call tracer in dynamical part of GCM ? |
---|
| 123 | |
---|
| 124 | c |
---|
| 125 | c======================================================================= |
---|
| 126 | c |
---|
| 127 | c 0. Declarations : |
---|
| 128 | c ------------------ |
---|
| 129 | |
---|
| 130 | #include "dimensions.h" |
---|
| 131 | #include "dimphys.h" |
---|
[1047] | 132 | !#include "comgeomfi.h" |
---|
| 133 | !#include "surfdat.h" |
---|
| 134 | !#include "comsoil.h" |
---|
| 135 | !#include "comdiurn.h" |
---|
[42] | 136 | #include "callkeys.h" |
---|
| 137 | #include "comcstfi.h" |
---|
| 138 | #include "planete.h" |
---|
[1047] | 139 | !#include "comsaison.h" |
---|
[42] | 140 | #include "control.h" |
---|
[1047] | 141 | !#include "dimradmars.h" |
---|
| 142 | ! naerkind is set in scatterers.h (built when compiling with makegcm -s #) |
---|
| 143 | #include"scatterers.h" |
---|
[42] | 144 | #include "comg1d.h" |
---|
[1036] | 145 | !#include "tracer.h" |
---|
[42] | 146 | #include "nlteparams.h" |
---|
[883] | 147 | #include "comvert.h" |
---|
[42] | 148 | |
---|
| 149 | #include "chimiedata.h" |
---|
| 150 | #include "param.h" |
---|
[635] | 151 | #include "param_v4.h" |
---|
[1047] | 152 | !#include "conc.h" |
---|
[42] | 153 | |
---|
| 154 | #include "netcdf.inc" |
---|
| 155 | |
---|
[1047] | 156 | !#include "slope.h" |
---|
[234] | 157 | |
---|
[86] | 158 | #ifdef MESOSCALE |
---|
[42] | 159 | #include "wrf_output_2d.h" |
---|
| 160 | #include "wrf_output_3d.h" |
---|
[1036] | 161 | !#include "advtrac.h" !!! this is necessary for tracers (in dyn3d) |
---|
[226] | 162 | #include "meso_inc/meso_inc_var.F" |
---|
[86] | 163 | #endif |
---|
[42] | 164 | |
---|
| 165 | c Arguments : |
---|
| 166 | c ----------- |
---|
| 167 | |
---|
| 168 | c inputs: |
---|
| 169 | c ------- |
---|
| 170 | INTEGER ngrid,nlayer,nq |
---|
| 171 | REAL ptimestep |
---|
[1047] | 172 | REAL pplev(ngrid,nlayer+1),pplay(ngrid,nlayer) |
---|
| 173 | REAL pphi(ngrid,nlayer) |
---|
| 174 | REAL pu(ngrid,nlayer),pv(ngrid,nlayer) |
---|
| 175 | REAL pt(ngrid,nlayer),pq(ngrid,nlayer,nq) |
---|
| 176 | REAL pw(ngrid,nlayer) !Mars pvervel transmit par dyn3d |
---|
| 177 | REAL zh(ngrid,nlayer) ! potential temperature (K) |
---|
[42] | 178 | LOGICAL firstcall,lastcall |
---|
[226] | 179 | |
---|
[42] | 180 | REAL pday |
---|
[999] | 181 | REAL ptime |
---|
[42] | 182 | logical tracerdyn |
---|
| 183 | |
---|
| 184 | c outputs: |
---|
| 185 | c -------- |
---|
| 186 | c physical tendencies |
---|
[1047] | 187 | REAL pdu(ngrid,nlayer),pdv(ngrid,nlayer) |
---|
| 188 | REAL pdt(ngrid,nlayer),pdq(ngrid,nlayer,nq) |
---|
| 189 | REAL pdpsrf(ngrid) ! surface pressure tendency |
---|
[42] | 190 | |
---|
| 191 | |
---|
| 192 | c Local saved variables: |
---|
| 193 | c ---------------------- |
---|
| 194 | c aerosol (dust or ice) extinction optical depth at reference wavelength |
---|
[1047] | 195 | c "longrefvis" set in dimradmars_mod , for one of the "naerkind" kind of |
---|
[42] | 196 | c aerosol optical properties : |
---|
[1047] | 197 | REAL,SAVE,ALLOCATABLE :: aerosol(:,:,:) |
---|
[42] | 198 | |
---|
[1047] | 199 | INTEGER,SAVE :: day_ini ! Initial date of the run (sol since Ls=0) |
---|
| 200 | INTEGER,SAVE :: icount ! counter of calls to physiq during the run. |
---|
| 201 | REAL,SAVE,ALLOCATABLE :: tsurf(:) ! Surface temperature (K) |
---|
| 202 | REAL,SAVE,ALLOCATABLE :: tsoil(:,:) ! sub-surface temperatures (K) |
---|
| 203 | REAL,SAVE,ALLOCATABLE :: co2ice(:) ! co2 ice surface layer (kg.m-2) |
---|
| 204 | REAL,SAVE,ALLOCATABLE :: albedo(:,:) ! Surface albedo in each solar band |
---|
| 205 | REAL,SAVE,ALLOCATABLE :: emis(:) ! Thermal IR surface emissivity |
---|
| 206 | REAL,SAVE,ALLOCATABLE :: dtrad(:,:) ! Net atm. radiative heating rate (K.s-1) |
---|
| 207 | REAL,SAVE,ALLOCATABLE :: fluxrad_sky(:) ! rad. flux from sky absorbed by surface (W.m-2) |
---|
| 208 | REAL,SAVE,ALLOCATABLE :: fluxrad(:) ! Net radiative surface flux (W.m-2) |
---|
| 209 | REAL,SAVE,ALLOCATABLE :: capcal(:) ! surface heat capacity (J m-2 K-1) |
---|
| 210 | REAL,SAVE,ALLOCATABLE :: fluxgrd(:) ! surface conduction flux (W.m-2) |
---|
[1036] | 211 | REAL,ALLOCATABLE,SAVE :: qsurf(:,:) ! tracer on surface (e.g. kg.m-2) |
---|
[1047] | 212 | REAL,SAVE,ALLOCATABLE :: q2(:,:) ! Turbulent Kinetic Energy |
---|
[283] | 213 | |
---|
[42] | 214 | c Variables used by the water ice microphysical scheme: |
---|
[1047] | 215 | REAL rice(ngrid,nlayer) ! Water ice geometric mean radius (m) |
---|
| 216 | REAL nuice(ngrid,nlayer) ! Estimated effective variance |
---|
[42] | 217 | ! of the size distribution |
---|
[1047] | 218 | real rsedcloud(ngrid,nlayer) ! Cloud sedimentation radius |
---|
| 219 | real rhocloud(ngrid,nlayer) ! Cloud density (kg.m-3) |
---|
| 220 | REAL surfdust(ngrid,nlayer) ! dust surface area (m2/m3, if photochemistry) |
---|
| 221 | REAL surfice(ngrid,nlayer) ! ice surface area (m2/m3, if photochemistry) |
---|
| 222 | REAL inertiesoil(ngrid,nsoilmx) ! Time varying subsurface |
---|
| 223 | ! thermal inertia (J.s-1/2.m-2.K-1) |
---|
| 224 | ! (used only when tifeedback=.true.) |
---|
[42] | 225 | |
---|
[234] | 226 | c Variables used by the slope model |
---|
| 227 | REAL sl_ls, sl_lct, sl_lat |
---|
| 228 | REAL sl_tau, sl_alb, sl_the, sl_psi |
---|
| 229 | REAL sl_fl0, sl_flu |
---|
| 230 | REAL sl_ra, sl_di0 |
---|
| 231 | REAL sky |
---|
| 232 | |
---|
[1047] | 233 | REAL,PARAMETER :: stephan = 5.67e-08 ! Stephan Boltzman constant |
---|
[42] | 234 | |
---|
| 235 | c Local variables : |
---|
| 236 | c ----------------- |
---|
| 237 | |
---|
| 238 | REAL CBRT |
---|
| 239 | EXTERNAL CBRT |
---|
| 240 | |
---|
[1036] | 241 | ! CHARACTER*80 fichier |
---|
| 242 | INTEGER l,ig,ierr,igout,iq,tapphys |
---|
[42] | 243 | |
---|
[1047] | 244 | REAL fluxsurf_lw(ngrid) !incident LW (IR) surface flux (W.m-2) |
---|
| 245 | REAL fluxsurf_sw(ngrid,2) !incident SW (solar) surface flux (W.m-2) |
---|
| 246 | REAL fluxtop_lw(ngrid) !Outgoing LW (IR) flux to space (W.m-2) |
---|
| 247 | REAL fluxtop_sw(ngrid,2) !Outgoing SW (solar) flux to space (W.m-2) |
---|
| 248 | REAL tauref(ngrid) ! Reference column optical depth at odpref |
---|
[627] | 249 | real,parameter :: odpref=610. ! DOD reference pressure (Pa) |
---|
[1047] | 250 | REAL tau(ngrid,naerkind) ! Column dust optical depth at each point |
---|
[42] | 251 | REAL zls ! solar longitude (rad) |
---|
| 252 | REAL zday ! date (time since Ls=0, in martian days) |
---|
[1047] | 253 | REAL zzlay(ngrid,nlayer) ! altitude at the middle of the layers |
---|
| 254 | REAL zzlev(ngrid,nlayer+1) ! altitude at layer boundaries |
---|
[1036] | 255 | ! REAL latvl1,lonvl1 ! Viking Lander 1 point (for diagnostic) |
---|
[42] | 256 | |
---|
| 257 | c Tendancies due to various processes: |
---|
[1047] | 258 | REAL dqsurf(ngrid,nq) |
---|
| 259 | REAL zdtlw(ngrid,nlayer) ! (K/s) |
---|
| 260 | REAL zdtsw(ngrid,nlayer) ! (K/s) |
---|
| 261 | ! REAL cldtlw(ngrid,nlayer) ! (K/s) LW heating rate for clear area |
---|
| 262 | ! REAL cldtsw(ngrid,nlayer) ! (K/s) SW heating rate for clear area |
---|
| 263 | REAL zdtnirco2(ngrid,nlayer) ! (K/s) |
---|
| 264 | REAL zdtnlte(ngrid,nlayer) ! (K/s) |
---|
| 265 | REAL zdtsurf(ngrid) ! (K/s) |
---|
| 266 | REAL zdtcloud(ngrid,nlayer) |
---|
| 267 | REAL zdvdif(ngrid,nlayer),zdudif(ngrid,nlayer) ! (m.s-2) |
---|
| 268 | REAL zdhdif(ngrid,nlayer), zdtsdif(ngrid) ! (K/s) |
---|
| 269 | REAL zdvadj(ngrid,nlayer),zduadj(ngrid,nlayer) ! (m.s-2) |
---|
| 270 | REAL zdhadj(ngrid,nlayer) ! (K/s) |
---|
| 271 | REAL zdtgw(ngrid,nlayer) ! (K/s) |
---|
| 272 | REAL zdugw(ngrid,nlayer),zdvgw(ngrid,nlayer) ! (m.s-2) |
---|
| 273 | REAL zdtc(ngrid,nlayer),zdtsurfc(ngrid) |
---|
| 274 | REAL zdvc(ngrid,nlayer),zduc(ngrid,nlayer) |
---|
[42] | 275 | |
---|
[1047] | 276 | REAL zdqdif(ngrid,nlayer,nq), zdqsdif(ngrid,nq) |
---|
| 277 | REAL zdqsed(ngrid,nlayer,nq), zdqssed(ngrid,nq) |
---|
| 278 | REAL zdqdev(ngrid,nlayer,nq), zdqsdev(ngrid,nq) |
---|
| 279 | REAL zdqadj(ngrid,nlayer,nq) |
---|
| 280 | REAL zdqc(ngrid,nlayer,nq) |
---|
| 281 | REAL zdqcloud(ngrid,nlayer,nq) |
---|
| 282 | REAL zdqscloud(ngrid,nq) |
---|
| 283 | REAL zdqchim(ngrid,nlayer,nq) |
---|
| 284 | REAL zdqschim(ngrid,nq) |
---|
[42] | 285 | |
---|
[1047] | 286 | REAL zdteuv(ngrid,nlayer) ! (K/s) |
---|
| 287 | REAL zdtconduc(ngrid,nlayer) ! (K/s) |
---|
| 288 | REAL zdumolvis(ngrid,nlayer) |
---|
| 289 | REAL zdvmolvis(ngrid,nlayer) |
---|
| 290 | real zdqmoldiff(ngrid,nlayer,nq) |
---|
[42] | 291 | |
---|
| 292 | c Local variable for local intermediate calcul: |
---|
[1047] | 293 | REAL zflubid(ngrid) |
---|
| 294 | REAL zplanck(ngrid),zpopsk(ngrid,nlayer) |
---|
| 295 | REAL zdum1(ngrid,nlayer) |
---|
| 296 | REAL zdum2(ngrid,nlayer) |
---|
[42] | 297 | REAL ztim1,ztim2,ztim3, z1,z2 |
---|
| 298 | REAL ztime_fin |
---|
[1047] | 299 | REAL zdh(ngrid,nlayer) |
---|
[42] | 300 | INTEGER length |
---|
| 301 | PARAMETER (length=100) |
---|
| 302 | |
---|
| 303 | c local variables only used for diagnostic (output in file "diagfi" or "stats") |
---|
| 304 | c ----------------------------------------------------------------------------- |
---|
[1047] | 305 | REAL ps(ngrid), zt(ngrid,nlayer) |
---|
| 306 | REAL zu(ngrid,nlayer),zv(ngrid,nlayer) |
---|
| 307 | REAL zq(ngrid,nlayer,nq) |
---|
| 308 | REAL fluxtop_sw_tot(ngrid), fluxsurf_sw_tot(ngrid) |
---|
[42] | 309 | character*2 str2 |
---|
[1036] | 310 | ! character*5 str5 |
---|
[1047] | 311 | real zdtdif(ngrid,nlayer), zdtadj(ngrid,nlayer) |
---|
| 312 | REAL,SAVE,ALLOCATABLE :: tauscaling(:) ! Convertion factor for qdust and Ndust |
---|
| 313 | real rdust(ngrid,nlayer) ! dust geometric mean radius (m) |
---|
[42] | 314 | integer igmin, lmin |
---|
| 315 | logical tdiag |
---|
| 316 | |
---|
[1047] | 317 | real co2col(ngrid) ! CO2 column |
---|
[883] | 318 | ! pplev and pplay are dynamical inputs and must not be modified in the physics. |
---|
| 319 | ! instead, use zplay and zplev : |
---|
[1047] | 320 | REAL zplev(ngrid,nlayer+1),zplay(ngrid,nlayer) |
---|
[1036] | 321 | ! REAL zstress(ngrid),cd |
---|
[1047] | 322 | real tmean, zlocal(nlayer) |
---|
| 323 | real rho(ngrid,nlayer) ! density |
---|
| 324 | real vmr(ngrid,nlayer) ! volume mixing ratio |
---|
| 325 | real rhopart(ngrid,nlayer) ! number density of a given species |
---|
| 326 | real colden(ngrid,nq) ! vertical column of tracers |
---|
| 327 | REAL mtot(ngrid) ! Total mass of water vapor (kg/m2) |
---|
| 328 | REAL icetot(ngrid) ! Total mass of water ice (kg/m2) |
---|
| 329 | REAL Nccntot(ngrid) ! Total number of ccn (nbr/m2) |
---|
| 330 | REAL Mccntot(ngrid) ! Total mass of ccn (kg/m2) |
---|
| 331 | REAL rave(ngrid) ! Mean water ice effective radius (m) |
---|
| 332 | REAL opTES(ngrid,nlayer) ! abs optical depth at 825 cm-1 |
---|
| 333 | REAL tauTES(ngrid) ! column optical depth at 825 cm-1 |
---|
[42] | 334 | REAL Qabsice ! Water ice absorption coefficient |
---|
[1047] | 335 | REAL taucloudtes(ngrid) ! Cloud opacity at infrared |
---|
[520] | 336 | ! reference wavelength using |
---|
| 337 | ! Qabs instead of Qext |
---|
| 338 | ! (direct comparison with TES) |
---|
[719] | 339 | |
---|
[1047] | 340 | REAL dqdustsurf(ngrid) ! surface q dust flux (kg/m2/s) |
---|
| 341 | REAL dndustsurf(ngrid) ! surface n dust flux (number/m2/s) |
---|
| 342 | REAL ndust(ngrid,nlayer) ! true n dust (kg/kg) |
---|
| 343 | REAL qdust(ngrid,nlayer) ! true q dust (kg/kg) |
---|
| 344 | REAL nccn(ngrid,nlayer) ! true n ccn (kg/kg) |
---|
| 345 | REAL qccn(ngrid,nlayer) ! true q ccn (kg/kg) |
---|
[42] | 346 | |
---|
[411] | 347 | c Test 1d/3d scavenging |
---|
[1047] | 348 | real h2otot(ngrid) |
---|
| 349 | REAL satu(ngrid,nlayer) ! satu ratio for output |
---|
| 350 | REAL zqsat(ngrid,nlayer) ! saturation |
---|
[42] | 351 | |
---|
[1047] | 352 | REAL,SAVE :: time_phys |
---|
[42] | 353 | |
---|
[414] | 354 | ! Added for new NLTE scheme |
---|
| 355 | |
---|
[1047] | 356 | real co2vmr_gcm(ngrid,nlayer) |
---|
| 357 | real n2vmr_gcm(ngrid,nlayer) |
---|
| 358 | real ovmr_gcm(ngrid,nlayer) |
---|
| 359 | real covmr_gcm(ngrid,nlayer) |
---|
[414] | 360 | |
---|
| 361 | |
---|
[267] | 362 | c Variables for PBL |
---|
[1047] | 363 | REAL zz1(ngrid) |
---|
| 364 | REAL lmax_th_out(ngrid),zmax_th(ngrid) |
---|
| 365 | REAL,SAVE,ALLOCATABLE :: wstar(:) |
---|
| 366 | REAL,SAVE,ALLOCATABLE :: hfmax_th(:) |
---|
| 367 | REAL pdu_th(ngrid,nlayer),pdv_th(ngrid,nlayer) |
---|
| 368 | REAL pdt_th(ngrid,nlayer),pdq_th(ngrid,nlayer,nq) |
---|
| 369 | INTEGER lmax_th(ngrid),dimout,n_out,n |
---|
[566] | 370 | CHARACTER(50) zstring |
---|
[1047] | 371 | REAL dtke_th(ngrid,nlayer+1) |
---|
| 372 | REAL zcdv(ngrid), zcdh(ngrid) |
---|
[636] | 373 | REAL, ALLOCATABLE, DIMENSION(:,:) :: T_out |
---|
[566] | 374 | REAL, ALLOCATABLE, DIMENSION(:,:) :: u_out ! Interpolated teta and u at z_out |
---|
[1047] | 375 | REAL u_out1(ngrid) |
---|
| 376 | REAL T_out1(ngrid) |
---|
[566] | 377 | REAL, ALLOCATABLE, DIMENSION(:) :: z_out ! height of interpolation between z0 and z1 [meters] |
---|
[1047] | 378 | REAL ustar(ngrid),tstar(ngrid) ! friction velocity and friction potential temp |
---|
| 379 | REAL L_mo(ngrid),vhf(ngrid),vvv(ngrid) |
---|
| 380 | ! REAL zu2(ngrid) |
---|
| 381 | REAL sensibFlux(ngrid) |
---|
[790] | 382 | |
