[529] | 1 | SUBROUTINE pbl_parameters(ngrid,nlay,ps,pplay,pz0, |
---|
[566] | 2 | & pg,zzlay,zzlev,pu,pv,wstar_in,hfmax,zmax,pts,ph,z_out,n_out, |
---|
[605] | 3 | & T_out,u_out,ustar,tstar,L_mo,vhf,vvv) |
---|
[496] | 4 | IMPLICIT NONE |
---|
| 5 | !======================================================================= |
---|
| 6 | ! |
---|
| 7 | ! Anlysis of the PBL from input temperature, wind field and thermals outputs. |
---|
| 8 | ! |
---|
| 9 | ! ------- |
---|
| 10 | ! |
---|
| 11 | ! Author: Arnaud Colaitis 09/01/12 |
---|
| 12 | ! ------- |
---|
| 13 | ! |
---|
| 14 | ! Arguments: |
---|
| 15 | ! ---------- |
---|
| 16 | ! |
---|
| 17 | ! inputs: |
---|
| 18 | ! ------ |
---|
| 19 | ! ngrid size of the horizontal grid |
---|
| 20 | ! nlay size of the vertical grid |
---|
| 21 | ! pz0(ngrid) surface roughness length |
---|
| 22 | ! pg gravity (m s -2) |
---|
[529] | 23 | ! zzlay(ngrid,nlay) height of mid-layers |
---|
| 24 | ! zzlev(ngrid,nlay+1) height of layers interfaces |
---|
[496] | 25 | ! pu(ngrid,nlay) u component of the wind |
---|
| 26 | ! pv(ngrid,nlay) v component of the wind |
---|
[529] | 27 | ! wstar_in(ngrid) free convection velocity in thermals |
---|
[496] | 28 | ! hfmax(ngrid) maximum vertical turbulent heat flux in thermals |
---|
| 29 | ! zmax(ngrid) height reached by the thermals (pbl height) |
---|
| 30 | ! pts(ngrid) surface temperature |
---|
| 31 | ! ph(ngrid,nlay) potential temperature T*(p/ps)^kappa |
---|
[566] | 32 | ! z_out(n_out) heights of interpolation |
---|
| 33 | ! n_out number of points for interpolation |
---|
[496] | 34 | ! |
---|
| 35 | ! outputs: |
---|
| 36 | ! ------ |
---|
| 37 | ! |
---|
[566] | 38 | ! Teta_out(ngrid,n_out) interpolated teta |
---|
| 39 | ! u_out(ngrid,n_out) interpolated u |
---|
[496] | 40 | ! ustar(ngrid) friction velocity |
---|
| 41 | ! tstar(ngrid) friction temperature |
---|
| 42 | ! wstar(ngrid) free convection velocity |
---|
| 43 | ! L_mo(ngrid) monin_obukhov length |
---|
| 44 | ! |
---|
| 45 | ! |
---|
| 46 | !======================================================================= |
---|
| 47 | ! |
---|
| 48 | !----------------------------------------------------------------------- |
---|
| 49 | ! Declarations: |
---|
| 50 | ! ------------- |
---|
| 51 | |
---|
| 52 | #include "comcstfi.h" |
---|
| 53 | #include "callkeys.h" |
---|
| 54 | |
---|
| 55 | ! Arguments: |
---|
| 56 | ! ---------- |
---|
| 57 | |
---|
[566] | 58 | INTEGER, INTENT(IN) :: ngrid,nlay,n_out |
---|
[529] | 59 | REAL, INTENT(IN) :: pz0(ngrid),ps(ngrid),pplay(ngrid,nlay) |
---|
| 60 | REAL, INTENT(IN) :: pg,zzlay(ngrid,nlay),zzlev(ngrid,nlay) |
---|
[496] | 61 | REAL, INTENT(IN) :: pu(ngrid,nlay),pv(ngrid,nlay) |
---|
