[3151] | 1 | MODULE pbl_parameters_mod |
---|
| 2 | |
---|
| 3 | !======================================================================================================================! |
---|
| 4 | ! Subject: |
---|
| 5 | !--------- |
---|
| 6 | ! Module used to compute the friction velocity, temperature, and monin_obukhov length from temperature, wind field and thermals outputs. |
---|
| 7 | ! Also interpolate theta and u;v in the surface layer based on the Monin Obukhov theory |
---|
| 8 | ! These are diagnostics only and do not influence the code. |
---|
| 9 | !----------------------------------------------------------------------------------------------------------------------! |
---|
| 10 | ! Reference: |
---|
| 11 | !----------- |
---|
| 12 | ! Colaïtis, A., Spiga, A., Hourdin, F., Rio, C., Forget, F., and Millour, E. (2013), A thermal plume model for the Martian convective boundary layer, J. Geophys. Res. Planets, 118, 1468–1487, doi:10.1002/jgre.20104. |
---|
| 13 | ! |
---|
| 14 | !======================================================================================================================! |
---|
| 15 | |
---|
| 16 | |
---|
| 17 | IMPLICIT NONE |
---|
| 18 | |
---|
| 19 | CONTAINS |
---|
| 20 | |
---|
[3325] | 21 | SUBROUTINE pbl_parameters(ngrid,nlay,ps,pplay,pz0,pg,zzlay,zzlev,pu,pv,wstar_in,hfmax,zmax,tke,pts,ph,pqvap,pqsurf,mumean,z_out,n_out, & |
---|
[3151] | 22 | T_out,u_out,ustar,tstar,vhf,vvv) |
---|
| 23 | |
---|
| 24 | USE comcstfi_h |
---|
| 25 | use write_output_mod, only: write_output |
---|
| 26 | use turb_mod, only: turb_resolved |
---|
[3219] | 27 | use lmdz_atke_turbulence_ini, only : smmin, ric, cinf, cepsilon, pr_slope, pr_asym, pr_neut, ri0, ri1, cn, rpi |
---|
[3325] | 28 | use watersat_mod, only: watersat |
---|
| 29 | use paleoclimate_mod, only: include_waterbuoyancy |
---|
[3167] | 30 | |
---|
[3151] | 31 | IMPLICIT NONE |
---|
| 32 | |
---|
| 33 | !======================================================================= |
---|
| 34 | ! |
---|
| 35 | ! Anlysis of the PBL from input temperature, wind field and thermals outputs: compute the friction velocity, temperature, and monin_obukhov length |
---|
| 36 | ! and interpolate the potential temperature and winds in the surface layer using the Monin Obukhov theory |
---|
| 37 | ! |
---|
| 38 | ! ------- |
---|
| 39 | ! |
---|
| 40 | ! Author: Arnaud Colaitis 09/01/12; adapted in F90 by Lucas Lange 12/2023 |
---|
| 41 | ! ------- |
---|
| 42 | ! |
---|
| 43 | ! Arguments: |
---|
| 44 | ! ---------- |
---|
| 45 | ! |
---|
| 46 | ! inputs: |
---|
| 47 | ! ------ |
---|
| 48 | ! ngrid size of the horizontal grid |
---|
| 49 | ! nlay size of the vertical grid |
---|
| 50 | ! ps(ngrid) surface pressure (Pa) |
---|
| 51 | ! pplay(ngrid,nlay) pressure levels |
---|
| 52 | ! pz0(ngrid) surface roughness length (m) |
---|
| 53 | ! pg gravity (m s -2) |
---|
| 54 | ! zzlay(ngrid,nlay) height of mid-layers (m) |
---|
| 55 | ! zzlev(ngrid,nlay+1) height of layers interfaces (m) |
---|
| 56 | ! pu(ngrid,nlay) u component of the wind (m/s) |
---|