---|
[42] | 383 | c======================================================================= |
---|
| 384 | |
---|
| 385 | c 1. Initialisation: |
---|
| 386 | c ----------------- |
---|
| 387 | |
---|
| 388 | c 1.1 Initialisation only at first call |
---|
| 389 | c --------------------------------------- |
---|
| 390 | IF (firstcall) THEN |
---|
| 391 | |
---|
[1036] | 392 | ! allocate local (saved) arrays: |
---|
| 393 | allocate(qsurf(ngrid,nq)) |
---|
[1047] | 394 | allocate(tsoil(ngrid,nsoilmx)) |
---|
| 395 | allocate(tsurf(ngrid)) |
---|
| 396 | allocate(aerosol(ngrid,nlayer,naerkind)) |
---|
| 397 | allocate(co2ice(ngrid)) |
---|
| 398 | allocate(albedo(ngrid,2)) |
---|
| 399 | allocate(emis(ngrid)) |
---|
| 400 | allocate(dtrad(ngrid,nlayer)) |
---|
| 401 | allocate(fluxrad_sky(ngrid)) |
---|
| 402 | allocate(fluxrad(ngrid)) |
---|
| 403 | allocate(capcal(ngrid)) |
---|
| 404 | allocate(fluxgrd(ngrid)) |
---|
| 405 | allocate(q2(ngrid,nlayer+1)) |
---|
| 406 | allocate(tauscaling(ngrid)) |
---|
| 407 | allocate(wstar(ngrid)) |
---|
| 408 | allocate(hfmax_th(ngrid)) |
---|
[1036] | 409 | |
---|
[42] | 410 | c variables set to 0 |
---|
| 411 | c ~~~~~~~~~~~~~~~~~~ |
---|
[286] | 412 | aerosol(:,:,:)=0 |
---|
| 413 | dtrad(:,:)=0 |
---|
[674] | 414 | |
---|
| 415 | #ifndef MESOSCALE |
---|
[286] | 416 | fluxrad(:)=0 |
---|
[528] | 417 | wstar(:)=0. |
---|
[674] | 418 | #else |
---|
| 419 | #include "meso_inc/meso_inc_ini_restart.F" |
---|
| 420 | #endif |
---|
[268] | 421 | |
---|
[42] | 422 | c read startfi |
---|
| 423 | c ~~~~~~~~~~~~ |
---|
[226] | 424 | #ifndef MESOSCALE |
---|
| 425 | ! Read netcdf initial physical parameters. |
---|
| 426 | CALL phyetat0 ("startfi.nc",0,0, |
---|
[1047] | 427 | & nsoilmx,ngrid,nlayer,nq, |
---|
[226] | 428 | & day_ini,time_phys, |
---|
| 429 | & tsurf,tsoil,emis,q2,qsurf,co2ice) |
---|
| 430 | #else |
---|
| 431 | #include "meso_inc/meso_inc_ini.F" |
---|
| 432 | #endif |
---|
[185] | 433 | |
---|
[42] | 434 | if (pday.ne.day_ini) then |
---|
| 435 | write(*,*) "PHYSIQ: ERROR: bad synchronization between ", |
---|
| 436 | & "physics and dynamics" |
---|
| 437 | write(*,*) "dynamics day: ",pday |
---|
| 438 | write(*,*) "physics day: ",day_ini |
---|
| 439 | stop |
---|
| 440 | endif |
---|
| 441 | |
---|
| 442 | write (*,*) 'In physiq day_ini =', day_ini |
---|
| 443 | |
---|
[286] | 444 | c initialize tracers |
---|
| 445 | c ~~~~~~~~~~~~~~~~~~ |
---|
| 446 | tracerdyn=tracer |
---|
| 447 | IF (tracer) THEN |
---|
[1036] | 448 | CALL initracer(ngrid,nq,qsurf,co2ice) |
---|
[286] | 449 | ENDIF ! end tracer |
---|
| 450 | |
---|
[42] | 451 | c Initialize albedo and orbital calculation |
---|
| 452 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 453 | CALL surfini(ngrid,co2ice,qsurf,albedo) |
---|
| 454 | CALL iniorbit(aphelie,periheli,year_day,peri_day,obliquit) |
---|
| 455 | |
---|
| 456 | c initialize soil |
---|
| 457 | c ~~~~~~~~~~~~~~~ |
---|
| 458 | IF (callsoil) THEN |
---|
[833] | 459 | c Thermal inertia feedback: |
---|
| 460 | IF (tifeedback) THEN |
---|
| 461 | CALL soil_tifeedback(ngrid,nsoilmx,qsurf,inertiesoil) |
---|
| 462 | CALL soil(ngrid,nsoilmx,firstcall,inertiesoil, |
---|
| 463 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 464 | ELSE |
---|
| 465 | CALL soil(ngrid,nsoilmx,firstcall,inertiedat, |
---|
| 466 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 467 | ENDIF ! of IF (tifeedback) |
---|
[42] | 468 | ELSE |
---|
| 469 | PRINT*, |
---|
| 470 | & 'PHYSIQ WARNING! Thermal conduction in the soil turned off' |
---|
| 471 | DO ig=1,ngrid |
---|
| 472 | capcal(ig)=1.e5 |
---|
| 473 | fluxgrd(ig)=0. |
---|
| 474 | ENDDO |
---|
| 475 | ENDIF |
---|
| 476 | icount=1 |
---|
| 477 | |
---|
[226] | 478 | #ifndef MESOSCALE |
---|
| 479 | c Initialize thermospheric parameters |
---|
| 480 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[42] | 481 | |
---|
[705] | 482 | if (callthermos) then |
---|
| 483 | if(solvarmod.eq.0) call param_read |
---|
| 484 | if(solvarmod.eq.1) call param_read_e107 |
---|
| 485 | endif |
---|
[226] | 486 | #endif |
---|
[42] | 487 | c Initialize R and Cp as constant |
---|
| 488 | |
---|
| 489 | if (.not.callthermos .and. .not.photochem) then |
---|
[1047] | 490 | do l=1,nlayer |
---|
| 491 | do ig=1,ngrid |
---|
[42] | 492 | rnew(ig,l)=r |
---|
| 493 | cpnew(ig,l)=cpp |
---|
| 494 | mmean(ig,l)=mugaz |
---|
| 495 | enddo |
---|
| 496 | enddo |
---|
| 497 | endif |
---|
| 498 | |
---|
[757] | 499 | if(callnlte.and.nltemodel.eq.2) call nlte_setup |
---|
[414] | 500 | if(callnirco2.and.nircorr.eq.1) call NIR_leedat |
---|
[1013] | 501 | if(thermochem) call chemthermos_readini |
---|
[414] | 502 | |
---|
[1047] | 503 | IF (tracer.AND.water.AND.(ngrid.NE.1)) THEN |
---|
[283] | 504 | write(*,*)"physiq: water_param Surface water ice albedo:", |
---|
| 505 | . albedo_h2o_ice |
---|
[42] | 506 | ENDIF |
---|
[900] | 507 | |
---|
| 508 | #ifndef MESOSCALE |
---|
[1047] | 509 | if (callslope) call getslopes(ngrid,phisfi) |
---|
[999] | 510 | |
---|
[1047] | 511 | call physdem0("restartfi.nc",long,lati,nsoilmx,ngrid,nlayer,nq, |
---|
[999] | 512 | . ptimestep,pday,time_phys,area, |
---|
| 513 | . albedodat,inertiedat,zmea,zstd,zsig,zgam,zthe) |
---|
| 514 | |
---|
[900] | 515 | #endif |
---|
[42] | 516 | |
---|
| 517 | ENDIF ! (end of "if firstcall") |
---|
| 518 | |
---|
[414] | 519 | |
---|
[42] | 520 | c --------------------------------------------------- |
---|
| 521 | c 1.2 Initializations done at every physical timestep: |
---|
| 522 | c --------------------------------------------------- |
---|
| 523 | c |
---|
| 524 | |
---|
| 525 | c Initialize various variables |
---|
| 526 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[286] | 527 | pdv(:,:)=0 |
---|
| 528 | pdu(:,:)=0 |
---|
| 529 | pdt(:,:)=0 |
---|
| 530 | pdq(:,:,:)=0 |
---|
| 531 | pdpsrf(:)=0 |
---|
| 532 | zflubid(:)=0 |
---|
| 533 | zdtsurf(:)=0 |
---|
| 534 | dqsurf(:,:)=0 |
---|
[42] | 535 | igout=ngrid/2+1 |
---|
| 536 | |
---|
| 537 | |
---|
| 538 | zday=pday+ptime ! compute time, in sols (and fraction thereof) |
---|
| 539 | |
---|
| 540 | c Compute Solar Longitude (Ls) : |
---|
| 541 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 542 | if (season) then |
---|
| 543 | call solarlong(zday,zls) |
---|
| 544 | else |
---|
| 545 | call solarlong(float(day_ini),zls) |
---|
| 546 | end if |
---|
| 547 | |
---|
[883] | 548 | c Initialize pressure levels |
---|
| 549 | c ~~~~~~~~~~~~~~~~~~ |
---|
| 550 | zplev(:,:) = pplev(:,:) |
---|
| 551 | zplay(:,:) = pplay(:,:) |
---|
| 552 | ps(:) = pplev(:,1) |
---|
| 553 | |
---|
| 554 | |
---|
[42] | 555 | c Compute geopotential at interlayers |
---|
| 556 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 557 | c ponderation des altitudes au niveau des couches en dp/p |
---|
| 558 | |
---|
| 559 | DO l=1,nlayer |
---|
| 560 | DO ig=1,ngrid |
---|
| 561 | zzlay(ig,l)=pphi(ig,l)/g |
---|
| 562 | ENDDO |
---|
| 563 | ENDDO |
---|
| 564 | DO ig=1,ngrid |
---|
| 565 | zzlev(ig,1)=0. |
---|
| 566 | zzlev(ig,nlayer+1)=1.e7 ! dummy top of last layer above 10000 km... |
---|
| 567 | ENDDO |
---|
| 568 | DO l=2,nlayer |
---|
| 569 | DO ig=1,ngrid |
---|
[883] | 570 | z1=(zplay(ig,l-1)+zplev(ig,l))/(zplay(ig,l-1)-zplev(ig,l)) |
---|
| 571 | z2=(zplev(ig,l)+zplay(ig,l))/(zplev(ig,l)-zplay(ig,l)) |
---|
[42] | 572 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
---|
| 573 | ENDDO |
---|
| 574 | ENDDO |
---|
| 575 | |
---|
| 576 | |
---|
| 577 | ! Potential temperature calculation not the same in physiq and dynamic |
---|
| 578 | |
---|
| 579 | c Compute potential temperature |
---|
| 580 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 581 | DO l=1,nlayer |
---|
| 582 | DO ig=1,ngrid |
---|
[883] | 583 | zpopsk(ig,l)=(zplay(ig,l)/zplev(ig,1))**rcp |
---|
[42] | 584 | zh(ig,l)=pt(ig,l)/zpopsk(ig,l) |
---|
| 585 | ENDDO |
---|
| 586 | ENDDO |
---|
| 587 | |
---|
[226] | 588 | #ifndef MESOSCALE |
---|
| 589 | c----------------------------------------------------------------------- |
---|
| 590 | c 1.2.5 Compute mean mass, cp, and R |
---|
| 591 | c -------------------------------- |
---|
[42] | 592 | |
---|
[226] | 593 | if(photochem.or.callthermos) then |
---|
[1047] | 594 | call concentrations(ngrid,nlayer,nq, |
---|
| 595 | & zplay,pt,pdt,pq,pdq,ptimestep) |
---|
[226] | 596 | endif |
---|
| 597 | #endif |
---|
[42] | 598 | c----------------------------------------------------------------------- |
---|
| 599 | c 2. Compute radiative tendencies : |
---|
| 600 | c------------------------------------ |
---|
| 601 | |
---|
| 602 | |
---|
| 603 | IF (callrad) THEN |
---|
| 604 | IF( MOD(icount-1,iradia).EQ.0) THEN |
---|
| 605 | |
---|
| 606 | c Local Solar zenith angle |
---|
| 607 | c ~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 608 | CALL orbite(zls,dist_sol,declin) |
---|
| 609 | |
---|
| 610 | IF(diurnal) THEN |
---|
| 611 | ztim1=SIN(declin) |
---|
| 612 | ztim2=COS(declin)*COS(2.*pi*(zday-.5)) |
---|
| 613 | ztim3=-COS(declin)*SIN(2.*pi*(zday-.5)) |
---|
| 614 | |
---|
| 615 | CALL solang(ngrid,sinlon,coslon,sinlat,coslat, |
---|
| 616 | s ztim1,ztim2,ztim3, mu0,fract) |
---|
| 617 | |
---|
| 618 | ELSE |
---|
| 619 | CALL mucorr(ngrid,declin, lati, mu0, fract,10000.,rad) |
---|
| 620 | ENDIF |
---|
| 621 | |
---|
| 622 | c NLTE cooling from CO2 emission |
---|
| 623 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[414] | 624 | IF(callnlte) then |
---|
| 625 | if(nltemodel.eq.0.or.nltemodel.eq.1) then |
---|
[883] | 626 | CALL nltecool(ngrid,nlayer,nq,zplay,pt,pq,zdtnlte) |
---|
[414] | 627 | else if(nltemodel.eq.2) then |
---|
[705] | 628 | co2vmr_gcm(1:ngrid,1:nlayer)= |
---|
| 629 | & pq(1:ngrid,1:nlayer,igcm_co2)* |
---|
| 630 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_co2) |
---|
| 631 | n2vmr_gcm(1:ngrid,1:nlayer)= |
---|
| 632 | & pq(1:ngrid,1:nlayer,igcm_n2)* |
---|
| 633 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_n2) |
---|
| 634 | covmr_gcm(1:ngrid,1:nlayer)= |
---|
| 635 | & pq(1:ngrid,1:nlayer,igcm_co)* |
---|
| 636 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_co) |
---|
| 637 | ovmr_gcm(1:ngrid,1:nlayer)= |
---|
| 638 | & pq(1:ngrid,1:nlayer,igcm_o)* |
---|
| 639 | & mmean(1:ngrid,1:nlayer)/mmol(igcm_o) |
---|
[414] | 640 | |
---|
[883] | 641 | CALL nlte_tcool(ngrid,nlayer,zplay*9.869e-6, |
---|
[414] | 642 | $ pt,zzlay,co2vmr_gcm, n2vmr_gcm, covmr_gcm, |
---|
| 643 | $ ovmr_gcm, zdtnlte ) |
---|
[42] | 644 | |
---|
[705] | 645 | zdtnlte(1:ngrid,1:nlayer)= |
---|
| 646 | & zdtnlte(1:ngrid,1:nlayer)/86400. |
---|
[414] | 647 | endif |
---|
[528] | 648 | else |
---|
| 649 | zdtnlte(:,:)=0. |
---|
[414] | 650 | endif |
---|
[42] | 651 | |
---|
| 652 | c Find number of layers for LTE radiation calculations |
---|
| 653 | IF(MOD(iphysiq*(icount-1),day_step).EQ.0) |
---|
[883] | 654 | & CALL nlthermeq(ngrid,nlayer,zplev,zplay) |
---|
[42] | 655 | |
---|
| 656 | c Note: Dustopacity.F has been transferred to callradite.F |
---|
| 657 | |
---|
| 658 | c Call main radiative transfer scheme |
---|
| 659 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 660 | c Transfer through CO2 (except NIR CO2 absorption) |
---|
| 661 | c and aerosols (dust and water ice) |
---|
| 662 | |
---|
| 663 | c Radiative transfer |
---|
| 664 | c ------------------ |
---|
[833] | 665 | |
---|
[42] | 666 | CALL callradite(icount,ngrid,nlayer,nq,zday,zls,pq,albedo, |
---|
[883] | 667 | $ emis,mu0,zplev,zplay,pt,tsurf,fract,dist_sol,igout, |
---|
[42] | 668 | $ zdtlw,zdtsw,fluxsurf_lw,fluxsurf_sw,fluxtop_lw,fluxtop_sw, |
---|
[520] | 669 | $ tauref,tau,aerosol,tauscaling,taucloudtes,rdust,rice, |
---|
| 670 | $ nuice,co2ice) |
---|
[42] | 671 | |
---|
[234] | 672 | c Outputs for basic check (middle of domain) |
---|
| 673 | c ------------------------------------------ |
---|
[627] | 674 | write(*,'("Ls =",f11.6," check lat =",f10.6, |
---|
| 675 | & " lon =",f11.6)') |
---|
| 676 | & zls*180./pi,lati(igout)*180/pi,long(igout)*180/pi |
---|
| 677 | write(*,'(" tauref(",f4.0," Pa) =",f9.6, |
---|
| 678 | & " tau(",f4.0," Pa) =",f9.6)') |
---|
| 679 | & odpref,tauref(igout), |
---|
[883] | 680 | & odpref,tau(igout,1)*odpref/zplev(igout,1) |
---|
[234] | 681 | c --------------------------------------------------------- |
---|
| 682 | c Call slope parameterization for direct and scattered flux |
---|
| 683 | c --------------------------------------------------------- |
---|
| 684 | IF(callslope) THEN |
---|
| 685 | print *, 'Slope scheme is on and computing...' |
---|
| 686 | DO ig=1,ngrid |
---|
| 687 | sl_the = theta_sl(ig) |
---|
| 688 | IF (sl_the .ne. 0.) THEN |
---|
| 689 | ztim1=fluxsurf_sw(ig,1)+fluxsurf_sw(ig,2) |
---|
| 690 | DO l=1,2 |
---|
| 691 | sl_lct = ptime*24. + 180.*long(ig)/pi/15. |
---|
| 692 | sl_ra = pi*(1.0-sl_lct/12.) |
---|
| 693 | sl_lat = 180.*lati(ig)/pi |
---|
[577] | 694 | sl_tau = tau(ig,1) !il faudrait iaerdust(iaer) |
---|
[234] | 695 | sl_alb = albedo(ig,l) |
---|
| 696 | sl_psi = psi_sl(ig) |
---|
| 697 | sl_fl0 = fluxsurf_sw(ig,l) |
---|
| 698 | sl_di0 = 0. |
---|
| 699 | if (mu0(ig) .gt. 0.) then |
---|
| 700 | sl_di0 = mu0(ig)*(exp(-sl_tau/mu0(ig))) |
---|
| 701 | sl_di0 = sl_di0*1370./dist_sol/dist_sol |
---|
| 702 | sl_di0 = sl_di0/ztim1 |
---|