[529] | 62 | REAL, INTENT(IN) :: wstar_in(ngrid),hfmax(ngrid),zmax(ngrid) |
---|
[496] | 63 | REAL, INTENT(IN) :: pts(ngrid),ph(ngrid,nlay) |
---|
[566] | 64 | REAL, INTENT(IN) :: z_out(n_out) |
---|
[529] | 65 | |
---|
| 66 | ! Outputs: |
---|
| 67 | ! -------- |
---|
| 68 | |
---|
[605] | 69 | REAL, INTENT(OUT) :: T_out(ngrid,n_out),u_out(ngrid,n_out) |
---|
| 70 | REAL Teta_out(ngrid,n_out) |
---|
[529] | 71 | REAL, INTENT(OUT) :: ustar(ngrid), tstar(ngrid) |
---|
| 72 | REAL wstar(ngrid) |
---|
[496] | 73 | REAL, INTENT(OUT) :: L_mo(ngrid) |
---|
| 74 | |
---|
| 75 | ! Local: |
---|
| 76 | ! ------ |
---|
| 77 | |
---|
[566] | 78 | INTEGER ig,k,n |
---|
[496] | 79 | REAL karman,nu |
---|
| 80 | DATA karman,nu/.41,0.001/ |
---|
| 81 | SAVE karman,nu |
---|
| 82 | |
---|
| 83 | ! Local(2): |
---|
| 84 | ! --------- |
---|
| 85 | |
---|
| 86 | REAL zout |
---|
| 87 | REAL rib(ngrid) ! Bulk Richardson number |
---|
| 88 | REAL fm(ngrid) ! stability function for momentum |
---|
| 89 | REAL fh(ngrid) ! stability function for heat |
---|
| 90 | REAL z1z0,z1z0t ! ratios z1/z0 and z1/z0T |
---|
| 91 | ! phim = 1+betam*zeta or (1-bm*zeta)**am |
---|
| 92 | ! phih = alphah + betah*zeta or alphah(1.-bh*zeta)**ah |
---|
| 93 | REAL betam, betah, alphah, bm, bh, lambda |
---|
| 94 | ! ah and am are assumed to be -0.25 and -0.5 respectively |
---|
| 95 | REAL cdn(ngrid),chn(ngrid) ! neutral momentum and heat drag coefficient |
---|
| 96 | REAL pz0t ! initial thermal roughness length. (local) |
---|
| 97 | REAL ric ! critical richardson number |
---|
| 98 | REAL reynolds(ngrid) ! reynolds number for UBL |
---|
| 99 | REAL prandtl(ngrid) ! prandtl number for UBL |
---|
| 100 | REAL pz0tcomp(ngrid) ! computed z0t |
---|
| 101 | REAL ite |
---|
| 102 | REAL residual,zcd0,z1 |
---|
| 103 | REAL pcdv(ngrid),pcdh(ngrid) |
---|
| 104 | REAL zu2(ngrid) ! Large-scale wind at first layer |
---|
| 105 | REAL pbl_teta(ngrid) ! mixed-layer potential temperature |
---|
| 106 | INTEGER pbl_height_index(ngrid) ! index of nearest vertical grid point for zmax |
---|
| 107 | REAL dteta(ngrid,nlay),x(ngrid) ! potential temperature gradient and z/zi |
---|
| 108 | REAL dvhf(ngrid),dvvv(ngrid) ! dimensionless vertical heat flux and |
---|
| 109 | ! dimensionless vertical velocity variance |
---|
| 110 | REAL vhf(ngrid),vvv(ngrid) ! vertical heat flux and vertical velocity variance |
---|
| 111 | INTEGER ii(1) |
---|
| 112 | ! temporary |
---|
| 113 | INTEGER dimout |
---|
| 114 | |
---|
| 115 | !------------------------------------------------------------------------ |
---|
| 116 | !------------------------------------------------------------------------ |
---|
| 117 | ! PART I : RICHARDSON/REYNOLDS/THERMAL_ROUGHNESS/STABILITY_COEFFICIENTS |