| 57 | ! pv(ngrid,nlay) v component of the wind (m/s) |
---|
| 58 | ! wstar_in(ngrid) free convection velocity in PBL (m/s) |
---|
| 59 | ! hfmax(ngrid) maximum vertical turbulent heat flux in thermals (W/m^2) |
---|
| 60 | ! zmax(ngrid) height reached by the thermals (pbl height) (m) |
---|
[3219] | 61 | ! tke(ngrid,nlay+1) turbulent kinetic energy (J/kg) |
---|
[3151] | 62 | ! pts(ngrid) surface temperature (K) |
---|
| 63 | ! ph(ngrid,nlay) potential temperature T*(p/ps)^kappa (k) |
---|
| 64 | ! z_out(n_out) heights of interpolation (m) |
---|
| 65 | ! n_out number of points for interpolation (1) |
---|
| 66 | ! |
---|
| 67 | ! outputs: |
---|
| 68 | ! ------ |
---|
| 69 | ! |
---|
| 70 | ! T_out(ngrid,n_out) interpolated potential temperature on z_out (K) |
---|
| 71 | ! u_out(ngrid,n_out) interpolated winds on z_out (m/s) |
---|
| 72 | ! ustar(ngrid) friction velocity (m/s) |
---|
| 73 | ! tstar(ngrid) friction temperature (K) |
---|
| 74 | ! |
---|
| 75 | ! |
---|
| 76 | !======================================================================= |
---|
| 77 | ! |
---|
| 78 | !----------------------------------------------------------------------- |
---|
| 79 | ! Declarations: |
---|
| 80 | ! ------------- |
---|
| 81 | |
---|
| 82 | #include "callkeys.h" |
---|
| 83 | |
---|
| 84 | ! Arguments: |
---|
| 85 | ! ---------- |
---|
| 86 | |
---|
| 87 | INTEGER, INTENT(IN) :: ngrid,nlay,n_out ! size of the horizontal and vertical grid, interpolated altitudes for the surface layer |
---|
| 88 | REAL, INTENT(IN) :: pz0(ngrid) ! surface roughness |
---|
| 89 | REAL, INTENT(IN) :: ps(ngrid),pplay(ngrid,nlay) ! surface pressure and pressure levels |
---|
| 90 | REAL, INTENT(IN) :: pg,zzlay(ngrid,nlay),zzlev(ngrid,nlay) ! surface gravity, altitude of the interface and mid-layers |
---|
| 91 | REAL, INTENT(IN) :: pu(ngrid,nlay),pv(ngrid,nlay) ! winds |
---|
| 92 | REAL, INTENT(IN) :: wstar_in(ngrid),hfmax(ngrid),zmax(ngrid) ! free convection velocity , vertical turbulent heat, pbl height |
---|
[3219] | 93 | REAL, INTENT(IN) :: tke(ngrid,nlay+1) ! Turbulent kinetic energy |
---|
[3151] | 94 | REAL, INTENT(IN) :: pts(ngrid),ph(ngrid,nlay) ! surface temperature, potentiel temperature |
---|
| 95 | REAL, INTENT(IN) :: z_out(n_out) ! altitudes of the interpolation in the surface layer |
---|
[3325] | 96 | REAL, INTENT(IN) :: mumean(ngrid) ! Molecular mass of the atmosphere (kg/mol) |
---|
| 97 | REAL, INTENT(IN) :: pqvap(ngrid,nlay) ! Water vapor mixing ratio (kg/kg) to account for vapor flottability |
---|
| 98 | REAL, INTENT(IN) :: pqsurf(ngrid) ! Water ice frost on the surface (kg/m^2) to account for vapor flottability |
---|
[3151] | 99 | |
---|
| 100 | ! Outputs: |
---|
| 101 | ! -------- |
---|
| 102 | |
---|
| 103 | REAL, INTENT(OUT) :: T_out(ngrid,n_out),u_out(ngrid,n_out) ! Temperature and wind of the interpolation in the surface layer |
---|
| 104 | REAL, INTENT(OUT) :: ustar(ngrid), tstar(ngrid) ! Friction velocity and temperature |
---|
| 105 | |
---|
| 106 | ! Local: |
---|
| 107 | ! ------ |
---|
| 108 | |
---|
| 109 | INTEGER ig,k,n ! Loop variables |
---|