| 703 | sl_di0 = fluxsurf_sw(ig,l)*sl_di0 |
---|
| 704 | endif |
---|
| 705 | ! you never know (roundup concern...) |
---|
| 706 | if (sl_fl0 .lt. sl_di0) sl_di0=sl_fl0 |
---|
| 707 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 708 | CALL param_slope( mu0(ig), declin, sl_ra, sl_lat, |
---|
| 709 | & sl_tau, sl_alb, sl_the, sl_psi, |
---|
| 710 | & sl_di0, sl_fl0, sl_flu ) |
---|
| 711 | !!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 712 | fluxsurf_sw(ig,l) = sl_flu |
---|
| 713 | ENDDO |
---|
| 714 | !!! compute correction on IR flux as well |
---|
| 715 | sky= (1.+cos(pi*theta_sl(ig)/180.))/2. |
---|
| 716 | fluxsurf_lw(ig)= fluxsurf_lw(ig)*sky |
---|
| 717 | ENDIF |
---|
| 718 | ENDDO |
---|
| 719 | ENDIF |
---|
| 720 | |
---|
[42] | 721 | c CO2 near infrared absorption |
---|
| 722 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[286] | 723 | zdtnirco2(:,:)=0 |
---|
[42] | 724 | if (callnirco2) then |
---|
[883] | 725 | call nirco2abs (ngrid,nlayer,zplay,dist_sol,nq,pq, |
---|
[42] | 726 | . mu0,fract,declin, zdtnirco2) |
---|
| 727 | endif |
---|
| 728 | |
---|
| 729 | c Radiative flux from the sky absorbed by the surface (W.m-2) |
---|
| 730 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 731 | DO ig=1,ngrid |
---|
| 732 | fluxrad_sky(ig)=emis(ig)*fluxsurf_lw(ig) |
---|
| 733 | $ +fluxsurf_sw(ig,1)*(1.-albedo(ig,1)) |
---|
| 734 | $ +fluxsurf_sw(ig,2)*(1.-albedo(ig,2)) |
---|
| 735 | ENDDO |
---|
| 736 | |
---|
| 737 | |
---|
| 738 | c Net atmospheric radiative heating rate (K.s-1) |
---|
| 739 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 740 | IF(callnlte) THEN |
---|
[883] | 741 | CALL blendrad(ngrid, nlayer, zplay, |
---|
[42] | 742 | & zdtsw, zdtlw, zdtnirco2, zdtnlte, dtrad) |
---|
| 743 | ELSE |
---|
| 744 | DO l=1,nlayer |
---|
| 745 | DO ig=1,ngrid |
---|
| 746 | dtrad(ig,l)=zdtsw(ig,l)+zdtlw(ig,l) |
---|
| 747 | & +zdtnirco2(ig,l) |
---|
| 748 | ENDDO |
---|
| 749 | ENDDO |
---|
| 750 | ENDIF |
---|
| 751 | |
---|
| 752 | ENDIF ! of if(mod(icount-1,iradia).eq.0) |
---|
| 753 | |
---|
| 754 | c Transformation of the radiative tendencies: |
---|
| 755 | c ------------------------------------------- |
---|
| 756 | |
---|
| 757 | c Net radiative surface flux (W.m-2) |
---|
| 758 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 759 | c |
---|
| 760 | DO ig=1,ngrid |
---|
| 761 | zplanck(ig)=tsurf(ig)*tsurf(ig) |
---|
| 762 | zplanck(ig)=emis(ig)* |
---|
| 763 | $ stephan*zplanck(ig)*zplanck(ig) |
---|
| 764 | fluxrad(ig)=fluxrad_sky(ig)-zplanck(ig) |
---|
[234] | 765 | IF(callslope) THEN |
---|
| 766 | sky= (1.+cos(pi*theta_sl(ig)/180.))/2. |
---|
| 767 | fluxrad(ig)=fluxrad(ig)+(1.-sky)*zplanck(ig) |
---|
| 768 | ENDIF |
---|
[42] | 769 | ENDDO |
---|
| 770 | |
---|
| 771 | DO l=1,nlayer |
---|
| 772 | DO ig=1,ngrid |
---|
| 773 | pdt(ig,l)=pdt(ig,l)+dtrad(ig,l) |
---|
| 774 | ENDDO |
---|
| 775 | ENDDO |
---|
| 776 | |
---|
| 777 | ENDIF ! of IF (callrad) |
---|
| 778 | |
---|
[226] | 779 | c----------------------------------------------------------------------- |
---|
| 780 | c 3. Gravity wave and subgrid scale topography drag : |
---|
| 781 | c ------------------------------------------------- |
---|
[42] | 782 | |
---|
[226] | 783 | |
---|
| 784 | IF(calllott)THEN |
---|
| 785 | |
---|
| 786 | CALL calldrag_noro(ngrid,nlayer,ptimestep, |
---|
[883] | 787 | & zplay,zplev,pt,pu,pv,zdtgw,zdugw,zdvgw) |
---|
[226] | 788 | |
---|
| 789 | DO l=1,nlayer |
---|
| 790 | DO ig=1,ngrid |
---|
| 791 | pdv(ig,l)=pdv(ig,l)+zdvgw(ig,l) |
---|
| 792 | pdu(ig,l)=pdu(ig,l)+zdugw(ig,l) |
---|
| 793 | pdt(ig,l)=pdt(ig,l)+zdtgw(ig,l) |
---|
| 794 | ENDDO |
---|
| 795 | ENDDO |
---|
| 796 | ENDIF |
---|
[234] | 797 | |
---|
[42] | 798 | c----------------------------------------------------------------------- |
---|
| 799 | c 4. Vertical diffusion (turbulent mixing): |
---|
| 800 | c ----------------------------------------- |
---|
[226] | 801 | |
---|
[42] | 802 | IF (calldifv) THEN |
---|
| 803 | |
---|
| 804 | DO ig=1,ngrid |
---|
| 805 | zflubid(ig)=fluxrad(ig)+fluxgrd(ig) |
---|
| 806 | ENDDO |
---|
| 807 | |
---|
[286] | 808 | zdum1(:,:)=0 |
---|
| 809 | zdum2(:,:)=0 |
---|
[42] | 810 | do l=1,nlayer |
---|
| 811 | do ig=1,ngrid |
---|
| 812 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) |
---|
| 813 | enddo |
---|
| 814 | enddo |
---|
[226] | 815 | |
---|
[288] | 816 | |
---|
| 817 | #ifdef MESOSCALE |
---|
[289] | 818 | IF (.not.flag_LES) THEN |
---|
[288] | 819 | #endif |
---|
| 820 | c ---------------------- |
---|
[284] | 821 | c Treatment of a special case : using new surface layer (Richardson based) |
---|
| 822 | c without using the thermals in gcm and mesoscale can yield problems in |
---|
| 823 | c weakly unstable situations when winds are near to 0. For those cases, we add |
---|
| 824 | c a unit subgrid gustiness. Remember that thermals should be used we using the |
---|
| 825 | c Richardson based surface layer model. |
---|
[288] | 826 | IF ( .not.calltherm .and. callrichsl ) THEN |
---|
[1047] | 827 | DO ig=1, ngrid |
---|
[284] | 828 | IF (zh(ig,1) .lt. tsurf(ig)) THEN |
---|
[528] | 829 | wstar(ig)=1. |
---|
| 830 | hfmax_th(ig)=0.2 |
---|
| 831 | ELSE |
---|
| 832 | wstar(ig)=0. |
---|
| 833 | hfmax_th(ig)=0. |
---|
| 834 | ENDIF |
---|
[284] | 835 | ENDDO |
---|
| 836 | ENDIF |
---|
[288] | 837 | c ---------------------- |
---|
| 838 | #ifdef MESOSCALE |
---|
[284] | 839 | ENDIF |
---|
| 840 | #endif |
---|
| 841 | |
---|
[544] | 842 | IF (tke_heat_flux .ne. 0.) THEN |
---|
| 843 | zz1(:)=(pt(:,1)+pdt(:,1)*ptimestep)*(r/g)* |
---|
[883] | 844 | & (-alog(zplay(:,1)/zplev(:,1))) |
---|
[544] | 845 | pdt(:,1)=pdt(:,1) + (tke_heat_flux/zz1(:))*zpopsk(:,1) |
---|
| 846 | ENDIF |
---|
[288] | 847 | |
---|
[42] | 848 | c Calling vdif (Martian version WITH CO2 condensation) |
---|
| 849 | CALL vdifc(ngrid,nlayer,nq,co2ice,zpopsk, |
---|
| 850 | $ ptimestep,capcal,lwrite, |
---|
[883] | 851 | $ zplay,zplev,zzlay,zzlev,z0, |
---|
[42] | 852 | $ pu,pv,zh,pq,tsurf,emis,qsurf, |
---|
| 853 | $ zdum1,zdum2,zdh,pdq,zflubid, |
---|
| 854 | $ zdudif,zdvdif,zdhdif,zdtsdif,q2, |
---|
[660] | 855 | & zdqdif,zdqsdif,wstar,zcdv,zcdh,hfmax_th,sensibFlux |
---|
[529] | 856 | #ifdef MESOSCALE |
---|
| 857 | & ,flag_LES |
---|
| 858 | #endif |
---|
| 859 | & ) |
---|
[42] | 860 | |
---|
[529] | 861 | |
---|
[226] | 862 | #ifdef MESOSCALE |
---|
| 863 | #include "meso_inc/meso_inc_les.F" |
---|
| 864 | #endif |
---|
[42] | 865 | DO l=1,nlayer |
---|
| 866 | DO ig=1,ngrid |
---|
| 867 | pdv(ig,l)=pdv(ig,l)+zdvdif(ig,l) |
---|
| 868 | pdu(ig,l)=pdu(ig,l)+zdudif(ig,l) |
---|
| 869 | pdt(ig,l)=pdt(ig,l)+zdhdif(ig,l)*zpopsk(ig,l) |
---|
| 870 | |
---|
| 871 | zdtdif(ig,l)=zdhdif(ig,l)*zpopsk(ig,l) ! for diagnostic only |
---|
| 872 | |
---|
| 873 | ENDDO |
---|
| 874 | ENDDO |
---|
| 875 | |
---|
[226] | 876 | DO ig=1,ngrid |
---|
| 877 | zdtsurf(ig)=zdtsurf(ig)+zdtsdif(ig) |
---|
| 878 | ENDDO |
---|
[42] | 879 | |
---|
[790] | 880 | if (tracer) then |
---|
| 881 | #ifdef MESOSCALE |
---|
| 882 | IF (.not.flag_LES) THEN |
---|
| 883 | #endif |
---|
[42] | 884 | DO iq=1, nq |
---|
| 885 | DO l=1,nlayer |
---|
| 886 | DO ig=1,ngrid |
---|
| 887 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdif(ig,l,iq) |
---|
| 888 | ENDDO |
---|
| 889 | ENDDO |
---|
| 890 | ENDDO |
---|
| 891 | DO iq=1, nq |
---|
| 892 | DO ig=1,ngrid |
---|
| 893 | dqsurf(ig,iq)=dqsurf(ig,iq) + zdqsdif(ig,iq) |
---|
| 894 | ENDDO |
---|
| 895 | ENDDO |
---|
[790] | 896 | #ifdef MESOSCALE |
---|
| 897 | ENDIF |
---|
| 898 | #endif |
---|
[42] | 899 | end if ! of if (tracer) |
---|
| 900 | |
---|
| 901 | ELSE |
---|
| 902 | DO ig=1,ngrid |
---|
| 903 | zdtsurf(ig)=zdtsurf(ig)+ |
---|
| 904 | s (fluxrad(ig)+fluxgrd(ig))/capcal(ig) |
---|
| 905 | ENDDO |
---|
[226] | 906 | #ifdef MESOSCALE |
---|
[42] | 907 | IF (flag_LES) THEN |
---|
| 908 | write(*,*) 'LES mode !' |
---|
| 909 | write(*,*) 'Please set calldifv to T in callphys.def' |
---|
| 910 | STOP |
---|
| 911 | ENDIF |
---|
[226] | 912 | #endif |
---|
[42] | 913 | ENDIF ! of IF (calldifv) |
---|
| 914 | |
---|
[162] | 915 | c----------------------------------------------------------------------- |
---|
[566] | 916 | c 5. Thermals : |
---|
[162] | 917 | c ----------------------------- |
---|
[566] | 918 | |
---|
[162] | 919 | if(calltherm) then |
---|
| 920 | |
---|
[1032] | 921 | call calltherm_interface(ngrid,nlayer,nq, |
---|
| 922 | $ tracer,igcm_co2, |
---|
[652] | 923 | $ zzlev,zzlay, |
---|
[162] | 924 | $ ptimestep,pu,pv,pt,pq,pdu,pdv,pdt,pdq,q2, |
---|
[883] | 925 | $ zplay,zplev,pphi,zpopsk, |
---|
[185] | 926 | $ pdu_th,pdv_th,pdt_th,pdq_th,lmax_th,zmax_th, |
---|
[660] | 927 | $ dtke_th,zdhdif,hfmax_th,wstar,sensibFlux) |
---|
[633] | 928 | |
---|
[162] | 929 | DO l=1,nlayer |
---|
| 930 | DO ig=1,ngrid |
---|
| 931 | pdu(ig,l)=pdu(ig,l)+pdu_th(ig,l) |
---|
| 932 | pdv(ig,l)=pdv(ig,l)+pdv_th(ig,l) |
---|
| 933 | pdt(ig,l)=pdt(ig,l)+pdt_th(ig,l) |
---|
| 934 | q2(ig,l)=q2(ig,l)+dtke_th(ig,l)*ptimestep |
---|
| 935 | ENDDO |
---|
| 936 | ENDDO |
---|
| 937 | |
---|
| 938 | DO ig=1,ngrid |
---|
| 939 | q2(ig,nlayer+1)=q2(ig,nlayer+1)+dtke_th(ig,nlayer+1)*ptimestep |
---|
| 940 | ENDDO |
---|
| 941 | |
---|
| 942 | if (tracer) then |
---|
| 943 | DO iq=1,nq |
---|
| 944 | DO l=1,nlayer |
---|
| 945 | DO ig=1,ngrid |
---|
| 946 | pdq(ig,l,iq)=pdq(ig,l,iq)+pdq_th(ig,l,iq) |
---|
| 947 | ENDDO |
---|
| 948 | ENDDO |
---|
| 949 | ENDDO |
---|
| 950 | endif |
---|
[42] | 951 | |
---|
[277] | 952 | lmax_th_out(:)=real(lmax_th(:)) |
---|
| 953 | |
---|
[162] | 954 | else !of if calltherm |
---|
| 955 | lmax_th(:)=0 |
---|
[528] | 956 | wstar(:)=0. |
---|
| 957 | hfmax_th(:)=0. |
---|
[277] | 958 | lmax_th_out(:)=0. |
---|
[162] | 959 | end if |
---|
| 960 | |
---|
[42] | 961 | c----------------------------------------------------------------------- |
---|
| 962 | c 5. Dry convective adjustment: |
---|
| 963 | c ----------------------------- |
---|
| 964 | |
---|
| 965 | IF(calladj) THEN |
---|
| 966 | |
---|
| 967 | DO l=1,nlayer |
---|
| 968 | DO ig=1,ngrid |
---|
| 969 | zdh(ig,l)=pdt(ig,l)/zpopsk(ig,l) |
---|
| 970 | ENDDO |
---|
| 971 | ENDDO |
---|
[286] | 972 | zduadj(:,:)=0 |
---|
| 973 | zdvadj(:,:)=0 |
---|
| 974 | zdhadj(:,:)=0 |
---|
[42] | 975 | |
---|
| 976 | CALL convadj(ngrid,nlayer,nq,ptimestep, |
---|
[883] | 977 | $ zplay,zplev,zpopsk,lmax_th, |
---|
[42] | 978 | $ pu,pv,zh,pq, |
---|
| 979 | $ pdu,pdv,zdh,pdq, |
---|
| 980 | $ zduadj,zdvadj,zdhadj, |
---|
| 981 | $ zdqadj) |
---|
| 982 | |
---|
[162] | 983 | |
---|
[42] | 984 | DO l=1,nlayer |
---|
| 985 | DO ig=1,ngrid |
---|
| 986 | pdu(ig,l)=pdu(ig,l)+zduadj(ig,l) |
---|
| 987 | pdv(ig,l)=pdv(ig,l)+zdvadj(ig,l) |
---|
| 988 | pdt(ig,l)=pdt(ig,l)+zdhadj(ig,l)*zpopsk(ig,l) |
---|
| 989 | |
---|
| 990 | zdtadj(ig,l)=zdhadj(ig,l)*zpopsk(ig,l) ! for diagnostic only |
---|
| 991 | ENDDO |
---|
| 992 | ENDDO |
---|
| 993 | |
---|
| 994 | if(tracer) then |
---|
| 995 | DO iq=1, nq |
---|
| 996 | DO l=1,nlayer |
---|
| 997 | DO ig=1,ngrid |
---|
| 998 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqadj(ig,l,iq) |
---|
| 999 | ENDDO |
---|
| 1000 | ENDDO |
---|
| 1001 | ENDDO |
---|
| 1002 | end if |
---|
| 1003 | ENDIF ! of IF(calladj) |
---|
| 1004 | |
---|
| 1005 | c----------------------------------------------------------------------- |
---|
| 1006 | c 6. Carbon dioxide condensation-sublimation: |
---|
| 1007 | c ------------------------------------------- |
---|
| 1008 | |
---|
[528] | 1009 | IF (tituscap) THEN |
---|
| 1010 | !!! get the actual co2 seasonal cap from Titus observations |
---|
| 1011 | CALL geticecover( ngrid, 180.*zls/pi, |
---|
[333] | 1012 | . 180.*long/pi, 180.*lati/pi, co2ice ) |
---|
[528] | 1013 | co2ice = co2ice * 10000. |
---|
| 1014 | ENDIF |
---|
[883] | 1015 | |
---|
| 1016 | |
---|
| 1017 | pdpsrf(:) = 0 |
---|
[332] | 1018 | |
---|
[42] | 1019 | IF (callcond) THEN |
---|
[86] | 1020 | CALL newcondens(ngrid,nlayer,nq,ptimestep, |
---|
[883] | 1021 | $ capcal,zplay,zplev,tsurf,pt, |
---|
[42] | 1022 | $ pphi,pdt,pdu,pdv,zdtsurf,pu,pv,pq,pdq, |
---|
| 1023 | $ co2ice,albedo,emis, |
---|
| 1024 | $ zdtc,zdtsurfc,pdpsrf,zduc,zdvc,zdqc, |
---|
[226] | 1025 | $ fluxsurf_sw,zls) |
---|
[42] | 1026 | |
---|
| 1027 | DO l=1,nlayer |
---|
| 1028 | DO ig=1,ngrid |
---|
| 1029 | pdt(ig,l)=pdt(ig,l)+zdtc(ig,l) |
---|
| 1030 | pdv(ig,l)=pdv(ig,l)+zdvc(ig,l) |
---|
| 1031 | pdu(ig,l)=pdu(ig,l)+zduc(ig,l) |
---|
| 1032 | ENDDO |
---|
| 1033 | ENDDO |
---|
| 1034 | DO ig=1,ngrid |
---|
| 1035 | zdtsurf(ig) = zdtsurf(ig) + zdtsurfc(ig) |
---|
| 1036 | ENDDO |
---|
| 1037 | |
---|
| 1038 | IF (tracer) THEN |
---|
| 1039 | DO iq=1, nq |
---|
| 1040 | DO l=1,nlayer |
---|
| 1041 | DO ig=1,ngrid |
---|
| 1042 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqc(ig,l,iq) |
---|
| 1043 | ENDDO |
---|
| 1044 | ENDDO |
---|
| 1045 | ENDDO |
---|
| 1046 | ENDIF ! of IF (tracer) |
---|
| 1047 | |
---|
[1038] | 1048 | #ifndef MESOSCALE |
---|
[883] | 1049 | ! update surface pressure |
---|
| 1050 | DO ig=1,ngrid |
---|
| 1051 | ps(ig) = zplev(ig,1) + pdpsrf(ig)*ptimestep |
---|
| 1052 | ENDDO |
---|
| 1053 | |
---|
| 1054 | ! update pressure levels |
---|
| 1055 | DO l=1,nlayer |
---|
| 1056 | DO ig=1,ngrid |
---|