---|
| 118 | !------------------------------------------------------------------------ |
---|
| 119 | !------------------------------------------------------------------------ |
---|
| 120 | |
---|
[566] | 121 | DO n=1,n_out |
---|
| 122 | |
---|
[496] | 123 | c Initialisation : |
---|
| 124 | |
---|
| 125 | L_mo(:)=0. |
---|
| 126 | ustar(:)=0. |
---|
| 127 | tstar(:)=0. |
---|
[566] | 128 | zout=z_out(n) |
---|
[496] | 129 | reynolds(:)=0. |
---|
| 130 | pz0t = 0. |
---|
| 131 | pz0tcomp(:) = 0.1*pz0(:) |
---|
| 132 | rib(:)=0. |
---|
| 133 | pcdv(:)=0. |
---|
| 134 | pcdh(:)=0. |
---|
| 135 | |
---|
| 136 | ! this formulation assumes alphah=1., implying betah=betam |
---|
| 137 | ! We use Dyer et al. parameters, as they cover a broad range of Richardson numbers : |
---|
| 138 | |
---|
| 139 | bm=16. !UBL |
---|
| 140 | bh=16. !UBL |
---|
| 141 | alphah=1. |
---|
| 142 | betam=5. !SBL |
---|
| 143 | betah=5. !SBL |
---|
| 144 | lambda=(sqrt(bh/bm))/alphah |
---|
| 145 | ric=betah/(betam**2) |
---|
| 146 | DO ig=1,ngrid |
---|
| 147 | ite=0. |
---|
| 148 | residual=abs(pz0tcomp(ig)-pz0t) |
---|
[636] | 149 | ! zu2(ig)=MAX(pu(ig,1)*pu(ig,1)+pv(ig,1)*pv(ig,1) |
---|
| 150 | ! & ,(0.3*wstar_in(ig))**2) |
---|
[648] | 151 | zu2(ig)=pu(ig,1)*pu(ig,1)+pv(ig,1)*pv(ig,1) |
---|
[636] | 152 | & + (log(1.+0.7*wstar_in(ig) + 2.3*wstar_in(ig)**2))**2 |
---|
[496] | 153 | |
---|
| 154 | DO WHILE((residual .gt. 0.01*pz0(ig)) .and. (ite .lt. 10.)) |
---|
| 155 | |
---|
| 156 | pz0t=pz0tcomp(ig) |
---|
| 157 | IF (zu2(ig) .ne. 0.) THEN |
---|
| 158 | ! Richardson number formulation proposed by D.E. England et al. (1995) |
---|
[605] | 159 | rib(ig) = (pg/pts(ig)) |
---|
[636] | 160 | & *sqrt(zzlay(ig,1)*pz0(ig)) |
---|
| 161 | & *(((log(zzlay(ig,1)/pz0(ig)))**2)/(log(zzlay(ig,1)/pz0t))) |
---|
[496] | 162 | & *(ph(ig,1)-pts(ig))/zu2(ig) |
---|
| 163 | ELSE |
---|
| 164 | print*,'warning, infinite Richardson at surface' |
---|
| 165 | print*,pu(ig,1),pv(ig,1) |
---|
| 166 | rib(ig) = ric |
---|
| 167 | ENDIF |
---|
| 168 | |
---|
[636] | 169 | z1z0=zzlay(ig,1)/pz0(ig) |
---|
| 170 | z1z0t=zzlay(ig,1)/pz0t |
---|
[496] | 171 | |
---|
| 172 | cdn(ig)=karman/log(z1z0) |
---|
| 173 | cdn(ig)=cdn(ig)*cdn(ig) |
---|
| 174 | chn(ig)=cdn(ig)*log(z1z0)/log(z1z0t) |
---|
| 175 | |
---|
| 176 | ! STABLE BOUNDARY LAYER : |
---|
| 177 | IF (rib(ig) .gt. 0.) THEN |
---|
| 178 | ! From D.E. England et al. (95) |
---|
| 179 | prandtl(ig)=1. |
---|
| 180 | if(rib(ig) .lt. ric) then |
---|
| 181 | ! Assuming alphah=1. and bh=bm for stable conditions : |
---|
| 182 | fm(ig)=((ric-rib(ig))/ric)**2 |
---|
| 183 | fh(ig)=((ric-rib(ig))/ric)**2 |
---|
| 184 | else |
---|
| 185 | ! For Ri>Ric, we consider Ri->Infinity => no turbulent mixing at surface |