| 110 | INTEGER ii(1) ! Index to compute the pbl mixed layer temperature |
---|
| 111 | REAL karman,nu ! Von Karman constant and fluid kinematic viscosity |
---|
| 112 | DATA karman,nu/.41,0.001/ |
---|
| 113 | |
---|
| 114 | !$OMP THREADPRIVATE(karman,nu) |
---|
| 115 | |
---|
| 116 | SAVE karman,nu |
---|
| 117 | |
---|
| 118 | REAL zout ! altitude to interpolate (local variable during the loop on z_out) (m) |
---|
| 119 | REAL rib(ngrid) ! Bulk Richardson number (1) |
---|
| 120 | REAL fm(ngrid) ! stability function for momentum (1) |
---|
| 121 | REAL fh(ngrid) ! stability function for heat (1) |
---|
| 122 | REAL z1z0,z1z0t ! ratios z1/z0 and z1/z0T (1) |
---|
| 123 | ! Formalism for stability functions fm= 1/phim^2; fh = 1/(phim*phih) where |
---|
| 124 | ! phim = 1+betam*zeta or (1-bm*zeta)**am |
---|
| 125 | ! phih = alphah + betah*zeta or alphah(1.-bh*zeta)**ah |
---|
| 126 | ! ah and am are assumed to be -0.25 and -0.5 respectively |
---|
| 127 | ! lambda is an intermediate variable to simplify the expression |
---|
| 128 | REAL betam, betah, alphah, bm, bh, lambda |
---|
| 129 | |
---|
| 130 | REAL cdn(ngrid),chn(ngrid) ! neutral momentum and heat drag coefficient (1) |
---|
| 131 | REAL pz0t ! initial thermal roughness length z0t for the iterative scheme (m) |
---|
[3219] | 132 | REAL ric_colaitis ! critical richardson number (1) |
---|
[3151] | 133 | REAL reynolds(ngrid) ! Reynolds number (1) |
---|
| 134 | REAL prandtl(ngrid) ! Prandtl number (1) |
---|
| 135 | REAL pz0tcomp(ngrid) ! Computed z0t during the iterative scheme (m) |
---|
| 136 | REAL ite ! Number of iteration (1) |
---|
| 137 | REAL residual ! Residual between pz0t and pz0tcomp (m) |
---|
| 138 | REAL itemax ! Maximum number of iteration (1) |
---|
| 139 | REAL tol_iter ! Tolerance for the residual to ensure convergence (1) |
---|
| 140 | REAL pcdv(ngrid),pcdh(ngrid) ! momentum and heat drag coefficient (1) |
---|
| 141 | REAL zu2(ngrid) ! Near surface winds (m/s) |
---|
| 142 | REAL x(ngrid) ! z/zi (1) |
---|
| 143 | REAL dvhf(ngrid),dvvv(ngrid) ! dimensionless vertical heat flux and dimensionless vertical velocity variance |
---|
| 144 | REAL vhf(ngrid),vvv(ngrid) ! vertical heat flux (W/m^2) and vertical velocity variance (m/s) |
---|
| 145 | REAL Teta_out(ngrid,n_out) ! Temporary variable to compute interpolated potential temperature (K) |
---|
[3167] | 146 | REAL sm ! Stability function computed with the ATKE scheme |
---|
| 147 | REAL f_ri_cd_min ! minimum of the stability function with the ATKE scheme |
---|
[3219] | 148 | REAL ric_4interp ! critical richardson number which is either the one from Colaitis et al. (2013) or ATKE (1) |
---|
[3325] | 149 | |
---|
| 150 | |
---|
| 151 | REAL tsurf_v(ngrid) ! Virtual surface temperature, accounting for vapor flottability |
---|
| 152 | REAL temp_v(ngrid) ! Potential virtual air temperature in the frist layer, accounting for vapor flottability |
---|
| 153 | REAL mu_h2o ! Molecular mass of water vapor (kg/mol) |
---|
| 154 | REAL tol_frost ! Tolerance to consider the effect of frost on the surface |
---|