| 1057 | zplay(ig,l) = aps(l) + bps(l)*ps(ig) |
---|
| 1058 | zplev(ig,l) = ap(l) + bp(l)*ps(ig) |
---|
| 1059 | ENDDO |
---|
| 1060 | ENDDO |
---|
[885] | 1061 | zplev(:,nlayer+1) = 0. |
---|
[883] | 1062 | |
---|
| 1063 | ! update layers altitude |
---|
| 1064 | DO l=2,nlayer |
---|
| 1065 | DO ig=1,ngrid |
---|
| 1066 | z1=(zplay(ig,l-1)+zplev(ig,l))/(zplay(ig,l-1)-zplev(ig,l)) |
---|
| 1067 | z2=(zplev(ig,l)+zplay(ig,l))/(zplev(ig,l)-zplay(ig,l)) |
---|
| 1068 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
---|
| 1069 | ENDDO |
---|
| 1070 | ENDDO |
---|
[1038] | 1071 | #endif |
---|
[883] | 1072 | |
---|
[42] | 1073 | ENDIF ! of IF (callcond) |
---|
[883] | 1074 | |
---|
[42] | 1075 | |
---|
[883] | 1076 | |
---|
[42] | 1077 | c----------------------------------------------------------------------- |
---|
| 1078 | c 7. Specific parameterizations for tracers |
---|
| 1079 | c: ----------------------------------------- |
---|
| 1080 | |
---|
| 1081 | if (tracer) then |
---|
| 1082 | |
---|
| 1083 | c 7a. Water and ice |
---|
| 1084 | c --------------- |
---|
| 1085 | |
---|
| 1086 | c --------------------------------------- |
---|
| 1087 | c Water ice condensation in the atmosphere |
---|
| 1088 | c ---------------------------------------- |
---|
| 1089 | IF (water) THEN |
---|
| 1090 | |
---|
| 1091 | call watercloud(ngrid,nlayer,ptimestep, |
---|
[883] | 1092 | & zplev,zplay,pdpsrf,zzlay, pt,pdt, |
---|
[626] | 1093 | & pq,pdq,zdqcloud,zdtcloud, |
---|
[358] | 1094 | & nq,tau,tauscaling,rdust,rice,nuice, |
---|
| 1095 | & rsedcloud,rhocloud) |
---|
[833] | 1096 | |
---|
[633] | 1097 | c Temperature variation due to latent heat release |
---|
[42] | 1098 | if (activice) then |
---|
[633] | 1099 | pdt(1:ngrid,1:nlayer) = |
---|
| 1100 | & pdt(1:ngrid,1:nlayer) + |
---|
| 1101 | & zdtcloud(1:ngrid,1:nlayer) |
---|
[42] | 1102 | endif |
---|
[633] | 1103 | |
---|
[42] | 1104 | ! increment water vapour and ice atmospheric tracers tendencies |
---|
[706] | 1105 | pdq(1:ngrid,1:nlayer,igcm_h2o_vap) = |
---|
| 1106 | & pdq(1:ngrid,1:nlayer,igcm_h2o_vap) + |
---|
| 1107 | & zdqcloud(1:ngrid,1:nlayer,igcm_h2o_vap) |
---|
| 1108 | pdq(1:ngrid,1:nlayer,igcm_h2o_ice) = |
---|
| 1109 | & pdq(1:ngrid,1:nlayer,igcm_h2o_ice) + |
---|
| 1110 | & zdqcloud(1:ngrid,1:nlayer,igcm_h2o_ice) |
---|
| 1111 | |
---|
| 1112 | ! increment dust and ccn masses and numbers |
---|
[883] | 1113 | ! We need to check that we have Nccn & Ndust > 0 |
---|
| 1114 | ! This is due to single precision rounding problems |
---|
[706] | 1115 | if (microphys) then |
---|
| 1116 | pdq(1:ngrid,1:nlayer,igcm_ccn_mass) = |
---|
| 1117 | & pdq(1:ngrid,1:nlayer,igcm_ccn_mass) + |
---|
| 1118 | & zdqcloud(1:ngrid,1:nlayer,igcm_ccn_mass) |
---|
| 1119 | pdq(1:ngrid,1:nlayer,igcm_ccn_number) = |
---|
| 1120 | & pdq(1:ngrid,1:nlayer,igcm_ccn_number) + |
---|
| 1121 | & zdqcloud(1:ngrid,1:nlayer,igcm_ccn_number) |
---|
[883] | 1122 | where (pq(:,:,igcm_ccn_mass) + |
---|
| 1123 | & ptimestep*pdq(:,:,igcm_ccn_mass) < 0.) |
---|
| 1124 | pdq(:,:,igcm_ccn_mass) = |
---|
| 1125 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
---|
| 1126 | pdq(:,:,igcm_ccn_number) = |
---|
| 1127 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
---|
| 1128 | end where |
---|
| 1129 | where (pq(:,:,igcm_ccn_number) + |
---|
| 1130 | & ptimestep*pdq(:,:,igcm_ccn_number) < 0.) |
---|
| 1131 | pdq(:,:,igcm_ccn_mass) = |
---|
| 1132 | & - pq(:,:,igcm_ccn_mass)/ptimestep + 1.e-30 |
---|
| 1133 | pdq(:,:,igcm_ccn_number) = |
---|
| 1134 | & - pq(:,:,igcm_ccn_number)/ptimestep + 1.e-30 |
---|
| 1135 | end where |
---|
[706] | 1136 | endif |
---|
| 1137 | |
---|
[883] | 1138 | if (scavenging) then |
---|
| 1139 | pdq(1:ngrid,1:nlayer,igcm_dust_mass) = |
---|
| 1140 | & pdq(1:ngrid,1:nlayer,igcm_dust_mass) + |
---|
| 1141 | & zdqcloud(1:ngrid,1:nlayer,igcm_dust_mass) |
---|
| 1142 | pdq(1:ngrid,1:nlayer,igcm_dust_number) = |
---|
| 1143 | & pdq(1:ngrid,1:nlayer,igcm_dust_number) + |
---|
| 1144 | & zdqcloud(1:ngrid,1:nlayer,igcm_dust_number) |
---|
| 1145 | where (pq(:,:,igcm_dust_mass) + |
---|
| 1146 | & ptimestep*pdq(:,:,igcm_dust_mass) < 0.) |
---|
| 1147 | pdq(:,:,igcm_dust_mass) = |
---|
| 1148 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
| 1149 | pdq(:,:,igcm_dust_number) = |
---|
| 1150 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
| 1151 | end where |
---|
| 1152 | where (pq(:,:,igcm_dust_number) + |
---|
| 1153 | & ptimestep*pdq(:,:,igcm_dust_number) < 0.) |
---|
| 1154 | pdq(:,:,igcm_dust_mass) = |
---|
| 1155 | & - pq(:,:,igcm_dust_mass)/ptimestep + 1.e-30 |
---|
| 1156 | pdq(:,:,igcm_dust_number) = |
---|
| 1157 | & - pq(:,:,igcm_dust_number)/ptimestep + 1.e-30 |
---|
| 1158 | end where |
---|
| 1159 | endif ! of if scavenging |
---|
[633] | 1160 | |
---|
| 1161 | |
---|
[42] | 1162 | END IF ! of IF (water) |
---|
| 1163 | |
---|
[556] | 1164 | c 7b. Aerosol particles |
---|
[42] | 1165 | c ------------------- |
---|
| 1166 | |
---|
| 1167 | c ---------- |
---|
| 1168 | c Dust devil : |
---|
| 1169 | c ---------- |
---|
| 1170 | IF(callddevil) then |
---|
[883] | 1171 | call dustdevil(ngrid,nlayer,nq, zplev,pu,pv,pt, tsurf,q2, |
---|
[42] | 1172 | & zdqdev,zdqsdev) |
---|
| 1173 | |
---|
| 1174 | if (dustbin.ge.1) then |
---|
| 1175 | do iq=1,nq |
---|
| 1176 | DO l=1,nlayer |
---|
| 1177 | DO ig=1,ngrid |
---|
| 1178 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqdev(ig,l,iq) |
---|
| 1179 | ENDDO |
---|
| 1180 | ENDDO |
---|
| 1181 | enddo |
---|
| 1182 | do iq=1,nq |
---|
| 1183 | DO ig=1,ngrid |
---|
| 1184 | dqsurf(ig,iq)= dqsurf(ig,iq) + zdqsdev(ig,iq) |
---|
| 1185 | ENDDO |
---|
| 1186 | enddo |
---|
| 1187 | endif ! of if (dustbin.ge.1) |
---|
| 1188 | |
---|
| 1189 | END IF ! of IF (callddevil) |
---|
| 1190 | |
---|
| 1191 | c ------------- |
---|
| 1192 | c Sedimentation : acts also on water ice |
---|
| 1193 | c ------------- |
---|
| 1194 | IF (sedimentation) THEN |
---|
| 1195 | !call zerophys(ngrid*nlayer*nq, zdqsed) |
---|
| 1196 | zdqsed(1:ngrid,1:nlayer,1:nq)=0 |
---|
| 1197 | !call zerophys(ngrid*nq, zdqssed) |
---|
| 1198 | zdqssed(1:ngrid,1:nq)=0 |
---|
| 1199 | |
---|
| 1200 | call callsedim(ngrid,nlayer, ptimestep, |
---|
[1005] | 1201 | & zplev,zzlev, zzlay, pt, pdt, rdust, rice, |
---|
[358] | 1202 | & rsedcloud,rhocloud, |
---|
[411] | 1203 | & pq, pdq, zdqsed, zdqssed,nq, |
---|
| 1204 | & tau,tauscaling) |
---|
[833] | 1205 | |
---|
[42] | 1206 | DO iq=1, nq |
---|
| 1207 | DO l=1,nlayer |
---|
| 1208 | DO ig=1,ngrid |
---|
| 1209 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqsed(ig,l,iq) |
---|
| 1210 | ENDDO |
---|
| 1211 | ENDDO |
---|
| 1212 | ENDDO |
---|
| 1213 | DO iq=1, nq |
---|
| 1214 | DO ig=1,ngrid |
---|
| 1215 | dqsurf(ig,iq)= dqsurf(ig,iq) + zdqssed(ig,iq) |
---|
| 1216 | ENDDO |
---|
| 1217 | ENDDO |
---|
| 1218 | END IF ! of IF (sedimentation) |
---|
[790] | 1219 | |
---|
| 1220 | c Add lifted dust to tendancies after sedimentation in the LES |
---|
| 1221 | #ifdef MESOSCALE |
---|
| 1222 | #include "meso_inc/meso_inc_lift_les.F" |
---|
| 1223 | #endif |
---|
| 1224 | |
---|
[556] | 1225 | c |
---|
| 1226 | c 7c. Chemical species |
---|
| 1227 | c ------------------ |
---|
[42] | 1228 | |
---|
[556] | 1229 | #ifndef MESOSCALE |
---|
| 1230 | c -------------- |
---|
| 1231 | c photochemistry : |
---|
| 1232 | c -------------- |
---|
| 1233 | IF (photochem .or. thermochem) then |
---|
[411] | 1234 | |
---|
[556] | 1235 | ! dust and ice surface area |
---|
[883] | 1236 | call surfacearea(ngrid, nlayer, ptimestep, zplay, zzlay, |
---|
[556] | 1237 | $ pt, pq, pdq, nq, |
---|
| 1238 | $ rdust, rice, tau, tauscaling, |
---|
| 1239 | $ surfdust, surfice) |
---|
| 1240 | ! call photochemistry |
---|
[1047] | 1241 | call calchim(ngrid,nlayer,nq, |
---|
[1036] | 1242 | & ptimestep,zplay,zplev,pt,pdt,dist_sol,mu0, |
---|
[556] | 1243 | $ zzlev,zzlay,zday,pq,pdq,zdqchim,zdqschim, |
---|
| 1244 | $ zdqcloud,zdqscloud,tauref,co2ice, |
---|
| 1245 | $ pu,pdu,pv,pdv,surfdust,surfice) |
---|
| 1246 | |
---|
| 1247 | ! increment values of tracers: |
---|
| 1248 | DO iq=1,nq ! loop on all tracers; tendencies for non-chemistry |
---|
| 1249 | ! tracers is zero anyways |
---|
| 1250 | DO l=1,nlayer |
---|
| 1251 | DO ig=1,ngrid |
---|
| 1252 | pdq(ig,l,iq)=pdq(ig,l,iq)+zdqchim(ig,l,iq) |
---|
| 1253 | ENDDO |
---|
| 1254 | ENDDO |
---|
| 1255 | ENDDO ! of DO iq=1,nq |
---|
| 1256 | |
---|
| 1257 | ! add condensation tendency for H2O2 |
---|
| 1258 | if (igcm_h2o2.ne.0) then |
---|
| 1259 | DO l=1,nlayer |
---|
| 1260 | DO ig=1,ngrid |
---|
| 1261 | pdq(ig,l,igcm_h2o2)=pdq(ig,l,igcm_h2o2) |
---|
| 1262 | & +zdqcloud(ig,l,igcm_h2o2) |
---|
| 1263 | ENDDO |
---|
| 1264 | ENDDO |
---|
| 1265 | endif |
---|
| 1266 | |
---|
| 1267 | ! increment surface values of tracers: |
---|
| 1268 | DO iq=1,nq ! loop on all tracers; tendencies for non-chemistry |
---|
| 1269 | ! tracers is zero anyways |
---|
| 1270 | DO ig=1,ngrid |
---|
| 1271 | dqsurf(ig,iq)=dqsurf(ig,iq)+zdqschim(ig,iq) |
---|
| 1272 | ENDDO |
---|
| 1273 | ENDDO ! of DO iq=1,nq |
---|
| 1274 | |
---|
| 1275 | ! add condensation tendency for H2O2 |
---|
| 1276 | if (igcm_h2o2.ne.0) then |
---|
| 1277 | DO ig=1,ngrid |
---|
| 1278 | dqsurf(ig,igcm_h2o2)=dqsurf(ig,igcm_h2o2) |
---|
| 1279 | & +zdqscloud(ig,igcm_h2o2) |
---|
| 1280 | ENDDO |
---|
| 1281 | endif |
---|
| 1282 | |
---|
| 1283 | END IF ! of IF (photochem.or.thermochem) |
---|
| 1284 | #endif |
---|
| 1285 | |
---|
[42] | 1286 | c 7d. Updates |
---|
| 1287 | c --------- |
---|
| 1288 | |
---|
| 1289 | DO iq=1, nq |
---|
| 1290 | DO ig=1,ngrid |
---|
| 1291 | |
---|
| 1292 | c --------------------------------- |
---|
| 1293 | c Updating tracer budget on surface |
---|
| 1294 | c --------------------------------- |
---|
| 1295 | qsurf(ig,iq)=qsurf(ig,iq)+ptimestep*dqsurf(ig,iq) |
---|
| 1296 | |
---|
| 1297 | ENDDO ! (ig) |
---|
| 1298 | ENDDO ! (iq) |
---|
| 1299 | |
---|
| 1300 | endif ! of if (tracer) |
---|
| 1301 | |
---|
[226] | 1302 | #ifndef MESOSCALE |
---|
| 1303 | c----------------------------------------------------------------------- |
---|
| 1304 | c 8. THERMOSPHERE CALCULATION |
---|
| 1305 | c----------------------------------------------------------------------- |
---|
[42] | 1306 | |
---|
[226] | 1307 | if (callthermos) then |
---|
[1047] | 1308 | call thermosphere(ngrid,nlayer,nq,zplev,zplay,dist_sol, |
---|
[226] | 1309 | $ mu0,ptimestep,ptime,zday,tsurf,zzlev,zzlay, |
---|
| 1310 | & pt,pq,pu,pv,pdt,pdq, |
---|
| 1311 | $ zdteuv,zdtconduc,zdumolvis,zdvmolvis,zdqmoldiff) |
---|
| 1312 | |
---|
| 1313 | DO l=1,nlayer |
---|
| 1314 | DO ig=1,ngrid |
---|
| 1315 | dtrad(ig,l)=dtrad(ig,l)+zdteuv(ig,l) |
---|
| 1316 | pdt(ig,l)=pdt(ig,l)+zdtconduc(ig,l) |
---|
| 1317 | & +zdteuv(ig,l) |
---|
| 1318 | pdv(ig,l)=pdv(ig,l)+zdvmolvis(ig,l) |
---|
| 1319 | pdu(ig,l)=pdu(ig,l)+zdumolvis(ig,l) |
---|
| 1320 | DO iq=1, nq |
---|
| 1321 | pdq(ig,l,iq)=pdq(ig,l,iq)+zdqmoldiff(ig,l,iq) |
---|
| 1322 | ENDDO |
---|
| 1323 | ENDDO |
---|
| 1324 | ENDDO |
---|
| 1325 | |
---|
| 1326 | endif ! of if (callthermos) |
---|
| 1327 | #endif |
---|
| 1328 | |
---|
[42] | 1329 | c----------------------------------------------------------------------- |
---|
| 1330 | c 9. Surface and sub-surface soil temperature |
---|
| 1331 | c----------------------------------------------------------------------- |
---|
| 1332 | c |
---|
| 1333 | c |
---|
| 1334 | c 9.1 Increment Surface temperature: |
---|
| 1335 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 1336 | |
---|
| 1337 | DO ig=1,ngrid |
---|
| 1338 | tsurf(ig)=tsurf(ig)+ptimestep*zdtsurf(ig) |
---|
| 1339 | ENDDO |
---|
| 1340 | |
---|
| 1341 | c Prescribe a cold trap at south pole (except at high obliquity !!) |
---|
| 1342 | c Temperature at the surface is set there to be the temperature |
---|
| 1343 | c corresponding to equilibrium temperature between phases of CO2 |
---|
| 1344 | |
---|
[411] | 1345 | |
---|
[1047] | 1346 | IF (tracer.AND.water.AND.(ngrid.NE.1)) THEN |
---|
[226] | 1347 | #ifndef MESOSCALE |
---|
| 1348 | if (caps.and.(obliquit.lt.27.)) then |
---|
| 1349 | ! NB: Updated surface pressure, at grid point 'ngrid', is |
---|
[883] | 1350 | ! ps(ngrid)=zplev(ngrid,1)+pdpsrf(ngrid)*ptimestep |
---|
[226] | 1351 | tsurf(ngrid)=1./(1./136.27-r/5.9e+5*alog(0.0095* |
---|
[883] | 1352 | & (zplev(ngrid,1)+pdpsrf(ngrid)*ptimestep))) |
---|
[226] | 1353 | endif |
---|
| 1354 | #endif |
---|
[42] | 1355 | c ------------------------------------------------------------- |
---|
[283] | 1356 | c Change of surface albedo in case of ground frost |
---|
[42] | 1357 | c everywhere except on the north permanent cap and in regions |
---|
| 1358 | c covered by dry ice. |
---|
| 1359 | c ALWAYS PLACE these lines after newcondens !!! |
---|
| 1360 | c ------------------------------------------------------------- |
---|
| 1361 | do ig=1,ngrid |
---|
| 1362 | if ((co2ice(ig).eq.0).and. |
---|
[283] | 1363 | & (qsurf(ig,igcm_h2o_ice).gt.frost_albedo_threshold)) then |
---|
| 1364 | albedo(ig,1) = albedo_h2o_ice |
---|
| 1365 | albedo(ig,2) = albedo_h2o_ice |
---|
| 1366 | c write(*,*) "frost thickness", qsurf(ig,igcm_h2o_ice) |
---|
| 1367 | c write(*,*) "physiq.F frost :" |
---|
| 1368 | c & ,lati(ig)*180./pi, long(ig)*180./pi |