---|
| 186 | fm(ig)=0. |
---|
| 187 | fh(ig)=0. |
---|
| 188 | endif |
---|
| 189 | ! UNSTABLE BOUNDARY LAYER : |
---|
| 190 | ELSE |
---|
| 191 | ! From D.E. England et al. (95) |
---|
| 192 | fm(ig)=sqrt(1.-lambda*bm*rib(ig)) |
---|
| 193 | fh(ig)=(1./alphah)*((1.-lambda*bh*rib(ig))**0.5)* |
---|
| 194 | & (1.-lambda*bm*rib(ig))**0.25 |
---|
| 195 | prandtl(ig)=alphah*((1.-lambda*bm*rib(ig))**0.25)/ |
---|
| 196 | & ((1.-lambda*bh*rib(ig))**0.5) |
---|
| 197 | ENDIF |
---|
| 198 | |
---|
| 199 | reynolds(ig)=karman*sqrt(fm(ig)) |
---|
| 200 | & *sqrt(zu2(ig)) |
---|
| 201 | & *pz0(ig)/(log(z1z0)*nu) |
---|
| 202 | pz0tcomp(ig)=pz0(ig)*exp(-karman*7.3* |
---|
| 203 | & (reynolds(ig)**0.25)*(prandtl(ig)**0.5)) |
---|
| 204 | residual = abs(pz0t-pz0tcomp(ig)) |
---|
| 205 | ite = ite+1 |
---|
[605] | 206 | |
---|
[496] | 207 | ENDDO ! of while |
---|
| 208 | pz0t=0. |
---|
| 209 | |
---|
| 210 | ! Drag computation: |
---|
| 211 | |
---|
| 212 | pcdv(ig)=cdn(ig)*fm(ig) |
---|
| 213 | pcdh(ig)=chn(ig)*fh(ig) |
---|
| 214 | |
---|
| 215 | ENDDO ! of ngrid |
---|
| 216 | |
---|
| 217 | !------------------------------------------------------------------------ |
---|
| 218 | !------------------------------------------------------------------------ |
---|
| 219 | ! PART II : USTAR/TSTAR/U_OUT/TETA_OUT COMPUTATIONS |
---|
| 220 | !------------------------------------------------------------------------ |
---|
| 221 | !------------------------------------------------------------------------ |
---|
| 222 | |
---|
| 223 | |
---|
| 224 | ! u* theta* computation |
---|
[636] | 225 | ! and Monin Obukhov length: |
---|
[496] | 226 | |
---|
| 227 | DO ig=1,ngrid |
---|
| 228 | IF (rib(ig) .ge. ric) THEN |
---|
| 229 | ustar(ig)=0. |
---|
| 230 | tstar(ig)=0. |
---|
[636] | 231 | L_mo(ig)=0. |
---|
[496] | 232 | ELSE |
---|
| 233 | ustar(ig)=sqrt(pcdv(ig)) |
---|
| 234 | & *sqrt(pu(ig,1)*pu(ig,1)+pv(ig,1)*pv(ig,1)) |
---|
| 235 | tstar(ig)=-pcdh(ig)*(pts(ig)-ph(ig,1)) |
---|
| 236 | & /sqrt(pcdv(ig)) |
---|
[636] | 237 | L_mo(ig)=pts(ig)*(ustar(ig)**2)/(pg*karman*tstar(ig)) !as defined here, L is positive for SBL, negative for UBL |
---|
[496] | 238 | ENDIF |
---|
| 239 | ENDDO |
---|
| 240 | |
---|
| 241 | ! Monin Obukhov length: |
---|
| 242 | |
---|
[636] | 243 | ! DO ig=1,ngrid |
---|
| 244 | ! IF (rib(ig) .ge. ric) THEN |
---|
| 245 | ! L_mo(ig)=0. |
---|
| 246 | ! ELSE |
---|
| 247 | ! L_mo(ig)=pts(ig)*(ustar(ig)**2)/(pg*karman*tstar(ig)) !as defined here, L is positive for SBL, negative for UBL |
---|
| 248 | ! ENDIF |
---|
| 249 | ! ENDDO |
---|
[496] | 250 | |
---|
| 251 | ! Interpolation: |
---|
| 252 | |
---|
| 253 | DO ig=1,ngrid |
---|
| 254 | IF(zout .lt. pz0tcomp(ig)) THEN |