| 155 | REAL qsat(ngrid) ! saturated mixing ratio of water vapor |
---|
| 156 | |
---|
| 157 | |
---|
[3151] | 158 | ! Code: |
---|
| 159 | ! -------- |
---|
| 160 | |
---|
| 161 | !------------------------------------------------------------------------ |
---|
| 162 | !------------------------------------------------------------------------ |
---|
| 163 | ! PART I : RICHARDSON/REYNOLDS/THERMAL_ROUGHNESS/STABILITY_COEFFICIENTS |
---|
| 164 | !------------------------------------------------------------------------ |
---|
| 165 | !------------------------------------------------------------------------ |
---|
| 166 | |
---|
| 167 | |
---|
| 168 | |
---|
| 169 | ! Initialisation : |
---|
| 170 | |
---|
| 171 | ustar(:)=0. |
---|
| 172 | tstar(:)=0. |
---|
| 173 | reynolds(:)=0. |
---|
| 174 | pz0t = 0. |
---|
| 175 | pz0tcomp(:) = 0.1*pz0(:) |
---|
| 176 | rib(:)=0. |
---|
| 177 | pcdv(:)=0. |
---|
| 178 | pcdh(:)=0. |
---|
| 179 | itemax= 10 |
---|
| 180 | tol_iter = 0.01 |
---|
[3167] | 181 | f_ri_cd_min = 0.01 |
---|
[3325] | 182 | mu_h2o = 18e-3 |
---|
| 183 | tol_frost = 1e-4 |
---|
| 184 | tsurf_v(:) = 0. |
---|
| 185 | temp_v(:) = 0. |
---|
[3167] | 186 | |
---|
[3151] | 187 | ! this formulation assumes alphah=1., implying betah=betam |
---|
| 188 | ! We use Dyer et al. parameters, as they cover a broad range of Richardson numbers : |
---|
| 189 | bm = 16. |
---|
| 190 | bh = 16. |
---|
| 191 | alphah = 1. |
---|
| 192 | betam = 5. |
---|
| 193 | betah = 5. |
---|
| 194 | lambda = (sqrt(bh/bm))/alphah |
---|
[3219] | 195 | ric_colaitis = betah/(betam**2) |
---|
[3151] | 196 | |
---|
[3219] | 197 | if(callatke) then |
---|
| 198 | ric_4interp = ric |
---|
| 199 | else |
---|
| 200 | ric_4interp = ric_colaitis |
---|
| 201 | endif |
---|
[3151] | 202 | |
---|
[3325] | 203 | |
---|
| 204 | |
---|
| 205 | IF(include_waterbuoyancy) then |
---|
| 206 | temp_v(:) = ph(:,1)*(1.+pqvap(:,1)/(mu_h2o/mumean(:)))/(1.+pqvap(:,1)) |
---|
| 207 | DO ig = 1,ngrid |
---|
| 208 | IF(pqsurf(ig).gt.tol_frost) then |
---|
| 209 | call watersat(1,pts(ig),pplay(ig,1),qsat(ig)) |
---|
| 210 | tsurf_v(ig) = pts(ig)*(1.+qsat(ig)/(mu_h2o/mumean(ig)))/(1.+qsat(ig)) |
---|
| 211 | ELSE |
---|
| 212 | tsurf_v(ig) = pts(ig)*(1.+pqvap(ig,1)/(mu_h2o/mumean(ig)))/(1.+pqvap(ig,1)) |
---|
| 213 | ENDIF |
---|
| 214 | ENDDO |
---|
| 215 | ELSE |
---|
| 216 | tsurf_v(:) = pts(:) |
---|
| 217 | temp_v(:) = ph(:,1) |
---|
| 218 | ENDIF |
---|
| 219 | |
---|
[3151] | 220 | DO ig=1,ngrid |
---|
| 221 | ite = 0. |
---|
| 222 | residual = abs(pz0tcomp(ig)-pz0t) |
---|
| 223 | z1z0 = zzlay(ig,1)/pz0(ig) |
---|
| 224 | cdn(ig) = karman/log(z1z0) |
---|
| 225 | cdn(ig) = cdn(ig)*cdn(ig) |
---|
| 226 | zu2(ig) = pu(ig,1)*pu(ig,1)+pv(ig,1)*pv(ig,1) + (log(1.+0.7*wstar_in(ig) + 2.3*wstar_in(ig)**2))**2 ! near surface winds, accounting for buyoncy |
---|
| 227 | ! IF(turb_resolved) zu2(ig)=MAX(zu2(ig),1.) |
---|
| 228 | DO WHILE((residual .gt. tol_iter*pz0(ig)) .and. (ite .lt. itemax)) |
---|
| 229 | ! Computations of z0T; iterated until z0T converges |
---|
| 230 | pz0t = pz0tcomp(ig) |
---|