---|
[42] | 1369 | endif |
---|
| 1370 | enddo ! of do ig=1,ngrid |
---|
[1047] | 1371 | ENDIF ! of IF (tracer.AND.water.AND.(ngrid.NE.1)) |
---|
[42] | 1372 | |
---|
[528] | 1373 | c |
---|
[42] | 1374 | c 9.2 Compute soil temperatures and subsurface heat flux: |
---|
| 1375 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 1376 | IF (callsoil) THEN |
---|
[833] | 1377 | c Thermal inertia feedback |
---|
| 1378 | IF (tifeedback) THEN |
---|
| 1379 | CALL soil_tifeedback(ngrid,nsoilmx,qsurf,inertiesoil) |
---|
| 1380 | CALL soil(ngrid,nsoilmx,.false.,inertiesoil, |
---|
| 1381 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 1382 | ELSE |
---|
[42] | 1383 | CALL soil(ngrid,nsoilmx,.false.,inertiedat, |
---|
[833] | 1384 | s ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
| 1385 | ENDIF |
---|
[42] | 1386 | ENDIF |
---|
[411] | 1387 | |
---|
[42] | 1388 | |
---|
[999] | 1389 | |
---|
[42] | 1390 | c----------------------------------------------------------------------- |
---|
| 1391 | c 10. Write output files |
---|
| 1392 | c ---------------------- |
---|
| 1393 | |
---|
[674] | 1394 | c Save variables for eventual restart in MMM and LES |
---|
| 1395 | #ifdef MESOSCALE |
---|
| 1396 | #include "meso_inc/meso_inc_save_restart.F" |
---|
| 1397 | #endif |
---|
| 1398 | |
---|
[42] | 1399 | c ------------------------------- |
---|
| 1400 | c Dynamical fields incrementation |
---|
| 1401 | c ------------------------------- |
---|
| 1402 | c (FOR OUTPUT ONLY : the actual model integration is performed in the dynamics) |
---|
| 1403 | ! temperature, zonal and meridional wind |
---|
| 1404 | DO l=1,nlayer |
---|
| 1405 | DO ig=1,ngrid |
---|
| 1406 | zt(ig,l)=pt(ig,l) + pdt(ig,l)*ptimestep |
---|
| 1407 | zu(ig,l)=pu(ig,l) + pdu(ig,l)*ptimestep |
---|
| 1408 | zv(ig,l)=pv(ig,l) + pdv(ig,l)*ptimestep |
---|
| 1409 | ENDDO |
---|
| 1410 | ENDDO |
---|
| 1411 | |
---|
| 1412 | ! tracers |
---|
| 1413 | DO iq=1, nq |
---|
| 1414 | DO l=1,nlayer |
---|
| 1415 | DO ig=1,ngrid |
---|
| 1416 | zq(ig,l,iq)=pq(ig,l,iq) +pdq(ig,l,iq)*ptimestep |
---|
| 1417 | ENDDO |
---|
| 1418 | ENDDO |
---|
| 1419 | ENDDO |
---|
| 1420 | |
---|
| 1421 | ! Density |
---|
| 1422 | DO l=1,nlayer |
---|
| 1423 | DO ig=1,ngrid |
---|
| 1424 | rho(ig,l) = zplay(ig,l)/(rnew(ig,l)*zt(ig,l)) |
---|
| 1425 | ENDDO |
---|
| 1426 | ENDDO |
---|
| 1427 | |
---|
[269] | 1428 | ! Potential Temperature |
---|
| 1429 | |
---|
[1047] | 1430 | DO ig=1,ngrid |
---|
| 1431 | DO l=1,nlayer |
---|
[528] | 1432 | zh(ig,l) = zt(ig,l)*(zplev(ig,1)/zplay(ig,l))**rcp |
---|
[269] | 1433 | ENDDO |
---|
| 1434 | ENDDO |
---|
| 1435 | |
---|
| 1436 | |
---|
[226] | 1437 | c Compute surface stress : (NB: z0 is a common in surfdat.h) |
---|
[42] | 1438 | c DO ig=1,ngrid |
---|
[226] | 1439 | c cd = (0.4/log(zzlay(ig,1)/z0(ig)))**2 |
---|
[42] | 1440 | c zstress(ig) = rho(ig,1)*cd*(zu(ig,1)**2 + zv(ig,1)**2) |
---|
| 1441 | c ENDDO |
---|
| 1442 | |
---|
| 1443 | c Sum of fluxes in solar spectral bands (for output only) |
---|
| 1444 | DO ig=1,ngrid |
---|
[226] | 1445 | fluxtop_sw_tot(ig)=fluxtop_sw(ig,1) + fluxtop_sw(ig,2) |
---|
| 1446 | fluxsurf_sw_tot(ig)=fluxsurf_sw(ig,1) + fluxsurf_sw(ig,2) |
---|
[42] | 1447 | ENDDO |
---|
| 1448 | c ******* TEST ****************************************************** |
---|
[835] | 1449 | ztim1 = 999 |
---|
| 1450 | DO l=1,nlayer |
---|
| 1451 | DO ig=1,ngrid |
---|
| 1452 | if (pt(ig,l).lt.ztim1) then |
---|
| 1453 | ztim1 = pt(ig,l) |
---|
| 1454 | igmin = ig |
---|
| 1455 | lmin = l |
---|
| 1456 | end if |
---|
| 1457 | ENDDO |
---|
| 1458 | ENDDO |
---|
| 1459 | if(min(pt(igmin,lmin),zt(igmin,lmin)).lt.70.) then |
---|
| 1460 | write(*,*) 'PHYSIQ: stability WARNING :' |
---|
| 1461 | write(*,*) 'pt, zt Tmin = ', pt(igmin,lmin), zt(igmin,lmin), |
---|
| 1462 | & 'ig l =', igmin, lmin |
---|
| 1463 | end if |
---|
[42] | 1464 | c ******************************************************************* |
---|
| 1465 | |
---|
| 1466 | c --------------------- |
---|
| 1467 | c Outputs to the screen |
---|
| 1468 | c --------------------- |
---|
| 1469 | |
---|
| 1470 | IF (lwrite) THEN |
---|
| 1471 | PRINT*,'Global diagnostics for the physics' |
---|
| 1472 | PRINT*,'Variables and their increments x and dx/dt * dt' |
---|
| 1473 | WRITE(*,'(a6,a10,2a15)') 'Ts','dTs','ps','dps' |
---|
| 1474 | WRITE(*,'(2f10.5,2f15.5)') |
---|
| 1475 | s tsurf(igout),zdtsurf(igout)*ptimestep, |
---|
[883] | 1476 | s zplev(igout,1),pdpsrf(igout)*ptimestep |
---|
[42] | 1477 | WRITE(*,'(a4,a6,5a10)') 'l','u','du','v','dv','T','dT' |
---|
| 1478 | WRITE(*,'(i4,6f10.5)') (l, |
---|
| 1479 | s pu(igout,l),pdu(igout,l)*ptimestep, |
---|
| 1480 | s pv(igout,l),pdv(igout,l)*ptimestep, |
---|
| 1481 | s pt(igout,l),pdt(igout,l)*ptimestep, |
---|
| 1482 | s l=1,nlayer) |
---|
| 1483 | ENDIF ! of IF (lwrite) |
---|
| 1484 | |
---|
[566] | 1485 | c ---------------------------------------------------------- |
---|
| 1486 | c ---------------------------------------------------------- |
---|
| 1487 | c INTERPOLATIONS IN THE SURFACE-LAYER |
---|
| 1488 | c ---------------------------------------------------------- |
---|
| 1489 | c ---------------------------------------------------------- |
---|
| 1490 | |
---|
[657] | 1491 | n_out=0 ! number of elements in the z_out array. |
---|
[636] | 1492 | ! for z_out=[3.,2.,1.,0.5,0.1], n_out must be set |
---|
| 1493 | ! to 5 |
---|
| 1494 | IF (n_out .ne. 0) THEN |
---|
[566] | 1495 | |
---|
[636] | 1496 | IF(.NOT. ALLOCATED(z_out)) ALLOCATE(z_out(n_out)) |
---|
| 1497 | IF(.NOT. ALLOCATED(T_out)) ALLOCATE(T_out(ngrid,n_out)) |
---|
| 1498 | IF(.NOT. ALLOCATED(u_out)) ALLOCATE(u_out(ngrid,n_out)) |
---|
[566] | 1499 | |
---|
[636] | 1500 | z_out(:)=[3.,2.,1.,0.5,0.1] |
---|
| 1501 | u_out(:,:)=0. |
---|
| 1502 | T_out(:,:)=0. |
---|
[566] | 1503 | |
---|
[636] | 1504 | call pbl_parameters(ngrid,nlayer,ps,zplay,z0, |
---|
[566] | 1505 | & g,zzlay,zzlev,zu,zv,wstar,hfmax_th,zmax_th,tsurf,zh,z_out,n_out, |
---|
[657] | 1506 | & T_out,u_out,ustar,tstar,L_mo,vhf,vvv) |
---|
[566] | 1507 | |
---|
| 1508 | #ifndef MESOSCALE |
---|
| 1509 | IF (ngrid .eq. 1) THEN |
---|
| 1510 | dimout=0 |
---|
| 1511 | ELSE |
---|
| 1512 | dimout=2 |
---|
| 1513 | ENDIF |
---|
| 1514 | DO n=1,n_out |
---|
[636] | 1515 | write(zstring, '(F8.6)') z_out(n) |
---|
| 1516 | call WRITEDIAGFI(ngrid,'T_out_'//trim(zstring), |
---|
| 1517 | & 'potential temperature at z_out','K',dimout,T_out(:,n)) |
---|
[566] | 1518 | call WRITEDIAGFI(ngrid,'u_out_'//trim(zstring), |
---|
| 1519 | & 'horizontal velocity norm at z_out','m/s',dimout,u_out(:,n)) |
---|
[636] | 1520 | ENDDO |
---|
[566] | 1521 | call WRITEDIAGFI(ngrid,'u_star', |
---|
| 1522 | & 'friction velocity','m/s',dimout,ustar) |
---|
| 1523 | call WRITEDIAGFI(ngrid,'teta_star', |
---|
| 1524 | & 'friction potential temperature','K',dimout,tstar) |
---|
| 1525 | call WRITEDIAGFI(ngrid,'L', |
---|
| 1526 | & 'Monin Obukhov length','m',dimout,L_mo) |
---|
| 1527 | call WRITEDIAGFI(ngrid,'vvv', |
---|
| 1528 | & 'Vertical velocity variance at zout','m',dimout,vvv) |
---|
| 1529 | call WRITEDIAGFI(ngrid,'vhf', |
---|
| 1530 | & 'Vertical heat flux at zout','m',dimout,vhf) |
---|
[636] | 1531 | #else |
---|
| 1532 | T_out1(:)=T_out(:,1) |
---|
| 1533 | u_out1(:)=u_out(:,1) |
---|
[566] | 1534 | #endif |
---|
| 1535 | |
---|
| 1536 | ENDIF |
---|
| 1537 | |
---|
| 1538 | c ---------------------------------------------------------- |
---|
| 1539 | c ---------------------------------------------------------- |
---|
| 1540 | c END OF SURFACE LAYER INTERPOLATIONS |
---|
| 1541 | c ---------------------------------------------------------- |
---|
| 1542 | c ---------------------------------------------------------- |
---|
| 1543 | |
---|
[42] | 1544 | IF (ngrid.NE.1) THEN |
---|
| 1545 | |
---|
[226] | 1546 | #ifndef MESOSCALE |
---|
[42] | 1547 | c ------------------------------------------------------------------- |
---|
| 1548 | c Writing NetCDF file "RESTARTFI" at the end of the run |
---|
| 1549 | c ------------------------------------------------------------------- |
---|
| 1550 | c Note: 'restartfi' is stored just before dynamics are stored |
---|
| 1551 | c in 'restart'. Between now and the writting of 'restart', |
---|
| 1552 | c there will have been the itau=itau+1 instruction and |
---|
| 1553 | c a reset of 'time' (lastacll = .true. when itau+1= itaufin) |
---|
| 1554 | c thus we store for time=time+dtvr |
---|
| 1555 | |
---|
[999] | 1556 | IF( ((ecritstart.GT.0) .and. |
---|
| 1557 | . (MOD(icount*iphysiq,ecritstart).EQ.0)) |
---|
| 1558 | . .or. lastcall ) THEN |
---|
| 1559 | |
---|
| 1560 | ztime_fin = pday + ptime + ptimestep/(float(iphysiq)*daysec) |
---|
| 1561 | . - day_ini - time_phys |
---|
| 1562 | print*, pday,ptime,day_ini, time_phys |
---|
| 1563 | write(*,'(A,I7,A,F12.5)') |
---|
| 1564 | . 'PHYSIQ: Ecriture du fichier restartfi ; icount=', |
---|
| 1565 | . icount,' date=',ztime_fin |
---|
| 1566 | |
---|
| 1567 | |
---|
[1047] | 1568 | call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq, |
---|
[999] | 1569 | . ptimestep,ztime_fin, |
---|
| 1570 | . tsurf,tsoil,co2ice,emis,q2,qsurf) |
---|
| 1571 | |
---|
[226] | 1572 | ENDIF |
---|
| 1573 | #endif |
---|
[42] | 1574 | |
---|
| 1575 | c ------------------------------------------------------------------- |
---|
| 1576 | c Calculation of diagnostic variables written in both stats and |
---|
| 1577 | c diagfi files |
---|
| 1578 | c ------------------------------------------------------------------- |
---|
| 1579 | |
---|
| 1580 | if (tracer) then |
---|
[719] | 1581 | |
---|
| 1582 | if(doubleq) then |
---|
| 1583 | do ig=1,ngrid |
---|
| 1584 | dqdustsurf(ig) = |
---|
[756] | 1585 | & zdqssed(ig,igcm_dust_mass)*tauscaling(ig) |
---|
[719] | 1586 | dndustsurf(ig) = |
---|
[756] | 1587 | & zdqssed(ig,igcm_dust_number)*tauscaling(ig) |
---|
| 1588 | ndust(ig,:) = |
---|
| 1589 | & pq(ig,:,igcm_dust_number)*tauscaling(ig) |
---|
| 1590 | qdust(ig,:) = |
---|
| 1591 | & pq(ig,:,igcm_dust_mass)*tauscaling(ig) |
---|
[719] | 1592 | enddo |
---|
| 1593 | if (scavenging) then |
---|
| 1594 | do ig=1,ngrid |
---|
| 1595 | dqdustsurf(ig) = dqdustsurf(ig) + |
---|
[756] | 1596 | & zdqssed(ig,igcm_ccn_mass)*tauscaling(ig) |
---|
[719] | 1597 | dndustsurf(ig) = dndustsurf(ig) + |
---|
[756] | 1598 | & zdqssed(ig,igcm_ccn_number)*tauscaling(ig) |
---|
| 1599 | nccn(ig,:) = |
---|
| 1600 | & pq(ig,:,igcm_ccn_number)*tauscaling(ig) |
---|
| 1601 | qccn(ig,:) = |
---|
| 1602 | & pq(ig,:,igcm_ccn_mass)*tauscaling(ig) |
---|
[719] | 1603 | enddo |
---|
| 1604 | endif |
---|
| 1605 | endif |
---|
| 1606 | |
---|
[42] | 1607 | if (water) then |
---|
[286] | 1608 | mtot(:)=0 |
---|
| 1609 | icetot(:)=0 |
---|
| 1610 | rave(:)=0 |
---|
| 1611 | tauTES(:)=0 |
---|
[42] | 1612 | do ig=1,ngrid |
---|
[1047] | 1613 | do l=1,nlayer |
---|
[42] | 1614 | mtot(ig) = mtot(ig) + |
---|
| 1615 | & zq(ig,l,igcm_h2o_vap) * |
---|
[883] | 1616 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[42] | 1617 | icetot(ig) = icetot(ig) + |
---|
| 1618 | & zq(ig,l,igcm_h2o_ice) * |
---|
[883] | 1619 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[42] | 1620 | c Computing abs optical depth at 825 cm-1 in each |
---|
| 1621 | c layer to simulate NEW TES retrieval |
---|
| 1622 | Qabsice = min( |
---|
| 1623 | & max(0.4e6*rice(ig,l)*(1.+nuice_ref)-0.05 ,0.),1.2 |
---|
| 1624 | & ) |
---|
| 1625 | opTES(ig,l)= 0.75 * Qabsice * |
---|
| 1626 | & zq(ig,l,igcm_h2o_ice) * |
---|
[883] | 1627 | & (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[42] | 1628 | & / (rho_ice * rice(ig,l) * (1.+nuice_ref)) |
---|
| 1629 | tauTES(ig)=tauTES(ig)+ opTES(ig,l) |
---|
| 1630 | enddo |
---|
[669] | 1631 | c rave(ig)=rave(ig)/max(icetot(ig),1.e-30) ! mass weight |
---|
| 1632 | c if (icetot(ig)*1e3.lt.0.01) rave(ig)=0. |
---|
[42] | 1633 | enddo |
---|
[1047] | 1634 | call watersat(ngrid*nlayer,zt,zplay,zqsat) |
---|
[669] | 1635 | satu(:,:) = zq(:,:,igcm_h2o_vap)/zqsat(:,:) |
---|
[42] | 1636 | |
---|
[669] | 1637 | if (scavenging) then |
---|
| 1638 | Nccntot(:)= 0 |
---|
| 1639 | Mccntot(:)= 0 |
---|
| 1640 | rave(:)=0 |
---|
| 1641 | do ig=1,ngrid |
---|
[1047] | 1642 | do l=1,nlayer |
---|
[669] | 1643 | Nccntot(ig) = Nccntot(ig) + |
---|
| 1644 | & zq(ig,l,igcm_ccn_number)*tauscaling(ig) |
---|
[883] | 1645 | & *(zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[669] | 1646 | Mccntot(ig) = Mccntot(ig) + |
---|
| 1647 | & zq(ig,l,igcm_ccn_mass)*tauscaling(ig) |
---|
[883] | 1648 | & *(zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[669] | 1649 | cccc Column integrated effective ice radius |
---|
| 1650 | cccc is weighted by total ice surface area (BETTER than total ice mass) |
---|
| 1651 | rave(ig) = rave(ig) + |
---|
| 1652 | & tauscaling(ig) * |
---|
| 1653 | & zq(ig,l,igcm_ccn_number) * |
---|
[883] | 1654 | & (zplev(ig,l) - zplev(ig,l+1)) / g * |
---|
[669] | 1655 | & rice(ig,l) * rice(ig,l)* (1.+nuice_ref) |
---|
| 1656 | enddo |
---|
| 1657 | rave(ig)=(icetot(ig)/rho_ice+Mccntot(ig)/rho_dust)*0.75 |
---|
| 1658 | & /max(pi*rave(ig),1.e-30) ! surface weight |
---|
| 1659 | if (icetot(ig)*1e3.lt.0.01) rave(ig)=0. |
---|
| 1660 | enddo |
---|
[833] | 1661 | else ! of if (scavenging) |