---|
[566] | 255 | u_out(ig,n)=0. |
---|
| 256 | Teta_out(ig,n)=pts(ig) |
---|
[496] | 257 | ELSEIF (L_mo(ig) .gt. 0.) THEN |
---|
[636] | 258 | ! u_out(ig,n)=(ustar(ig)/karman)*log(zout/pz0(ig)) + |
---|
| 259 | ! & 5.*(ustar(ig)/(karman*L_mo(ig)))*(zout-pz0(ig)) |
---|
| 260 | ! Teta_out(ig,n)=pts(ig)+(tstar(ig)/(prandtl(ig)*karman)) |
---|
| 261 | ! & *log(zout/pz0tcomp(ig)) + |
---|
| 262 | ! & 5.*(tstar(ig)/(prandtl(ig)*karman*L_mo(ig))) |
---|
| 263 | ! & *(zout-pz0tcomp(ig)) |
---|
| 264 | IF ((zout/L_mo(ig).lt.ric).and.(pz0(ig).lt.ric)) THEN |
---|
| 265 | ! & ((zout/L_mo(ig).gt.ric).and.(pz0(ig).gt.ric)) ) THEN |
---|
| 266 | |
---|
| 267 | u_out(ig,n)=(ustar(ig)/karman)*( |
---|
| 268 | & log((ric-pz0(ig)/L_mo(ig))/(ric-zout/L_mo(ig))) |
---|
| 269 | & +log(zout/pz0(ig)) |
---|
| 270 | & ) |
---|
| 271 | ELSEIF ((zout/L_mo(ig).gt.ric).and.(pz0(ig).gt.ric)) THEN |
---|
| 272 | |
---|
| 273 | u_out(ig,n)=(ustar(ig)/karman)*( |
---|
| 274 | & log((zout-ric*L_mo(ig))/(pz0(ig)-ric*L_mo(ig))) |
---|
| 275 | & +log(pz0(ig)/zout) |
---|
| 276 | & ) |
---|
| 277 | |
---|
| 278 | ELSEIF ((zout/L_mo(ig).gt.ric).and.(pz0(ig).lt.ric)) THEN |
---|
| 279 | !integral of the stability function does not converge |
---|
| 280 | |
---|
| 281 | |
---|
| 282 | u_out(ig,n)=sqrt(pu(ig,1)**2 + pv(ig,1)**2) |
---|
| 283 | |
---|
| 284 | |
---|
| 285 | ENDIF |
---|
| 286 | IF((zout/L_mo(ig).lt.ric).and.(pz0tcomp(ig).lt.ric)) THEN |
---|
| 287 | ! & ((zout/L_mo(ig).gt.ric).and.(pz0tcomp(ig).gt.ric)) ) THEN |
---|
| 288 | |
---|
| 289 | Teta_out(ig,n)=pts(ig)+(tstar(ig)/(prandtl(ig)*karman))*( |
---|
| 290 | & log((ric-pz0tcomp(ig)/L_mo(ig))/(ric-zout/L_mo(ig))) |
---|
| 291 | & +log(zout/pz0tcomp(ig)) |
---|
| 292 | & ) |
---|
| 293 | ELSEIF ((zout/L_mo(ig).gt.ric).and.(pz0tcomp(ig).gt.ric)) THEN |
---|
| 294 | |
---|
| 295 | Teta_out(ig,n)=pts(ig)+(tstar(ig)/(prandtl(ig)*karman))*( |
---|
| 296 | & log((zout-ric*L_mo(ig))/(pz0tcomp(ig)-ric*L_mo(ig))) |
---|
| 297 | & +log(pz0tcomp(ig)/zout) |
---|
| 298 | & ) |
---|
| 299 | |
---|
| 300 | ELSEIF ((zout/L_mo(ig).gt.ric).and.(pz0tcomp(ig).lt.ric)) THEN |
---|
| 301 | !integral of the stability function does not converge |
---|
| 302 | |
---|
| 303 | Teta_out(ig,n)=ph(ig,1) |
---|
| 304 | |
---|
| 305 | ENDIF |
---|
| 306 | |
---|
[496] | 307 | ELSEIF (L_mo(ig) .lt. 0.) THEN |
---|
| 308 | |
---|
| 309 | IF(L_mo(ig) .gt. -1000.) THEN |
---|
| 310 | |
---|
[566] | 311 | u_out(ig,n)=(ustar(ig)/karman)*( |
---|
[496] | 312 | & 2.*atan((1.-16.*zout/L_mo(ig))**0.25) |
---|
| 313 | & -2.*atan((1.-16.*pz0(ig)/L_mo(ig))**0.25) |
---|
| 314 | & -2.*log(1.+(1.-16.*zout/L_mo(ig))**0.25) |
---|
| 315 | & +2.*log(1.+(1.-16.*pz0(ig)/L_mo(ig))**0.25) |
---|