| 231 | z1z0t=zzlay(ig,1)/pz0t |
---|
| 232 | chn(ig) = cdn(ig)*log(z1z0)/log(z1z0t) |
---|
| 233 | IF ((pu(ig,1) .ne. 0.) .or. (pv(ig,1) .ne. 0.)) then |
---|
| 234 | ! Richardson number formulation proposed by D.E. England et al. (1995) |
---|
[3325] | 235 | rib(ig) = (pg/tsurf_v(ig))*sqrt(zzlay(ig,1)*pz0(ig))*(((log(zzlay(ig,1)/pz0(ig)))**2)/(log(zzlay(ig,1)/pz0t)))*(temp_v(ig)-tsurf_v(ig))/zu2(ig) |
---|
[3151] | 236 | ELSE |
---|
| 237 | print*,'warning, infinite Richardson at surface' |
---|
| 238 | print*,pu(ig,1),pv(ig,1) |
---|
[3219] | 239 | rib(ig) = ric_colaitis |
---|
[3151] | 240 | ENDIF |
---|
| 241 | |
---|
[3167] | 242 | ! Compute the stability functions fm; fh depending on the stability of the surface layer |
---|
| 243 | |
---|
| 244 | IF(callatke) THEN |
---|
| 245 | ! Computation following parameterizaiton from ATKE |
---|
| 246 | IF(rib(ig) .gt. 0) THEN |
---|
| 247 | ! STABLE BOUNDARY LAYER : |
---|
| 248 | sm = MAX(smmin,cn*(1.-rib(ig)/ric)) |
---|
| 249 | ! prandlt expression from venayagamoorthy and stretch 2010, Li et al 2019 |
---|
| 250 | prandtl(ig) = pr_neut*exp(-pr_slope/pr_neut*rib(ig)+rib(ig)/pr_neut) + rib(ig) * pr_slope |
---|
| 251 | fm(ig) = max((sm**(3./2.) * sqrt(cepsilon) * (1 - rib(ig) / prandtl(ig))**(1./2.)),f_ri_cd_min) |
---|
| 252 | fh(ig) = max((fm(ig) / prandtl(ig)), f_ri_cd_min) |
---|
[3151] | 253 | ELSE |
---|
[3167] | 254 | ! UNSTABLE BOUNDARY LAYER : |
---|
| 255 | sm = 2./rpi * (cinf - cn) * atan(-rib(ig)/ri0) + cn |
---|
| 256 | prandtl(ig) = -2./rpi * (pr_asym - pr_neut) * atan(rib(ig)/ri1) + pr_neut |
---|
| 257 | fm(ig) = MAX((sm**(3./2.) * sqrt(cepsilon) * (1 - rib(ig) / prandtl(ig))**(1./2.)),f_ri_cd_min) |
---|
| 258 | fh(ig) = MAX((fm(ig) / prandtl(ig)), f_ri_cd_min) |
---|
| 259 | ENDIF ! Rib < 0 |
---|
| 260 | ELSE |
---|
| 261 | ! Computation following parameterizaiton from from D.E. England et al. (95) |
---|
| 262 | IF (rib(ig) .gt. 0.) THEN |
---|
| 263 | ! STABLE BOUNDARY LAYER : |
---|
| 264 | prandtl(ig) = 1. |
---|
[3219] | 265 | IF(rib(ig) .lt. ric_colaitis) THEN |
---|
[3167] | 266 | ! Assuming alphah=1. and bh=bm for stable conditions : |
---|
[3219] | 267 | fm(ig) = ((ric_colaitis-rib(ig))/ric_colaitis)**2 |
---|
| 268 | fh(ig) = ((ric_colaitis-rib(ig))/ric_colaitis)**2 |
---|
[3167] | 269 | ELSE |
---|
| 270 | ! For Ri>Ric, we consider Ri->Infinity => no turbulent mixing at surface |
---|
| 271 | fm(ig) = 1. |
---|
| 272 | fh(ig) = 1. |
---|
| 273 | ENDIF |
---|
| 274 | ELSE |
---|
| 275 | ! UNSTABLE BOUNDARY LAYER : |
---|
| 276 | fm(ig) = sqrt(1.-lambda*bm*rib(ig)) |
---|
| 277 | fh(ig) = (1./alphah)*((1.-lambda*bh*rib(ig))**0.5)*(1.-lambda*bm*rib(ig))**0.25 |
---|
| 278 | prandtl(ig) = alphah*((1.-lambda*bm*rib(ig))**0.25)/((1.-lambda*bh*rib(ig))**0.5) |
---|
| 279 | ENDIF ! Rib < 0 |
---|
| 280 | ENDIF ! atke |
---|
| 281 | ! Recompute the reynolds and z0t |
---|
| 282 | reynolds(ig) = karman*sqrt(fm(ig))*sqrt(zu2(ig))*pz0(ig)/(log(z1z0)*nu) |
---|
| 283 | pz0tcomp(ig) = pz0(ig)*exp(-karman*7.3*(reynolds(ig)**0.25)*(prandtl(ig)**0.5)+5*karman) |
---|