---|
| 1662 | rave(:)=0 |
---|
| 1663 | do ig=1,ngrid |
---|
[1047] | 1664 | do l=1,nlayer |
---|
[833] | 1665 | rave(ig) = rave(ig) + |
---|
| 1666 | & zq(ig,l,igcm_h2o_ice) * |
---|
[883] | 1667 | & (zplev(ig,l) - zplev(ig,l+1)) / g * |
---|
[833] | 1668 | & rice(ig,l) * (1.+nuice_ref) |
---|
| 1669 | enddo |
---|
| 1670 | rave(ig) = max(rave(ig) / |
---|
| 1671 | & max(icetot(ig),1.e-30),1.e-30) ! mass weight |
---|
| 1672 | enddo |
---|
[669] | 1673 | endif ! of if (scavenging) |
---|
| 1674 | |
---|
[42] | 1675 | endif ! of if (water) |
---|
| 1676 | endif ! of if (tracer) |
---|
| 1677 | |
---|
| 1678 | c ----------------------------------------------------------------- |
---|
| 1679 | c WSTATS: Saving statistics |
---|
| 1680 | c ----------------------------------------------------------------- |
---|
| 1681 | c ("stats" stores and accumulates 8 key variables in file "stats.nc" |
---|
| 1682 | c which can later be used to make the statistic files of the run: |
---|
| 1683 | c "stats") only possible in 3D runs ! |
---|
| 1684 | |
---|
[695] | 1685 | IF (callstats) THEN |
---|
[42] | 1686 | |
---|
[695] | 1687 | call wstats(ngrid,"ps","Surface pressure","Pa",2,ps) |
---|
| 1688 | call wstats(ngrid,"tsurf","Surface temperature","K",2,tsurf) |
---|
| 1689 | call wstats(ngrid,"co2ice","CO2 ice cover", |
---|
[575] | 1690 | & "kg.m-2",2,co2ice) |
---|
[758] | 1691 | call wstats(ngrid,"tauref","reference dod at 610 Pa","NU", |
---|
| 1692 | & 2,tauref) |
---|
[695] | 1693 | call wstats(ngrid,"fluxsurf_lw", |
---|
[575] | 1694 | & "Thermal IR radiative flux to surface","W.m-2",2, |
---|
| 1695 | & fluxsurf_lw) |
---|
[695] | 1696 | call wstats(ngrid,"fluxsurf_sw", |
---|
[575] | 1697 | & "Solar radiative flux to surface","W.m-2",2, |
---|
| 1698 | & fluxsurf_sw_tot) |
---|
[695] | 1699 | call wstats(ngrid,"fluxtop_lw", |
---|
[575] | 1700 | & "Thermal IR radiative flux to space","W.m-2",2, |
---|
| 1701 | & fluxtop_lw) |
---|
[695] | 1702 | call wstats(ngrid,"fluxtop_sw", |
---|
[575] | 1703 | & "Solar radiative flux to space","W.m-2",2, |
---|
| 1704 | & fluxtop_sw_tot) |
---|
[695] | 1705 | call wstats(ngrid,"temp","Atmospheric temperature","K",3,zt) |
---|
| 1706 | call wstats(ngrid,"u","Zonal (East-West) wind","m.s-1",3,zu) |
---|
| 1707 | call wstats(ngrid,"v","Meridional (North-South) wind", |
---|
[575] | 1708 | & "m.s-1",3,zv) |
---|
[705] | 1709 | call wstats(ngrid,"w","Vertical (down-up) wind", |
---|
| 1710 | & "m.s-1",3,pw) |
---|
[695] | 1711 | call wstats(ngrid,"rho","Atmospheric density","kg/m3",3,rho) |
---|
[883] | 1712 | call wstats(ngrid,"pressure","Pressure","Pa",3,zplay) |
---|
[758] | 1713 | call wstats(ngrid,"q2", |
---|
| 1714 | & "Boundary layer eddy kinetic energy", |
---|
| 1715 | & "m2.s-2",3,q2) |
---|
| 1716 | call wstats(ngrid,"emis","Surface emissivity","w.m-1",2, |
---|
| 1717 | & emis) |
---|
[226] | 1718 | c call wstats(ngrid,"ssurf","Surface stress","N.m-2", |
---|
| 1719 | c & 2,zstress) |
---|
| 1720 | c call wstats(ngrid,"sw_htrt","sw heat.rate", |
---|
| 1721 | c & "W.m-2",3,zdtsw) |
---|
| 1722 | c call wstats(ngrid,"lw_htrt","lw heat.rate", |
---|
| 1723 | c & "W.m-2",3,zdtlw) |
---|
[42] | 1724 | |
---|
[758] | 1725 | if (calltherm) then |
---|
| 1726 | call wstats(ngrid,"zmax_th","Height of thermals", |
---|
| 1727 | & "m",2,zmax_th) |
---|
| 1728 | call wstats(ngrid,"hfmax_th","Max thermals heat flux", |
---|
| 1729 | & "K.m/s",2,hfmax_th) |
---|
| 1730 | call wstats(ngrid,"wstar", |
---|
| 1731 | & "Max vertical velocity in thermals", |
---|
| 1732 | & "m/s",2,wstar) |
---|
| 1733 | endif |
---|
| 1734 | |
---|
[226] | 1735 | if (tracer) then |
---|
| 1736 | if (water) then |
---|
[1047] | 1737 | vmr=zq(1:ngrid,1:nlayer,igcm_h2o_vap) |
---|
| 1738 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_vap) |
---|
[719] | 1739 | call wstats(ngrid,"vmr_h2ovap", |
---|
[520] | 1740 | & "H2O vapor volume mixing ratio","mol/mol", |
---|
| 1741 | & 3,vmr) |
---|
[1047] | 1742 | vmr=zq(1:ngrid,1:nlayer,igcm_h2o_ice) |
---|
| 1743 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_ice) |
---|
[520] | 1744 | call wstats(ngrid,"vmr_h2oice", |
---|
| 1745 | & "H2O ice volume mixing ratio","mol/mol", |
---|
| 1746 | & 3,vmr) |
---|
[1047] | 1747 | vmr=zqsat(1:ngrid,1:nlayer) |
---|
| 1748 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_vap) |
---|
[669] | 1749 | call wstats(ngrid,"vmr_h2osat", |
---|
| 1750 | & "saturation volume mixing ratio","mol/mol", |
---|
| 1751 | & 3,vmr) |
---|
[226] | 1752 | call wstats(ngrid,"h2o_ice_s", |
---|
| 1753 | & "surface h2o_ice","kg/m2", |
---|
| 1754 | & 2,qsurf(1,igcm_h2o_ice)) |
---|
[758] | 1755 | call wstats(ngrid,'albedo', |
---|
| 1756 | & 'albedo', |
---|
[1013] | 1757 | & '',2,albedo(1,1)) |
---|
[226] | 1758 | call wstats(ngrid,"mtot", |
---|
| 1759 | & "total mass of water vapor","kg/m2", |
---|
| 1760 | & 2,mtot) |
---|
| 1761 | call wstats(ngrid,"icetot", |
---|
| 1762 | & "total mass of water ice","kg/m2", |
---|
| 1763 | & 2,icetot) |
---|
[520] | 1764 | call wstats(ngrid,"reffice", |
---|
| 1765 | & "Mean reff","m", |
---|
| 1766 | & 2,rave) |
---|
[669] | 1767 | call wstats(ngrid,"Nccntot", |
---|
[520] | 1768 | & "condensation nuclei","Nbr/m2", |
---|
[669] | 1769 | & 2,Nccntot) |
---|
| 1770 | call wstats(ngrid,"Mccntot", |
---|
| 1771 | & "condensation nuclei mass","kg/m2", |
---|
| 1772 | & 2,Mccntot) |
---|
[520] | 1773 | call wstats(ngrid,"rice", |
---|
| 1774 | & "Ice particle size","m", |
---|
| 1775 | & 3,rice) |
---|
[226] | 1776 | if (.not.activice) then |
---|
| 1777 | call wstats(ngrid,"tauTESap", |
---|
| 1778 | & "tau abs 825 cm-1","", |
---|
| 1779 | & 2,tauTES) |
---|
[520] | 1780 | else |
---|
[1047] | 1781 | call wstats(ngrid,'tauTES', |
---|
[520] | 1782 | & 'tau abs 825 cm-1', |
---|
| 1783 | & '',2,taucloudtes) |
---|
[226] | 1784 | endif |
---|
| 1785 | |
---|
| 1786 | endif ! of if (water) |
---|
[719] | 1787 | |
---|
| 1788 | |
---|
| 1789 | if (dustbin.ne.0) then |
---|
| 1790 | |
---|
[1047] | 1791 | call wstats(ngrid,'tau','taudust','SI',2,tau(1,1)) |
---|
[719] | 1792 | |
---|
| 1793 | if (doubleq) then |
---|
[1047] | 1794 | c call wstats(ngrid,'qsurf','qsurf', |
---|
[719] | 1795 | c & 'kg.m-2',2,qsurf(1,igcm_dust_mass)) |
---|
[1047] | 1796 | c call wstats(ngrid,'Nsurf','N particles', |
---|
[719] | 1797 | c & 'N.m-2',2,qsurf(1,igcm_dust_number)) |
---|
[1047] | 1798 | c call wstats(ngrid,'dqsdev','ddevil lift', |
---|
[719] | 1799 | c & 'kg.m-2.s-1',2,zdqsdev(1,1)) |
---|
[1047] | 1800 | c call wstats(ngrid,'dqssed','sedimentation', |
---|
[719] | 1801 | c & 'kg.m-2.s-1',2,zdqssed(1,1)) |
---|
[1047] | 1802 | c call wstats(ngrid,'dqsdif','diffusion', |
---|
[719] | 1803 | c & 'kg.m-2.s-1',2,zdqsdif(1,1)) |
---|
[1047] | 1804 | call wstats(ngrid,'dqsdust', |
---|
[719] | 1805 | & 'deposited surface dust mass', |
---|
| 1806 | & 'kg.m-2.s-1',2,dqdustsurf) |
---|
[1047] | 1807 | call wstats(ngrid,'dqndust', |
---|
[719] | 1808 | & 'deposited surface dust number', |
---|
| 1809 | & 'number.m-2.s-1',2,dndustsurf) |
---|
[1047] | 1810 | call wstats(ngrid,'reffdust','reffdust', |
---|
[719] | 1811 | & 'm',3,rdust*ref_r0) |
---|
[1047] | 1812 | call wstats(ngrid,'dustq','Dust mass mr', |
---|
[756] | 1813 | & 'kg/kg',3,qdust) |
---|
[1047] | 1814 | call wstats(ngrid,'dustN','Dust number', |
---|
[756] | 1815 | & 'part/kg',3,ndust) |
---|
[719] | 1816 | else |
---|
| 1817 | do iq=1,dustbin |
---|
| 1818 | write(str2(1:2),'(i2.2)') iq |
---|
[1047] | 1819 | call wstats(ngrid,'q'//str2,'mix. ratio', |
---|
[719] | 1820 | & 'kg/kg',3,zq(1,1,iq)) |
---|
[1047] | 1821 | call wstats(ngrid,'qsurf'//str2,'qsurf', |
---|
[719] | 1822 | & 'kg.m-2',2,qsurf(1,iq)) |
---|
| 1823 | end do |
---|
| 1824 | endif ! (doubleq) |
---|
[226] | 1825 | |
---|
[719] | 1826 | if (scavenging) then |
---|
[1047] | 1827 | call wstats(ngrid,'ccnq','CCN mass mr', |
---|
[756] | 1828 | & 'kg/kg',3,qccn) |
---|
[1047] | 1829 | call wstats(ngrid,'ccnN','CCN number', |
---|
[756] | 1830 | & 'part/kg',3,nccn) |
---|
[719] | 1831 | endif ! (scavenging) |
---|
| 1832 | |
---|
| 1833 | endif ! (dustbin.ne.0) |
---|
| 1834 | |
---|
| 1835 | |
---|
[226] | 1836 | if (thermochem.or.photochem) then |
---|
| 1837 | do iq=1,nq |
---|
[576] | 1838 | if (noms(iq) .ne. "dust_mass" .and. |
---|
| 1839 | $ noms(iq) .ne. "dust_number" .and. |
---|
| 1840 | $ noms(iq) .ne. "ccn_mass" .and. |
---|
[719] | 1841 | $ noms(iq) .ne. "ccn_number" .and. |
---|
| 1842 | $ noms(iq) .ne. "h2o_vap" .and. |
---|
| 1843 | $ noms(iq) .ne. "h2o_ice") then |
---|
[705] | 1844 | vmr(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,iq) |
---|
| 1845 | & *mmean(1:ngrid,1:nlayer)/mmol(iq) |
---|
| 1846 | rhopart(1:ngrid,1:nlayer)=zq(1:ngrid,1:nlayer,iq) |
---|
| 1847 | & *rho(1:ngrid,1:nlayer)*n_avog/ |
---|
| 1848 | & (1000*mmol(iq)) |
---|
[576] | 1849 | call wstats(ngrid,"vmr_"//trim(noms(iq)), |
---|
| 1850 | $ "Volume mixing ratio","mol/mol",3,vmr) |
---|
[705] | 1851 | ! call wstats(ngrid,"rho_"//trim(noms(iq)), |
---|
| 1852 | ! $ "Number density","cm-3",3,rhopart) |
---|
| 1853 | ! call writediagfi(ngrid,"rho_"//trim(noms(iq)), |
---|
| 1854 | ! $ "Number density","cm-3",3,rhopart) |
---|
[576] | 1855 | if ((noms(iq).eq."o") .or. (noms(iq).eq."co2").or. |
---|
| 1856 | $ (noms(iq).eq."o3")) then |
---|
| 1857 | call writediagfi(ngrid,"vmr_"//trim(noms(iq)), |
---|
| 1858 | $ "Volume mixing ratio","mol/mol",3,vmr) |
---|
| 1859 | end if |
---|
| 1860 | do ig = 1,ngrid |
---|
| 1861 | colden(ig,iq) = 0. |
---|
| 1862 | end do |
---|
| 1863 | do l=1,nlayer |
---|
| 1864 | do ig=1,ngrid |
---|
| 1865 | colden(ig,iq) = colden(ig,iq) + zq(ig,l,iq) |
---|
[883] | 1866 | $ *(zplev(ig,l)-zplev(ig,l+1)) |
---|
[576] | 1867 | $ *6.022e22/(mmol(iq)*g) |
---|
| 1868 | end do |
---|
| 1869 | end do |
---|
| 1870 | call wstats(ngrid,"c_"//trim(noms(iq)), |
---|
| 1871 | $ "column","mol cm-2",2,colden(1,iq)) |
---|
| 1872 | call writediagfi(ngrid,"c_"//trim(noms(iq)), |
---|
| 1873 | $ "column","mol cm-2",2,colden(1,iq)) |
---|
| 1874 | end if ! of if (noms(iq) .ne. "dust_mass" ...) |
---|
| 1875 | end do ! of do iq=1,nq |
---|
[334] | 1876 | end if ! of if (thermochem.or.photochem) |
---|
[226] | 1877 | |
---|
[334] | 1878 | end if ! of if (tracer) |
---|
[226] | 1879 | |
---|
| 1880 | IF(lastcall) THEN |
---|
| 1881 | write (*,*) "Writing stats..." |
---|
| 1882 | call mkstats(ierr) |
---|
| 1883 | ENDIF |
---|
| 1884 | |
---|
[42] | 1885 | ENDIF !if callstats |
---|
| 1886 | |
---|
| 1887 | c (Store EOF for Mars Climate database software) |
---|
| 1888 | IF (calleofdump) THEN |
---|
| 1889 | CALL eofdump(ngrid, nlayer, zu, zv, zt, rho, ps) |
---|
| 1890 | ENDIF |
---|
| 1891 | |
---|
[234] | 1892 | |
---|
[226] | 1893 | #ifdef MESOSCALE |
---|
[234] | 1894 | !!! |
---|
| 1895 | !!! OUTPUT FIELDS |
---|
| 1896 | !!! |
---|
[81] | 1897 | wtsurf(1:ngrid) = tsurf(1:ngrid) !! surface temperature |
---|
[668] | 1898 | wco2ice(1:ngrid) = co2ice(1:ngrid) !! co2 ice |
---|
| 1899 | TAU_lay(:)=tau(:,1)!!true opacity (not a reference like tauref) |
---|
[667] | 1900 | IF (tracer) THEN |
---|
[82] | 1901 | mtot(1:ngrid) = mtot(1:ngrid) * 1.e6 / rho_ice |
---|
[608] | 1902 | icetot(1:ngrid) = icetot(1:ngrid) * 1.e6 / rho_ice |
---|
[308] | 1903 | !! JF |
---|
| 1904 | IF (igcm_dust_mass .ne. 0) THEN |
---|
[708] | 1905 | qsurfdust(1:ngrid) = qsurf(1:ngrid,igcm_dust_mass) |
---|
[308] | 1906 | ENDIF |
---|
[81] | 1907 | IF (igcm_h2o_ice .ne. 0) THEN |
---|
| 1908 | qsurfice(1:ngrid) = qsurf(1:ngrid,igcm_h2o_ice) |
---|
| 1909 | vmr=1.e6 * zq(1:ngrid,1:nlayer,igcm_h2o_ice) |
---|
[1047] | 1910 | . *mmean(1:ngrid,1:nlayer) / mmol(igcm_h2o_ice) |
---|
[81] | 1911 | ENDIF |
---|
[308] | 1912 | !! Dust quantity integration along the vertical axe |
---|
| 1913 | dustot(:)=0 |
---|
[698] | 1914 | IF (igcm_dust_mass .ne. 0) THEN |
---|
[308] | 1915 | do ig=1,ngrid |
---|
[1047] | 1916 | do l=1,nlayer |
---|
[308] | 1917 | dustot(ig) = dustot(ig) + |
---|
| 1918 | & zq(ig,l,igcm_dust_mass) |
---|
[883] | 1919 | & * (zplev(ig,l) - zplev(ig,l+1)) / g |
---|
[308] | 1920 | enddo |
---|
| 1921 | enddo |
---|
[667] | 1922 | ENDIF |
---|
[698] | 1923 | ENDIF |
---|
[550] | 1924 | !! TAU water ice as seen by TES |
---|
| 1925 | if (activice) tauTES = taucloudtes |
---|
[226] | 1926 | c AUTOMATICALLY GENERATED FROM REGISTRY |
---|
[42] | 1927 | #include "fill_save.inc" |
---|
[226] | 1928 | #else |
---|
[528] | 1929 | #ifndef MESOINI |
---|
[42] | 1930 | |
---|
[226] | 1931 | c ========================================================== |
---|
| 1932 | c WRITEDIAGFI: Outputs in netcdf file "DIAGFI", containing |
---|
| 1933 | c any variable for diagnostic (output with period |
---|
| 1934 | c "ecritphy", set in "run.def") |
---|
| 1935 | c ========================================================== |
---|
| 1936 | c WRITEDIAGFI can ALSO be called from any other subroutines |
---|
| 1937 | c for any variables !! |
---|
[835] | 1938 | c call WRITEDIAGFI(ngrid,"emis","Surface emissivity","w.m-1",2, |
---|
| 1939 | c & emis) |
---|
| 1940 | c call WRITEDIAGFI(ngrid,"pplay","Pressure","Pa",3,zplay) |
---|
| 1941 | c call WRITEDIAGFI(ngrid,"pplev","Pressure","Pa",3,zplev) |
---|
[226] | 1942 | call WRITEDIAGFI(ngrid,"tsurf","Surface temperature","K",2, |