| 316 | & - log(1.+sqrt(1.-16.*zout/L_mo(ig))) |
---|
| 317 | & + log(1.+sqrt(1.-16.*pz0(ig)/L_mo(ig))) |
---|
| 318 | & + log(zout/pz0(ig)) |
---|
| 319 | & ) |
---|
| 320 | |
---|
[605] | 321 | Teta_out(ig,n)=MAX(pts(ig)+(tstar(ig)/(prandtl(ig)*karman))*( |
---|
[496] | 322 | & 2.*log(1.+sqrt(1.-16.*pz0tcomp(ig)/L_mo(ig))) |
---|
| 323 | & -2.*log(1.+sqrt(1.-16.*zout/L_mo(ig))) |
---|
| 324 | & + log(zout/pz0tcomp(ig)) |
---|
[605] | 325 | & ),ph(ig,1)) |
---|
[496] | 326 | |
---|
| 327 | ELSE |
---|
| 328 | |
---|
| 329 | ! We have to treat the case where L is very large and negative, |
---|
| 330 | ! corresponding to a very nearly stable atmosphere (but not quite !) |
---|
| 331 | ! i.e. teta* <0 and almost zero. We choose the cutoff |
---|
| 332 | ! corresponding to L_mo < -1000 and use a 3rd order taylor expansion. The difference |
---|
| 333 | ! between the two expression for z/L = -1/1000 is -1.54324*10^-9 |
---|
| 334 | ! (we do that to avoid using r*4 precision, otherwise, we get -inf values) |
---|
| 335 | |
---|
[566] | 336 | u_out(ig,n)=(ustar(ig)/karman)*( |
---|
[496] | 337 | & (4./L_mo(ig))*(zout-pz0(ig)) |
---|
| 338 | & + (20./(L_mo(ig))**2)*(zout**2-pz0(ig)**2) |
---|
| 339 | & + (160./(L_mo(ig))**3)*(zout**3-pz0(ig)**3) |
---|
| 340 | & + log(zout/pz0(ig)) |
---|
| 341 | & ) |
---|
| 342 | |
---|
[605] | 343 | Teta_out(ig,n)=MAX(pts(ig)+(tstar(ig)/(prandtl(ig)*karman))*( |
---|
[496] | 344 | & (8./L_mo(ig))*(zout-pz0tcomp(ig)) |
---|
| 345 | & + (48./(L_mo(ig))**2)*(zout**2-pz0tcomp(ig)**2) |
---|
| 346 | & + (1280./(3.*(L_mo(ig))**3))*(zout**3-pz0tcomp(ig)**3) |
---|
| 347 | & + log(zout/pz0tcomp(ig)) |
---|
[605] | 348 | & ),ph(ig,1)) |
---|
[496] | 349 | |
---|
| 350 | ENDIF |
---|
| 351 | ELSE |
---|
[636] | 352 | u_out(ig,n)=sqrt(pu(ig,1)**2 + pv(ig,1)**2) |
---|
| 353 | Teta_out(ig,n)=ph(ig,1) |
---|
[496] | 354 | ENDIF |
---|
| 355 | IF(zout .lt. pz0(ig)) THEN |
---|
[566] | 356 | u_out(ig,n)=0. |
---|
[496] | 357 | ENDIF |
---|
[636] | 358 | |
---|
| 359 | ! Final check |
---|
| 360 | IF (L_mo(ig) .gt. 0) THEN |
---|
| 361 | IF (Teta_out(ig,n) .gt. ph(ig,1)) THEN |
---|
| 362 | Teta_out(ig,n)=ph(ig,1) |
---|
| 363 | ELSEIF (Teta_out(ig,n) .lt. pts(ig)) THEN |
---|
| 364 | Teta_out(ig,n)=pts(ig) |
---|
| 365 | ENDIF |
---|
| 366 | ELSEIF (L_mo(ig) .lt. 0) THEN |
---|
| 367 | IF (Teta_out(ig,n) .lt. ph(ig,1)) THEN |
---|
| 368 | Teta_out(ig,n)=ph(ig,1) |
---|
| 369 | ELSEIF (Teta_out(ig,n) .gt. pts(ig)) THEN |
---|
| 370 | Teta_out(ig,n)=pts(ig) |
---|
| 371 | ENDIF |
---|
| 372 | ENDIF |
---|
| 373 | |
---|
| 374 | IF (u_out(ig,n) .gt. sqrt(pu(ig,1)**2 + pv(ig,1)**2)) THEN |
---|
| 375 | u_out(ig,n)=sqrt(pu(ig,1)**2 + pv(ig,1)**2) |
---|
| 376 | ENDIF |
---|
| 377 | |
---|