| 284 | residual = abs(pz0t-pz0tcomp(ig)) |
---|
| 285 | ite = ite+1 |
---|
[3151] | 286 | ENDDO ! of while |
---|
| 287 | ! Compute the coefficients Cdv; Cdh : neutral coefficient x stability functions |
---|
| 288 | pcdv(ig) = cdn(ig)*fm(ig) |
---|
| 289 | pcdh(ig) = chn(ig)*fh(ig) |
---|
| 290 | pz0t = 0. ! for next grid point |
---|
| 291 | ENDDO ! of ngrid |
---|
| 292 | |
---|
| 293 | !------------------------------------------------------------------------ |
---|
| 294 | !------------------------------------------------------------------------ |
---|
| 295 | ! PART II : USTAR/TSTAR/U_OUT/TETA_OUT COMPUTATIONS |
---|
| 296 | !------------------------------------------------------------------------ |
---|
| 297 | !------------------------------------------------------------------------ |
---|
| 298 | |
---|
| 299 | ! u* theta* computation |
---|
| 300 | DO n=1,n_out |
---|
| 301 | zout = z_out(n) |
---|
| 302 | DO ig=1,ngrid |
---|
[3219] | 303 | IF (rib(ig) .ge. ric_4interp) THEN !stable case, no turbulence |
---|
[3151] | 304 | ustar(ig) = 0. |
---|
| 305 | tstar(ig) = 0. |
---|
| 306 | ELSE |
---|
| 307 | ustar(ig) = sqrt(pcdv(ig))*sqrt(zu2(ig)) ! By definition, u* = sqrt(tau/U^2) = sqrt(Cdv) |
---|
| 308 | tstar(ig) = -pcdh(ig)*(pts(ig)-ph(ig,1))/sqrt(pcdv(ig)) ! theta* = (T1-Tsurf)*Cdh(ig)/u* |
---|
| 309 | ENDIF |
---|
| 310 | |
---|
| 311 | ! Interpolation: |
---|
| 312 | |
---|
| 313 | IF(zout .lt. pz0tcomp(ig)) THEN ! If z_out is in the surface layer , theta = tsurf; u = 0 |
---|
| 314 | u_out(ig,n) = 0. |
---|
| 315 | Teta_out(ig,n) = pts(ig) |
---|
| 316 | ELSEIF (zout .lt. pz0(ig)) THEN |
---|
| 317 | u_out(ig,n) = 0. |
---|
| 318 | ELSE |
---|
[3219] | 319 | IF (rib(ig) .ge. ric_4interp) THEN ! ustar=tstar=0 (and fm=fh=0) because no turbulence |
---|
[3151] | 320 | u_out(ig,n) = 0 |
---|
| 321 | Teta_out(ig,n) = pts(ig) |
---|
| 322 | ELSE |
---|
| 323 | ! We use the MO theory: du/dz = u*/(kappa z) *1 /sqrt(fm); dtheta/zd = theta*/(Pr kappa z) * fm/fh |
---|
| 324 | u_out(ig,n)= ustar(ig)*log(zout/pz0(ig))/(karman*sqrt(fm(ig))) |
---|
| 325 | Teta_out(ig,n)=pts(ig)+(tstar(ig)*sqrt(fm(ig))*log(zout/(pz0tcomp(ig)))/(karman*fh(ig))) |
---|
| 326 | ENDIF |
---|
| 327 | ENDIF |
---|
| 328 | ENDDO ! loop on n_out |
---|
| 329 | |
---|
| 330 | ! when using convective adjustment without thermals, a vertical potential temperature |
---|
| 331 | ! profile is assumed up to the thermal roughness length. Hence, theoretically, theta |
---|
| 332 | ! interpolated at any height in the surface layer is theta at the first level. |
---|
| 333 | |
---|
| 334 | IF ((.not.calltherm).and.(calladj)) THEN |
---|
| 335 | Teta_out(:,n)=ph(:,1) |
---|
| 336 | u_out(:,n)=(sqrt(cdn(:))*sqrt(zu2(ig))/karman)*log(zout/pz0(:)) |
---|
| 337 | ENDIF |
---|
| 338 | T_out(:,n) = Teta_out(:,n)*(exp((zout/zzlay(:,1))*(log(pplay(:,1)/ps))))**rcp ! not sure of what is done here: hydrostatic correction to account for the difference of pressure between zout and z1 ? |
---|
| 339 | ENDDO !of n=1,n_out |
---|
| 340 | |
---|
| 341 | |
---|
| 342 | !------------------------------------------------------------------------ |