---|
| 1943 | & tsurf) |
---|
| 1944 | call WRITEDIAGFI(ngrid,"ps","surface pressure","Pa",2,ps) |
---|
[769] | 1945 | call WRITEDIAGFI(ngrid,"co2ice","co2 ice thickness" |
---|
| 1946 | & ,"kg.m-2",2,co2ice) |
---|
[284] | 1947 | |
---|
[719] | 1948 | call WRITEDIAGFI(ngrid,"temp7","temperature in layer 7", |
---|
| 1949 | & "K",2,zt(1,7)) |
---|
| 1950 | call WRITEDIAGFI(ngrid,"fluxsurf_lw","fluxsurf_lw","W.m-2",2, |
---|
| 1951 | & fluxsurf_lw) |
---|
| 1952 | call WRITEDIAGFI(ngrid,"fluxsurf_sw","fluxsurf_sw","W.m-2",2, |
---|
| 1953 | & fluxsurf_sw_tot) |
---|
| 1954 | call WRITEDIAGFI(ngrid,"fluxtop_lw","fluxtop_lw","W.m-2",2, |
---|
| 1955 | & fluxtop_lw) |
---|
| 1956 | call WRITEDIAGFI(ngrid,"fluxtop_sw","fluxtop_sw","W.m-2",2, |
---|
| 1957 | & fluxtop_sw_tot) |
---|
| 1958 | call WRITEDIAGFI(ngrid,"temp","temperature","K",3,zt) |
---|
| 1959 | call WRITEDIAGFI(ngrid,"u","Zonal wind","m.s-1",3,zu) |
---|
| 1960 | call WRITEDIAGFI(ngrid,"v","Meridional wind","m.s-1",3,zv) |
---|
| 1961 | call WRITEDIAGFI(ngrid,"w","Vertical wind","m.s-1",3,pw) |
---|
| 1962 | call WRITEDIAGFI(ngrid,"rho","density","none",3,rho) |
---|
[226] | 1963 | c call WRITEDIAGFI(ngrid,"q2","q2","kg.m-3",3,q2) |
---|
[520] | 1964 | c call WRITEDIAGFI(ngrid,'Teta','T potentielle','K',3,zh) |
---|
[758] | 1965 | call WRITEDIAGFI(ngrid,"pressure","Pressure","Pa",3,zplay) |
---|
[226] | 1966 | c call WRITEDIAGFI(ngrid,"ssurf","Surface stress","N.m-2",2, |
---|
| 1967 | c & zstress) |
---|
[1047] | 1968 | c call WRITEDIAGFI(ngrid,'sw_htrt','sw heat. rate', |
---|
[835] | 1969 | c & 'w.m-2',3,zdtsw) |
---|
[1047] | 1970 | c call WRITEDIAGFI(ngrid,'lw_htrt','lw heat. rate', |
---|
[835] | 1971 | c & 'w.m-2',3,zdtlw) |
---|
[520] | 1972 | if (.not.activice) then |
---|
[1047] | 1973 | CALL WRITEDIAGFI(ngrid,'tauTESap', |
---|
[520] | 1974 | & 'tau abs 825 cm-1', |
---|
| 1975 | & '',2,tauTES) |
---|
| 1976 | else |
---|
[1047] | 1977 | CALL WRITEDIAGFI(ngrid,'tauTES', |
---|
[520] | 1978 | & 'tau abs 825 cm-1', |
---|
| 1979 | & '',2,taucloudtes) |
---|
| 1980 | endif |
---|
[42] | 1981 | |
---|
[528] | 1982 | #else |
---|
| 1983 | !!! this is to ensure correct initialisation of mesoscale model |
---|
| 1984 | call WRITEDIAGFI(ngrid,"tsurf","Surface temperature","K",2, |
---|
| 1985 | & tsurf) |
---|
| 1986 | call WRITEDIAGFI(ngrid,"ps","surface pressure","Pa",2,ps) |
---|
| 1987 | call WRITEDIAGFI(ngrid,"co2ice","co2 ice thickness","kg.m-2",2, |
---|
| 1988 | & co2ice) |
---|
| 1989 | call WRITEDIAGFI(ngrid,"temp","temperature","K",3,zt) |
---|
| 1990 | call WRITEDIAGFI(ngrid,"u","Zonal wind","m.s-1",3,zu) |
---|
| 1991 | call WRITEDIAGFI(ngrid,"v","Meridional wind","m.s-1",3,zv) |
---|
[299] | 1992 | call WRITEDIAGFI(ngrid,"emis","Surface emissivity","w.m-1",2, |
---|
| 1993 | & emis) |
---|
| 1994 | call WRITEDIAGFI(ngrid,"tsoil","Soil temperature", |
---|
| 1995 | & "K",3,tsoil) |
---|
| 1996 | call WRITEDIAGFI(ngrid,"inertiedat","Soil inertia", |
---|
| 1997 | & "K",3,inertiedat) |
---|
| 1998 | #endif |
---|
[42] | 1999 | |
---|
[299] | 2000 | |
---|
[226] | 2001 | c ---------------------------------------------------------- |
---|
| 2002 | c Outputs of the CO2 cycle |
---|
| 2003 | c ---------------------------------------------------------- |
---|
[42] | 2004 | |
---|
[226] | 2005 | if (tracer.and.(igcm_co2.ne.0)) then |
---|
| 2006 | ! call WRITEDIAGFI(ngrid,"co2_l1","co2 mix. ratio in 1st layer", |
---|
| 2007 | ! & "kg/kg",2,zq(1,1,igcm_co2)) |
---|
[719] | 2008 | call WRITEDIAGFI(ngrid,"co2","co2 mass mixing ratio", |
---|
| 2009 | & "kg/kg",3,zq(1,1,igcm_co2)) |
---|
[226] | 2010 | |
---|
| 2011 | ! Compute co2 column |
---|
[286] | 2012 | co2col(:)=0 |
---|
[1047] | 2013 | do l=1,nlayer |
---|
[226] | 2014 | do ig=1,ngrid |
---|
| 2015 | co2col(ig)=co2col(ig)+ |
---|
[883] | 2016 | & zq(ig,l,igcm_co2)*(zplev(ig,l)-zplev(ig,l+1))/g |
---|
[226] | 2017 | enddo |
---|
| 2018 | enddo |
---|
| 2019 | call WRITEDIAGFI(ngrid,"co2col","CO2 column","kg.m-2",2, |
---|
| 2020 | & co2col) |
---|
| 2021 | endif ! of if (tracer.and.(igcm_co2.ne.0)) |
---|
[42] | 2022 | |
---|
[226] | 2023 | c ---------------------------------------------------------- |
---|
| 2024 | c Outputs of the water cycle |
---|
| 2025 | c ---------------------------------------------------------- |
---|
| 2026 | if (tracer) then |
---|
| 2027 | if (water) then |
---|
| 2028 | |
---|
[299] | 2029 | #ifdef MESOINI |
---|
| 2030 | !!!! waterice = q01, voir readmeteo.F90 |
---|
[1047] | 2031 | call WRITEDIAGFI(ngrid,'q01',noms(igcm_h2o_ice), |
---|
[299] | 2032 | & 'kg/kg',3, |
---|
[1047] | 2033 | & zq(1:ngrid,1:nlayer,igcm_h2o_ice)) |
---|
[299] | 2034 | !!!! watervapor = q02, voir readmeteo.F90 |
---|
[1047] | 2035 | call WRITEDIAGFI(ngrid,'q02',noms(igcm_h2o_vap), |
---|
[299] | 2036 | & 'kg/kg',3, |
---|
[1047] | 2037 | & zq(1:ngrid,1:nlayer,igcm_h2o_vap)) |
---|
[299] | 2038 | !!!! surface waterice qsurf02 (voir readmeteo) |
---|
[1047] | 2039 | call WRITEDIAGFI(ngrid,'qsurf02','surface tracer', |
---|
[299] | 2040 | & 'kg.m-2',2, |
---|
[1047] | 2041 | & qsurf(1:ngrid,igcm_h2o_ice)) |
---|
[299] | 2042 | #endif |
---|
| 2043 | |
---|
[1047] | 2044 | CALL WRITEDIAGFI(ngrid,'mtot', |
---|
[226] | 2045 | & 'total mass of water vapor', |
---|
| 2046 | & 'kg/m2',2,mtot) |
---|
[1047] | 2047 | CALL WRITEDIAGFI(ngrid,'icetot', |
---|
[226] | 2048 | & 'total mass of water ice', |
---|
| 2049 | & 'kg/m2',2,icetot) |
---|
[1047] | 2050 | vmr=zq(1:ngrid,1:nlayer,igcm_h2o_ice) |
---|
| 2051 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_ice) |
---|
| 2052 | call WRITEDIAGFI(ngrid,'vmr_h2oice','h2o ice vmr', |
---|
[719] | 2053 | & 'mol/mol',3,vmr) |
---|
[1047] | 2054 | vmr=zq(1:ngrid,1:nlayer,igcm_h2o_vap) |
---|
| 2055 | & *mmean(1:ngrid,1:nlayer)/mmol(igcm_h2o_vap) |
---|
| 2056 | call WRITEDIAGFI(ngrid,'vmr_h2ovap','h2o vap vmr', |
---|
[719] | 2057 | & 'mol/mol',3,vmr) |
---|
[1047] | 2058 | CALL WRITEDIAGFI(ngrid,'reffice', |
---|
[669] | 2059 | & 'Mean reff', |
---|
| 2060 | & 'm',2,rave) |
---|
[719] | 2061 | CALL WRITEDIAGFI(ngrid,"Nccntot", |
---|
[669] | 2062 | & "condensation nuclei","Nbr/m2", |
---|
| 2063 | & 2,Nccntot) |
---|
[719] | 2064 | CALL WRITEDIAGFI(ngrid,"Mccntot", |
---|
| 2065 | & "mass condensation nuclei","kg/m2", |
---|
| 2066 | & 2,Mccntot) |
---|
[1047] | 2067 | call WRITEDIAGFI(ngrid,'rice','Ice particle size', |
---|
[719] | 2068 | & 'm',3,rice) |
---|
[1047] | 2069 | call WRITEDIAGFI(ngrid,'h2o_ice_s', |
---|
[226] | 2070 | & 'surface h2o_ice', |
---|
| 2071 | & 'kg.m-2',2,qsurf(1,igcm_h2o_ice)) |
---|
[1047] | 2072 | CALL WRITEDIAGFI(ngrid,'albedo', |
---|
[833] | 2073 | & 'albedo', |
---|
[1013] | 2074 | & '',2,albedo(1,1)) |
---|
[833] | 2075 | if (tifeedback) then |
---|
[1047] | 2076 | call WRITEDIAGSOIL(ngrid,"soiltemp", |
---|
[833] | 2077 | & "Soil temperature","K", |
---|
| 2078 | & 3,tsoil) |
---|
[1047] | 2079 | call WRITEDIAGSOIL(ngrid,'soilti', |
---|
[833] | 2080 | & 'Soil Thermal Inertia', |
---|
| 2081 | & 'J.s-1/2.m-2.K-1',3,inertiesoil) |
---|
| 2082 | endif |
---|
[226] | 2083 | endif !(water) |
---|
| 2084 | |
---|
| 2085 | |
---|
| 2086 | if (water.and..not.photochem) then |
---|
| 2087 | iq=nq |
---|
| 2088 | c write(str2(1:2),'(i2.2)') iq |
---|
[1047] | 2089 | c call WRITEDIAGFI(ngrid,'dqs'//str2,'dqscloud', |
---|
[226] | 2090 | c & 'kg.m-2',2,zdqscloud(1,iq)) |
---|
[1047] | 2091 | c call WRITEDIAGFI(ngrid,'dqch'//str2,'var chim', |
---|
[226] | 2092 | c & 'kg/kg',3,zdqchim(1,1,iq)) |
---|
[1047] | 2093 | c call WRITEDIAGFI(ngrid,'dqd'//str2,'var dif', |
---|
[226] | 2094 | c & 'kg/kg',3,zdqdif(1,1,iq)) |
---|
[1047] | 2095 | c call WRITEDIAGFI(ngrid,'dqa'//str2,'var adj', |
---|
[226] | 2096 | c & 'kg/kg',3,zdqadj(1,1,iq)) |
---|
[1047] | 2097 | c call WRITEDIAGFI(ngrid,'dqc'//str2,'var c', |
---|
[226] | 2098 | c & 'kg/kg',3,zdqc(1,1,iq)) |
---|
| 2099 | endif !(water.and..not.photochem) |
---|
| 2100 | endif |
---|
| 2101 | |
---|
| 2102 | c ---------------------------------------------------------- |
---|
| 2103 | c Outputs of the dust cycle |
---|
| 2104 | c ---------------------------------------------------------- |
---|
| 2105 | |
---|
[1047] | 2106 | call WRITEDIAGFI(ngrid,'tauref', |
---|
[758] | 2107 | & 'Dust ref opt depth','NU',2,tauref) |
---|
[226] | 2108 | |
---|
| 2109 | if (tracer.and.(dustbin.ne.0)) then |
---|
[1047] | 2110 | call WRITEDIAGFI(ngrid,'tau','taudust','SI',2,tau(1,1)) |
---|
[226] | 2111 | if (doubleq) then |
---|
[1047] | 2112 | c call WRITEDIAGFI(ngrid,'qsurf','qsurf', |
---|
[411] | 2113 | c & 'kg.m-2',2,qsurf(1,igcm_dust_mass)) |
---|
[1047] | 2114 | c call WRITEDIAGFI(ngrid,'Nsurf','N particles', |
---|
[411] | 2115 | c & 'N.m-2',2,qsurf(1,igcm_dust_number)) |
---|
[1047] | 2116 | c call WRITEDIAGFI(ngrid,'dqsdev','ddevil lift', |
---|
[226] | 2117 | c & 'kg.m-2.s-1',2,zdqsdev(1,1)) |
---|
[1047] | 2118 | c call WRITEDIAGFI(ngrid,'dqssed','sedimentation', |
---|
[411] | 2119 | c & 'kg.m-2.s-1',2,zdqssed(1,1)) |
---|
[1047] | 2120 | c call WRITEDIAGFI(ngrid,'dqsdif','diffusion', |
---|
[411] | 2121 | c & 'kg.m-2.s-1',2,zdqsdif(1,1)) |
---|
[1047] | 2122 | call WRITEDIAGFI(ngrid,'dqsdust', |
---|
[719] | 2123 | & 'deposited surface dust mass', |
---|
| 2124 | & 'kg.m-2.s-1',2,dqdustsurf) |
---|
[1047] | 2125 | call WRITEDIAGFI(ngrid,'dqndust', |
---|
[719] | 2126 | & 'deposited surface dust number', |
---|
| 2127 | & 'number.m-2.s-1',2,dndustsurf) |
---|
[1047] | 2128 | call WRITEDIAGFI(ngrid,'reffdust','reffdust', |
---|
[719] | 2129 | & 'm',3,rdust*ref_r0) |
---|
[1047] | 2130 | call WRITEDIAGFI(ngrid,'dustq','Dust mass mr', |
---|
[756] | 2131 | & 'kg/kg',3,qdust) |
---|
[1047] | 2132 | call WRITEDIAGFI(ngrid,'dustN','Dust number', |
---|
[756] | 2133 | & 'part/kg',3,ndust) |
---|
[299] | 2134 | #ifdef MESOINI |
---|
[1032] | 2135 | ! !!! to initialize mesoscale we need scaled variables |
---|
| 2136 | ! !!! because this must correspond to starting point for tracers |
---|
[1047] | 2137 | ! call WRITEDIAGFI(ngrid,'dustq','Dust mass mr', |
---|
| 2138 | ! & 'kg/kg',3,pq(1:ngrid,1:nlayer,igcm_dust_mass)) |
---|
| 2139 | ! call WRITEDIAGFI(ngrid,'dustN','Dust number', |
---|
| 2140 | ! & 'part/kg',3,pq(1:ngrid,1:nlayer,igcm_dust_number)) |
---|
| 2141 | ! call WRITEDIAGFI(ngrid,'ccn','Nuclei mass mr', |
---|
| 2142 | ! & 'kg/kg',3,pq(1:ngrid,1:nlayer,igcm_ccn_mass)) |
---|
| 2143 | ! call WRITEDIAGFI(ngrid,'ccnN','Nuclei number', |
---|
| 2144 | ! & 'part/kg',3,pq(1:ngrid,1:nlayer,igcm_ccn_number)) |
---|
| 2145 | call WRITEDIAGFI(ngrid,'dustq','Dust mass mr', |
---|
[1032] | 2146 | & 'kg/kg',3,pq(1,1,igcm_dust_mass)) |
---|
[1047] | 2147 | call WRITEDIAGFI(ngrid,'dustN','Dust number', |
---|
[1032] | 2148 | & 'part/kg',3,pq(1,1,igcm_dust_number)) |
---|
[1047] | 2149 | call WRITEDIAGFI(ngrid,'ccn','Nuclei mass mr', |
---|
[1032] | 2150 | & 'kg/kg',3,pq(1,1,igcm_ccn_mass)) |
---|
[1047] | 2151 | call WRITEDIAGFI(ngrid,'ccnN','Nuclei number', |
---|
[1032] | 2152 | & 'part/kg',3,pq(1,1,igcm_ccn_number)) |
---|
[299] | 2153 | #endif |
---|
[226] | 2154 | else |
---|
| 2155 | do iq=1,dustbin |
---|
| 2156 | write(str2(1:2),'(i2.2)') iq |
---|
[1047] | 2157 | call WRITEDIAGFI(ngrid,'q'//str2,'mix. ratio', |
---|
[226] | 2158 | & 'kg/kg',3,zq(1,1,iq)) |
---|
[1047] | 2159 | call WRITEDIAGFI(ngrid,'qsurf'//str2,'qsurf', |
---|
[226] | 2160 | & 'kg.m-2',2,qsurf(1,iq)) |
---|
| 2161 | end do |
---|
| 2162 | endif ! (doubleq) |
---|
[358] | 2163 | |
---|
| 2164 | if (scavenging) then |
---|
[1047] | 2165 | call WRITEDIAGFI(ngrid,'ccnq','CCN mass mr', |
---|
[756] | 2166 | & 'kg/kg',3,qccn) |
---|
[1047] | 2167 | call WRITEDIAGFI(ngrid,'ccnN','CCN number', |
---|
[756] | 2168 | & 'part/kg',3,nccn) |
---|
[358] | 2169 | endif ! (scavenging) |
---|
| 2170 | |
---|
[226] | 2171 | c if (submicron) then |
---|
[1047] | 2172 | c call WRITEDIAGFI(ngrid,'dustsubm','subm mass mr', |
---|
[226] | 2173 | c & 'kg/kg',3,pq(1,1,igcm_dust_submicron)) |
---|
| 2174 | c endif ! (submicron) |
---|
| 2175 | end if ! (tracer.and.(dustbin.ne.0)) |
---|
| 2176 | |
---|
[705] | 2177 | |
---|
[226] | 2178 | c ---------------------------------------------------------- |
---|
[705] | 2179 | c Thermospheric outputs |
---|
[267] | 2180 | c ---------------------------------------------------------- |
---|
[705] | 2181 | |
---|
| 2182 | if(callthermos) then |
---|
| 2183 | |
---|
[1047] | 2184 | call WRITEDIAGFI(ngrid,"q15um","15 um cooling","K/s", |
---|
[705] | 2185 | $ 3,zdtnlte) |
---|
[1047] | 2186 | call WRITEDIAGFI(ngrid,"quv","UV heating","K/s", |
---|
[705] | 2187 | $ 3,zdteuv) |
---|
[1047] | 2188 | call WRITEDIAGFI(ngrid,"cond","Thermal conduction","K/s", |
---|
[705] | 2189 | $ 3,zdtconduc) |
---|
[1047] | 2190 | call WRITEDIAGFI(ngrid,"qnir","NIR heating","K/s", |
---|
[705] | 2191 | $ 3,zdtnirco2) |
---|
| 2192 | |
---|
| 2193 | endif !(callthermos) |
---|
| 2194 | |
---|
| 2195 | c ---------------------------------------------------------- |
---|
| 2196 | c ---------------------------------------------------------- |
---|
[267] | 2197 | c PBL OUTPUS |
---|
| 2198 | c ---------------------------------------------------------- |
---|
| 2199 | c ---------------------------------------------------------- |