[496] | 378 | ENDDO |
---|
| 379 | |
---|
| 380 | ! when using convective adjustment without thermals, a vertical potential temperature |
---|
| 381 | ! profile is assumed up to the thermal roughness length. Hence, theoretically, theta |
---|
| 382 | ! interpolated at any height in the surface layer is theta at the first level. |
---|
| 383 | |
---|
| 384 | IF ((.not.calltherm).and.(calladj)) THEN |
---|
[605] | 385 | Teta_out(:,n)=ph(:,1) |
---|
| 386 | u_out(:,n)=(sqrt(cdn(:))*sqrt(pu(:,1)*pu(:,1)+pv(:,1)*pv(:,1)) |
---|
| 387 | & /karman)*log(zout/pz0(:)) |
---|
[496] | 388 | ENDIF |
---|
[566] | 389 | T_out(:,n) = Teta_out(:,n)*(exp( |
---|
[529] | 390 | & (zout/zzlay(:,1))*(log(pplay(:,1)/ps)) |
---|
| 391 | & ) |
---|
| 392 | & )**rcp |
---|
| 393 | |
---|
[566] | 394 | ENDDO !of n=1,n_out |
---|
[529] | 395 | |
---|
[496] | 396 | !------------------------------------------------------------------------ |
---|
| 397 | !------------------------------------------------------------------------ |
---|
| 398 | ! PART III : WSTAR COMPUTATION |
---|
| 399 | !------------------------------------------------------------------------ |
---|
| 400 | !------------------------------------------------------------------------ |
---|
| 401 | |
---|
| 402 | ! Detection of the mixed-layer potential temperature |
---|
| 403 | ! ------------ |
---|
| 404 | |
---|
| 405 | ! Nearest index for the pbl height |
---|
| 406 | |
---|
[566] | 407 | IF (calltherm) THEN |
---|
| 408 | |
---|
[496] | 409 | pbl_height_index(:)=1 |
---|
| 410 | |
---|
| 411 | DO k=1,nlay-1 |
---|
| 412 | DO ig=1, ngrid |
---|
[529] | 413 | IF (abs(zmax(ig)-zzlay(ig,k)) .lt. |
---|
| 414 | & abs(zmax(ig)-zzlay(ig,pbl_height_index(ig)))) THEN |
---|
[496] | 415 | pbl_height_index(ig)=k |
---|
| 416 | ENDIF |
---|
| 417 | ENDDO |
---|
| 418 | ENDDO |
---|
| 419 | |
---|
| 420 | ! Potential temperature gradient |
---|
| 421 | |
---|
| 422 | dteta(:,nlay)=0. |
---|
| 423 | DO k=1,nlay-1 |
---|
| 424 | DO ig=1, ngrid |
---|
[529] | 425 | dteta(ig,k) = (ph(ig,k+1)-ph(ig,k))/(zzlay(ig,k+1)-zzlay(ig,k)) |
---|
[496] | 426 | ENDDO |
---|
| 427 | ENDDO |
---|
| 428 | |
---|
| 429 | ! Computation of the pbl mixed layer temperature |
---|
| 430 | |
---|
| 431 | DO ig=1, ngrid |
---|
| 432 | ii=MINLOC(abs(dteta(ig,1:pbl_height_index(ig)))) |
---|
| 433 | pbl_teta(ig) = ph(ig,ii(1)) |
---|
| 434 | ENDDO |
---|
| 435 | |
---|
[566] | 436 | ! Recompute wstar |
---|
[496] | 437 | ! We follow Spiga et. al 2010 (QJRMS) |
---|
| 438 | ! ------------ |
---|
| 439 | |
---|
| 440 | DO ig=1, ngrid |
---|
| 441 | IF (zmax(ig) .gt. 0.) THEN |
---|
| 442 | wstar(ig)=(pg*zmax(ig)*hfmax(ig)/pbl_teta(ig))**(1./3.) |
---|
| 443 | ELSE |
---|
| 444 | wstar(ig)=0. |
---|