---|
| 343 | !------------------------------------------------------------------------ |
---|
| 344 | ! PART III : VERTICAL_VELOCITY_VARIANCE/VERTICAL_TURBULENT_FLUX PROFILES |
---|
| 345 | !------------------------------------------------------------------------ |
---|
| 346 | !------------------------------------------------------------------------ |
---|
| 347 | |
---|
| 348 | ! We follow Spiga et. al 2010 (QJRMS) |
---|
| 349 | ! ------------ |
---|
| 350 | IF (calltherm) THEN |
---|
| 351 | DO ig=1, ngrid |
---|
| 352 | IF (zmax(ig) .gt. 0.) THEN |
---|
| 353 | x(ig) = zout/zmax(ig) |
---|
| 354 | ELSE |
---|
| 355 | x(ig) = 999. |
---|
| 356 | ENDIF |
---|
| 357 | ENDDO |
---|
| 358 | |
---|
| 359 | DO ig=1, ngrid |
---|
| 360 | ! dimensionless vertical heat flux |
---|
| 361 | IF (x(ig) .le. 0.3) THEN |
---|
| 362 | dvhf(ig) = ((-3.85/log(x(ig)))+0.07*log(x(ig))) *exp(-4.61*x(ig)) |
---|
| 363 | ELSEIF (x(ig) .le. 1.) THEN |
---|
| 364 | dvhf(ig) = -1.52*x(ig) + 1.24 |
---|
| 365 | ELSE |
---|
| 366 | dvhf(ig) = 0. |
---|
| 367 | ENDIF |
---|
| 368 | ! dimensionless vertical velocity variance |
---|
| 369 | IF (x(ig) .le. 1.) THEN |
---|
| 370 | dvvv(ig) = 2.05*(x(ig)**(2./3.))*(1.-0.64*x(ig))**2 |
---|
| 371 | ELSE |
---|
| 372 | dvvv(ig) = 0. |
---|
| 373 | ENDIF |
---|
| 374 | ENDDO |
---|
| 375 | |
---|
| 376 | vhf(:) = dvhf(:)*hfmax(:) |
---|
| 377 | vvv(:) = dvvv(:)*(wstar_in(:))**2 |
---|
| 378 | |
---|
| 379 | ENDIF ! of if calltherm |
---|
| 380 | |
---|
| 381 | |
---|
| 382 | !------------------------------------------------------------------------ |
---|
| 383 | !------------------------------------------------------------------------ |
---|
| 384 | ! PART IV : Outputs |
---|
| 385 | !------------------------------------------------------------------------ |
---|
| 386 | !------------------------------------------------------------------------ |
---|
| 387 | |
---|
| 388 | |
---|
| 389 | #ifndef MESOSCALE |
---|
[3219] | 390 | call write_output('tke_pbl','Tke in the pbl after physic','J/kg',tke(:,:)) |
---|
[3151] | 391 | call write_output('rib_pbl','Richardson in pbl parameter','m/s',rib(:)) |
---|
| 392 | call write_output('cdn_pbl','neutral momentum coef','m/s',cdn(:)) |
---|
| 393 | call write_output('fm_pbl','momentum stab function','m/s',fm(:)) |
---|
| 394 | call write_output('uv','wind norm first layer','m/s',sqrt(zu2(:))) |
---|
| 395 | call write_output('uvtrue','wind norm first layer','m/s',sqrt(pu(:,1)**2+pv(:,1)**2)) |
---|
| 396 | call write_output('chn_pbl','neutral momentum coef','m/s',chn(:)) |
---|
| 397 | call write_output('fh_pbl','momentum stab function','m/s',fh(:)) |
---|
| 398 | call write_output('B_pbl','buoyancy','m/',(ph(:,1)-pts(:))/pts(:)) |
---|
| 399 | call write_output('zot_pbl','buoyancy','ms',pz0tcomp(:)) |
---|
| 400 | call write_output('zz1','1st layer altitude','m',zzlay(:,1)) |
---|
| 401 | #endif |
---|
| 402 | |
---|
| 403 | RETURN |
---|
| 404 | END SUBROUTINE pbl_parameters |
---|
| 405 | |
---|
| 406 | END MODULE pbl_parameters_mod |
---|
| 407 | |
---|