---|
| 2200 | |
---|
| 2201 | c ---------------------------------------------------------- |
---|
[226] | 2202 | c Outputs of thermals |
---|
| 2203 | c ---------------------------------------------------------- |
---|
| 2204 | if (calltherm) then |
---|
| 2205 | |
---|
| 2206 | ! call WRITEDIAGFI(ngrid,'dtke', |
---|
| 2207 | ! & 'tendance tke thermiques','m**2/s**2', |
---|
| 2208 | ! & 3,dtke_th) |
---|
| 2209 | ! call WRITEDIAGFI(ngrid,'d_u_ajs', |
---|
| 2210 | ! & 'tendance u thermiques','m/s', |
---|
| 2211 | ! & 3,pdu_th*ptimestep) |
---|
| 2212 | ! call WRITEDIAGFI(ngrid,'d_v_ajs', |
---|
| 2213 | ! & 'tendance v thermiques','m/s', |
---|
| 2214 | ! & 3,pdv_th*ptimestep) |
---|
| 2215 | ! if (tracer) then |
---|
| 2216 | ! if (nq .eq. 2) then |
---|
| 2217 | ! call WRITEDIAGFI(ngrid,'deltaq_th', |
---|
| 2218 | ! & 'delta q thermiques','kg/kg', |
---|
| 2219 | ! & 3,ptimestep*pdq_th(:,:,2)) |
---|
| 2220 | ! endif |
---|
| 2221 | ! endif |
---|
| 2222 | |
---|
[1047] | 2223 | call WRITEDIAGFI(ngrid,'zmax_th', |
---|
[523] | 2224 | & 'hauteur du thermique','m', |
---|
| 2225 | & 2,zmax_th) |
---|
[1047] | 2226 | call WRITEDIAGFI(ngrid,'hfmax_th', |
---|
[226] | 2227 | & 'maximum TH heat flux','K.m/s', |
---|
| 2228 | & 2,hfmax_th) |
---|
[1047] | 2229 | call WRITEDIAGFI(ngrid,'wstar', |
---|
[226] | 2230 | & 'maximum TH vertical velocity','m/s', |
---|
[528] | 2231 | & 2,wstar) |
---|
[226] | 2232 | |
---|
| 2233 | endif |
---|
| 2234 | |
---|
| 2235 | c ---------------------------------------------------------- |
---|
[267] | 2236 | c ---------------------------------------------------------- |
---|
| 2237 | c END OF PBL OUTPUS |
---|
| 2238 | c ---------------------------------------------------------- |
---|
| 2239 | c ---------------------------------------------------------- |
---|
| 2240 | |
---|
| 2241 | |
---|
| 2242 | c ---------------------------------------------------------- |
---|
[226] | 2243 | c Output in netcdf file "diagsoil.nc" for subterranean |
---|
| 2244 | c variables (output every "ecritphy", as for writediagfi) |
---|
| 2245 | c ---------------------------------------------------------- |
---|
| 2246 | |
---|
| 2247 | ! Write soil temperature |
---|
| 2248 | ! call writediagsoil(ngrid,"soiltemp","Soil temperature","K", |
---|
| 2249 | ! & 3,tsoil) |
---|
| 2250 | ! Write surface temperature |
---|
| 2251 | ! call writediagsoil(ngrid,"tsurf","Surface temperature","K", |
---|
| 2252 | ! & 2,tsurf) |
---|
| 2253 | |
---|
| 2254 | c ========================================================== |
---|
| 2255 | c END OF WRITEDIAGFI |
---|
| 2256 | c ========================================================== |
---|
| 2257 | #endif |
---|
| 2258 | |
---|
[42] | 2259 | ELSE ! if(ngrid.eq.1) |
---|
| 2260 | |
---|
[627] | 2261 | write(*,'("Ls =",f11.6," tauref(",f4.0," Pa) =",f9.6)') |
---|
| 2262 | & zls*180./pi,odpref,tauref |
---|
[42] | 2263 | c ---------------------------------------------------------------------- |
---|
| 2264 | c Output in grads file "g1d" (ONLY when using testphys1d) |
---|
| 2265 | c (output at every X physical timestep) |
---|
| 2266 | c ---------------------------------------------------------------------- |
---|
| 2267 | c |
---|
| 2268 | c CALL writeg1d(ngrid,1,fluxsurf_lw,'Fs_ir','W.m-2') |
---|
| 2269 | c CALL writeg1d(ngrid,1,tsurf,'tsurf','K') |
---|
| 2270 | c CALL writeg1d(ngrid,1,ps,'ps','Pa') |
---|
| 2271 | |
---|
| 2272 | c CALL writeg1d(ngrid,nlayer,zt,'T','K') |
---|
| 2273 | c CALL writeg1d(ngrid,nlayer,pu,'u','m.s-1') |
---|
| 2274 | c CALL writeg1d(ngrid,nlayer,pv,'v','m.s-1') |
---|
| 2275 | c CALL writeg1d(ngrid,nlayer,pw,'w','m.s-1') |
---|
| 2276 | |
---|
[226] | 2277 | ! THERMALS STUFF 1D |
---|
| 2278 | if(calltherm) then |
---|
| 2279 | |
---|
[1047] | 2280 | call WRITEDIAGFI(ngrid,'lmax_th', |
---|
[226] | 2281 | & 'hauteur du thermique','point', |
---|
| 2282 | & 0,lmax_th_out) |
---|
[1047] | 2283 | call WRITEDIAGFI(ngrid,'zmax_th', |
---|
[528] | 2284 | & 'hauteur du thermique','m', |
---|
| 2285 | & 0,zmax_th) |
---|
[1047] | 2286 | call WRITEDIAGFI(ngrid,'hfmax_th', |
---|
[226] | 2287 | & 'maximum TH heat flux','K.m/s', |
---|
| 2288 | & 0,hfmax_th) |
---|
[1047] | 2289 | call WRITEDIAGFI(ngrid,'wstar', |
---|
[226] | 2290 | & 'maximum TH vertical velocity','m/s', |
---|
[528] | 2291 | & 0,wstar) |
---|
[226] | 2292 | |
---|
| 2293 | co2col(:)=0. |
---|
| 2294 | if (tracer) then |
---|
[1047] | 2295 | do l=1,nlayer |
---|
[226] | 2296 | do ig=1,ngrid |
---|
| 2297 | co2col(ig)=co2col(ig)+ |
---|
[883] | 2298 | & zq(ig,l,1)*(zplev(ig,l)-zplev(ig,l+1))/g |
---|
[226] | 2299 | enddo |
---|
| 2300 | enddo |
---|
| 2301 | |
---|
| 2302 | end if |
---|
| 2303 | call WRITEDIAGFI(ngrid,'co2col','integrated co2 mass' & |
---|
| 2304 | & ,'kg/m-2',0,co2col) |
---|
[722] | 2305 | endif ! of if (calltherm) |
---|
| 2306 | |
---|
[226] | 2307 | call WRITEDIAGFI(ngrid,'w','vertical velocity' & |
---|
| 2308 | & ,'m/s',1,pw) |
---|
| 2309 | call WRITEDIAGFI(ngrid,"q2","q2","kg.m-3",1,q2) |
---|
| 2310 | call WRITEDIAGFI(ngrid,"tsurf","Surface temperature","K",0, |
---|
| 2311 | & tsurf) |
---|
[277] | 2312 | call WRITEDIAGFI(ngrid,"u","u wind","m/s",1,zu) |
---|
| 2313 | call WRITEDIAGFI(ngrid,"v","v wind","m/s",1,zv) |
---|
[226] | 2314 | |
---|
| 2315 | call WRITEDIAGFI(ngrid,"pplay","Pressure","Pa",1,zplay) |
---|
| 2316 | call WRITEDIAGFI(ngrid,"pplev","Pressure","Pa",1,zplev) |
---|
[358] | 2317 | call WRITEDIAGFI(ngrid,"rho","rho","kg.m-3",1,rho) |
---|
[544] | 2318 | ! call WRITEDIAGFI(ngrid,"dtrad","rad. heat. rate", & |
---|
| 2319 | ! & "K.s-1",1,dtrad/zpopsk) |
---|
[1047] | 2320 | ! call WRITEDIAGFI(ngrid,'sw_htrt','sw heat. rate', |
---|
[544] | 2321 | ! & 'w.m-2',1,zdtsw/zpopsk) |
---|
[1047] | 2322 | ! call WRITEDIAGFI(ngrid,'lw_htrt','lw heat. rate', |
---|
[544] | 2323 | ! & 'w.m-2',1,zdtlw/zpopsk) |
---|
[769] | 2324 | call WRITEDIAGFI(ngrid,"co2ice","co2 ice thickness" |
---|
| 2325 | & ,"kg.m-2",0,co2ice) |
---|
[544] | 2326 | |
---|
[226] | 2327 | ! or output in diagfi.nc (for testphys1d) |
---|
[1047] | 2328 | call WRITEDIAGFI(ngrid,'ps','Surface pressure','Pa',0,ps) |
---|
| 2329 | call WRITEDIAGFI(ngrid,'temp','Temperature', |
---|
[226] | 2330 | & 'K',1,zt) |
---|
[358] | 2331 | |
---|
[226] | 2332 | if(tracer) then |
---|
| 2333 | c CALL writeg1d(ngrid,1,tau,'tau','SI') |
---|
| 2334 | do iq=1,nq |
---|
| 2335 | c CALL writeg1d(ngrid,nlayer,zq(1,1,iq),noms(iq),'kg/kg') |
---|
[1047] | 2336 | call WRITEDIAGFI(ngrid,trim(noms(iq)), |
---|
[226] | 2337 | & trim(noms(iq)),'kg/kg',1,zq(1,1,iq)) |
---|
| 2338 | end do |
---|
[358] | 2339 | if (doubleq) then |
---|
[1047] | 2340 | call WRITEDIAGFI(ngrid,'rdust','rdust', |
---|
[358] | 2341 | & 'm',1,rdust) |
---|
| 2342 | endif |
---|
[833] | 2343 | if (water.AND.tifeedback) then |
---|
[1047] | 2344 | call WRITEDIAGFI(ngrid,"soiltemp", |
---|
[833] | 2345 | & "Soil temperature","K", |
---|
| 2346 | & 1,tsoil) |
---|
[1047] | 2347 | call WRITEDIAGFI(ngrid,'soilti', |
---|
[833] | 2348 | & 'Soil Thermal Inertia', |
---|
| 2349 | & 'J.s-1/2.m-2.K-1',1,inertiesoil) |
---|
| 2350 | endif |
---|
[226] | 2351 | end if |
---|
[358] | 2352 | |
---|
[520] | 2353 | cccccccccccccccccc scavenging & water outputs 1D TN ccccccccccccccc |
---|
[358] | 2354 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
[520] | 2355 | IF (water) THEN |
---|
[722] | 2356 | |
---|
| 2357 | if (.not.activice) then |
---|
| 2358 | |
---|
| 2359 | tauTES=0 |
---|
[1047] | 2360 | do l=1,nlayer |
---|
[722] | 2361 | Qabsice = min( |
---|
| 2362 | & max(0.4e6*rice(1,l)*(1.+nuice_ref)-0.05 ,0.),1.2 |
---|
| 2363 | & ) |
---|
| 2364 | opTES(1,l)= 0.75 * Qabsice * |
---|
| 2365 | & zq(1,l,igcm_h2o_ice) * |
---|
[883] | 2366 | & (zplev(1,l) - zplev(1,l+1)) / g |
---|
[722] | 2367 | & / (rho_ice * rice(1,l) * (1.+nuice_ref)) |
---|
| 2368 | tauTES=tauTES+ opTES(1,l) |
---|
| 2369 | enddo |
---|
[1047] | 2370 | CALL WRITEDIAGFI(ngrid,'tauTESap', |
---|
[358] | 2371 | & 'tau abs 825 cm-1', |
---|
[520] | 2372 | & '',0,tauTES) |
---|
[722] | 2373 | else |
---|
| 2374 | |
---|
[1047] | 2375 | CALL WRITEDIAGFI(ngrid,'tauTES', |
---|
[520] | 2376 | & 'tau abs 825 cm-1', |
---|
| 2377 | & '',0,taucloudtes) |
---|
[722] | 2378 | endif |
---|
[520] | 2379 | |
---|
| 2380 | mtot = 0 |
---|
| 2381 | icetot = 0 |
---|
| 2382 | h2otot = qsurf(1,igcm_h2o_ice) |
---|
[722] | 2383 | |
---|
[358] | 2384 | do l=1,nlayer |
---|
[520] | 2385 | mtot = mtot + zq(1,l,igcm_h2o_vap) |
---|
[883] | 2386 | & * (zplev(1,l) - zplev(1,l+1)) / g |
---|
[520] | 2387 | icetot = icetot + zq(1,l,igcm_h2o_ice) |
---|
[883] | 2388 | & * (zplev(1,l) - zplev(1,l+1)) / g |
---|
[722] | 2389 | end do |
---|
| 2390 | h2otot = h2otot+mtot+icetot |
---|
| 2391 | |
---|
[1047] | 2392 | CALL WRITEDIAGFI(ngrid,'h2otot', |
---|
[722] | 2393 | & 'h2otot', |
---|
| 2394 | & 'kg/m2',0,h2otot) |
---|
[1047] | 2395 | CALL WRITEDIAGFI(ngrid,'mtot', |
---|
[722] | 2396 | & 'mtot', |
---|
| 2397 | & 'kg/m2',0,mtot) |
---|
[1047] | 2398 | CALL WRITEDIAGFI(ngrid,'icetot', |
---|
[722] | 2399 | & 'icetot', |
---|
| 2400 | & 'kg/m2',0,icetot) |
---|
| 2401 | |
---|
| 2402 | if (scavenging) then |
---|
| 2403 | |
---|
| 2404 | rave = 0 |
---|
| 2405 | do l=1,nlayer |
---|
[669] | 2406 | cccc Column integrated effective ice radius |
---|
| 2407 | cccc is weighted by total ice surface area (BETTER) |
---|
[722] | 2408 | rave = rave + tauscaling(1) * |
---|
| 2409 | & zq(1,l,igcm_ccn_number) * |
---|
[883] | 2410 | & (zplev(1,l) - zplev(1,l+1)) / g * |
---|
[722] | 2411 | & rice(1,l) * rice(1,l)* (1.+nuice_ref) |
---|
| 2412 | enddo |
---|
| 2413 | rave=icetot*0.75/max(rave*pi*rho_ice,1.e-30) ! surface weight |
---|
| 2414 | |
---|
| 2415 | Nccntot= 0 |
---|
[1047] | 2416 | call watersat(ngrid*nlayer,zt,zplay,zqsat) |
---|
| 2417 | do l=1,nlayer |
---|
[669] | 2418 | Nccntot = Nccntot + |
---|
[520] | 2419 | & zq(1,l,igcm_ccn_number)*tauscaling(1) |
---|
[883] | 2420 | & *(zplev(1,l) - zplev(1,l+1)) / g |
---|
[520] | 2421 | satu(1,l) = zq(1,l,igcm_h2o_vap)/zqsat(1,l) |
---|
| 2422 | satu(1,l) = (max(satu(1,l),float(1))-1) |
---|
| 2423 | ! & * zq(1,l,igcm_h2o_vap) * |
---|
[883] | 2424 | ! & (zplev(1,l) - zplev(1,l+1)) / g |
---|
[520] | 2425 | enddo |
---|
[722] | 2426 | call WRITEDIAGFI(ngrid,"satu","vap in satu","kg/kg",1, |
---|
| 2427 | & satu) |
---|
[1047] | 2428 | CALL WRITEDIAGFI(ngrid,'Nccntot', |
---|
[669] | 2429 | & 'Nccntot', |
---|
| 2430 | & 'nbr/m2',0,Nccntot) |
---|
[411] | 2431 | |
---|
[1047] | 2432 | call WRITEDIAGFI(ngrid,'zdqsed_dustq' |
---|
[769] | 2433 | & ,'sedimentation q','kg.m-2.s-1',1,zdqsed(1,:,igcm_dust_mass)) |
---|
[1047] | 2434 | call WRITEDIAGFI(ngrid,'zdqsed_dustN' |
---|
[769] | 2435 | &,'sedimentation N','Nbr.m-2.s-1',1, |
---|
| 2436 | & zdqsed(1,:,igcm_dust_number)) |
---|
[722] | 2437 | |
---|
| 2438 | else ! of if (scavenging) |
---|
| 2439 | |
---|
| 2440 | cccc Column integrated effective ice radius |
---|
| 2441 | cccc is weighted by total ice mass (LESS GOOD) |
---|
| 2442 | rave = 0 |
---|
| 2443 | do l=1,nlayer |
---|
| 2444 | rave = rave + zq(1,l,igcm_h2o_ice) |
---|
[883] | 2445 | & * (zplev(1,l) - zplev(1,l+1)) / g |
---|
[722] | 2446 | & * rice(1,l) * (1.+nuice_ref) |
---|
| 2447 | enddo |
---|
| 2448 | rave=max(rave/max(icetot,1.e-30),1.e-30) ! mass weight |
---|
| 2449 | endif ! of if (scavenging) |
---|
| 2450 | |
---|
[1047] | 2451 | CALL WRITEDIAGFI(ngrid,'reffice', |
---|
[722] | 2452 | & 'reffice', |
---|
| 2453 | & 'm',0,rave) |
---|
| 2454 | |
---|
| 2455 | do iq=1,nq |
---|
[1047] | 2456 | call WRITEDIAGFI(ngrid,trim(noms(iq))//'_s', |
---|
[722] | 2457 | & trim(noms(iq))//'_s','kg/kg',0,qsurf(1,iq)) |
---|
| 2458 | end do |
---|
[358] | 2459 | |
---|
[1047] | 2460 | call WRITEDIAGFI(ngrid,'zdqcloud_ice','cloud ice', |
---|
[633] | 2461 | & 'kg.m-2.s-1',1,zdqcloud(1,:,igcm_h2o_ice)) |
---|
[1047] | 2462 | call WRITEDIAGFI(ngrid,'zdqcloud_vap','cloud vap', |
---|
[633] | 2463 | & 'kg.m-2.s-1',1,zdqcloud(1,:,igcm_h2o_vap)) |
---|
[1047] | 2464 | call WRITEDIAGFI(ngrid,'zdqcloud','cloud ice', |
---|
[633] | 2465 | & 'kg.m-2.s-1',1,zdqcloud(1,:,igcm_h2o_ice) |
---|
| 2466 | & +zdqcloud(1,:,igcm_h2o_vap)) |
---|
[411] | 2467 | |
---|
[520] | 2468 | call WRITEDIAGFI(ngrid,"rice","ice radius","m",1, |
---|
[411] | 2469 | & rice) |
---|
[520] | 2470 | ENDIF ! of IF (water) |
---|
[411] | 2471 | |
---|
[358] | 2472 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 2473 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 2474 | |
---|
| 2475 | |
---|
[883] | 2476 | zlocal(1)=-log(zplay(1,1)/zplev(1,1))* Rnew(1,1)*zt(1,1)/g |
---|
[226] | 2477 | |
---|
| 2478 | do l=2,nlayer-1 |
---|
| 2479 | tmean=zt(1,l) |
---|
| 2480 | if(zt(1,l).ne.zt(1,l-1)) |
---|
| 2481 | & tmean=(zt(1,l)-zt(1,l-1))/log(zt(1,l)/zt(1,l-1)) |
---|
| 2482 | zlocal(l)= zlocal(l-1) |
---|
[883] | 2483 | & -log(zplay(1,l)/zplay(1,l-1))*rnew(1,l)*tmean/g |
---|
[226] | 2484 | enddo |
---|
| 2485 | zlocal(nlayer)= zlocal(nlayer-1)- |
---|
[883] | 2486 | & log(zplay(1,nlayer)/zplay(1,nlayer-1))* |
---|
[226] | 2487 | & rnew(1,nlayer)*tmean/g |
---|
| 2488 | |
---|
[42] | 2489 | END IF ! if(ngrid.ne.1) |
---|
| 2490 | |
---|
| 2491 | icount=icount+1 |
---|
| 2492 | RETURN |
---|
| 2493 | END |
---|