| 445 | ENDIF |
---|
| 446 | ENDDO |
---|
| 447 | |
---|
| 448 | !------------------------------------------------------------------------ |
---|
| 449 | !------------------------------------------------------------------------ |
---|
| 450 | ! PART IV : VERTICAL_VELOCITY_VARIANCE/VERTICAL_TURBULENT_FLUX PROFILES |
---|
| 451 | !------------------------------------------------------------------------ |
---|
| 452 | !------------------------------------------------------------------------ |
---|
| 453 | |
---|
| 454 | ! We follow Spiga et. al 2010 (QJRMS) |
---|
| 455 | ! ------------ |
---|
| 456 | |
---|
| 457 | DO ig=1, ngrid |
---|
| 458 | IF (zmax(ig) .gt. 0.) THEN |
---|
| 459 | x(ig) = zout/zmax(ig) |
---|
| 460 | ELSE |
---|
| 461 | x(ig) = 999. |
---|
| 462 | ENDIF |
---|
| 463 | ENDDO |
---|
| 464 | |
---|
| 465 | DO ig=1, ngrid |
---|
| 466 | ! dimensionless vertical heat flux |
---|
| 467 | IF (x(ig) .le. 0.3) THEN |
---|
| 468 | dvhf(ig) = ((-3.85/log(x(ig)))+0.07*log(x(ig))) |
---|
| 469 | & *exp(-4.61*x(ig)) |
---|
| 470 | ELSEIF (x(ig) .le. 1.) THEN |
---|
| 471 | dvhf(ig) = -1.52*x(ig) + 1.24 |
---|
| 472 | ELSE |
---|
| 473 | dvhf(ig) = 0. |
---|
| 474 | ENDIF |
---|
| 475 | ! dimensionless vertical velocity variance |
---|
| 476 | IF (x(ig) .le. 1.) THEN |
---|
| 477 | dvvv(ig) = 2.05*(x(ig)**(2./3.))*(1.-0.64*x(ig))**2 |
---|
| 478 | ELSE |
---|
| 479 | dvvv(ig) = 0. |
---|
| 480 | ENDIF |
---|
| 481 | ENDDO |
---|
| 482 | |
---|
| 483 | vhf(:) = dvhf(:)*hfmax(:) |
---|
| 484 | vvv(:) = dvvv(:)*(wstar(:))**2 |
---|
| 485 | |
---|
[566] | 486 | ENDIF ! of if calltherm |
---|
[496] | 487 | |
---|
[636] | 488 | call WRITEDIAGFI(ngrid,'rib_pbl', |
---|
| 489 | & 'Richardson in pbl parameter','m/s',2,rib) |
---|
| 490 | call WRITEDIAGFI(ngrid,'cdn_pbl', |
---|
| 491 | & 'neutral momentum coef','m/s',2,cdn) |
---|
| 492 | call WRITEDIAGFI(ngrid,'fm_pbl', |
---|
| 493 | & 'momentum stab function','m/s',2,fm) |
---|
| 494 | call WRITEDIAGFI(ngrid,'uv', |
---|
| 495 | & 'wind norm first layer','m/s',2,sqrt(zu2)) |
---|
| 496 | call WRITEDIAGFI(ngrid,'uvtrue', |
---|
| 497 | & 'wind norm first layer','m/s',2,sqrt(pu(:,1)**2+pv(:,1)**2)) |
---|
| 498 | call WRITEDIAGFI(ngrid,'chn_pbl', |
---|
| 499 | & 'neutral momentum coef','m/s',2,chn) |
---|
| 500 | call WRITEDIAGFI(ngrid,'fh_pbl', |
---|
| 501 | & 'momentum stab function','m/s',2,fh) |
---|
| 502 | call WRITEDIAGFI(ngrid,'B_pbl', |
---|
| 503 | & 'flottabilité','m/',2,(ph(:,1)-pts(:))/pts(:)) |
---|
| 504 | call WRITEDIAGFI(ngrid,'zot_pbl', |
---|
| 505 | & 'flottabilité','ms',2,pz0tcomp) |
---|
| 506 | call WRITEDIAGFI(ngrid,'zz1','flottabilité','m',2,zzlay(:,1)) |
---|
| 507 | |
---|
[496] | 508 | RETURN |
---|
| 509 | END |
---|