1 | SUBROUTINE param_slope( & |
---|
2 | ! |
---|
3 | ! INPUTS |
---|
4 | ! |
---|
5 | & csza, declin, rho, latitude & |
---|
6 | & ,taudust, albedo & |
---|
7 | & ,theta_s, psi_s & |
---|
8 | & ,fdir_0, ftot_0 & |
---|
9 | ! |
---|
10 | ! OUTPUTS |
---|
11 | ! |
---|
12 | & ,ftot & |
---|
13 | ) |
---|
14 | |
---|
15 | |
---|
16 | !!***************************************************************************************** |
---|
17 | ! |
---|
18 | ! SUBROUTINE: |
---|
19 | ! param_slope |
---|
20 | ! |
---|
21 | ! |
---|
22 | ! PURPOSE: |
---|
23 | ! computes total solar irradiance on a given Martian slope |
---|
24 | ! |
---|
25 | ! |
---|
26 | ! INPUTS: |
---|
27 | ! csza cosine solar zenith angle |
---|
28 | ! declin sun declination (rad) |
---|
29 | ! rho sun right ascension (rad) |
---|
30 | ! latitude latitude (deg) |
---|
31 | ! taudust dust optical depth at reference wavelength 0.67 mic. |
---|
32 | ! albedo spectrally integrated surface Lambertian reflection albedo |
---|
33 | ! theta_s slope inclination angle (deg) |
---|
34 | ! 0 is horizontal, 90 is vertical |
---|
35 | ! phi_s slope azimuth (deg) |
---|
36 | ! 0 >> Northward |
---|
37 | ! 90 >> Eastward |
---|
38 | ! 180 >> Southward |
---|
39 | ! 270 >> Westward |
---|
40 | ! ftot_0 spectrally integrated total irradiance on an horizontal surface (W/m2) |
---|
41 | ! fdir_0 spectrally integrated direct irradiance on an horizontal surface (W/m2) |
---|
42 | ! |
---|
43 | ! |
---|
44 | ! OUTPUTS: |
---|
45 | ! ftot spectrally integrated total irradiance on the slope (W/m2) |
---|
46 | ! |
---|
47 | ! REFERENCE: |
---|
48 | ! "Fast and accurate estimation of irradiance on Martian slopes" |
---|
49 | ! A. Spiga & F. Forget |
---|
50 | ! ..... |
---|
51 | ! |
---|
52 | ! AUTHOR: |
---|
53 | ! A. Spiga (spiga@lmd.jussieu.fr) |
---|
54 | ! March 2008 |
---|
55 | ! |
---|
56 | !!***************************************************************************************** |
---|
57 | |
---|
58 | IMPLICIT NONE |
---|
59 | |
---|
60 | !! |
---|
61 | !! INPUT |
---|
62 | !! |
---|
63 | REAL, INTENT(IN) :: csza, declin, rho, latitude, taudust, theta_s, psi_s, albedo, ftot_0 , fdir_0 |
---|
64 | |
---|
65 | !! |
---|
66 | !! LOCAL |
---|
67 | !! |
---|
68 | REAL :: pi, deg2rad |
---|
69 | REAL :: a |
---|
70 | REAL :: mu_s, sigma_s |
---|
71 | REAL :: fdir, fscat, fscat_0, fref |
---|
72 | REAL, DIMENSION(4,2) :: mat_M, mat_N, mat_T |
---|
73 | REAL, DIMENSION(2) :: g_vector |
---|
74 | REAL, DIMENSION(4) :: s_vector |
---|
75 | REAL :: ratio |
---|
76 | |
---|
77 | !! |
---|
78 | !! OUTPUT |
---|
79 | !! |
---|
80 | REAL, INTENT(OUT) :: ftot |
---|
81 | |
---|
82 | !!***************************************************************************************** |
---|
83 | |
---|
84 | ! |
---|
85 | ! Prerequisite |
---|
86 | ! |
---|
87 | pi = 2.*asin(1.) |
---|
88 | deg2rad = pi/180. |
---|
89 | if ((theta_s > 90.) .or. (theta_s < 0.)) then |
---|
90 | print *, 'please set theta_s between 0 and 90', theta_s |
---|
91 | stop |
---|
92 | endif |
---|
93 | |
---|
94 | ! |
---|
95 | ! Solar Zenith angle (radian) |
---|
96 | ! |
---|
97 | if (csza .lt. 0.01) then |
---|
98 | !print *, 'sun below horizon' |
---|
99 | !fdir_0=0. |
---|
100 | fdir=0. |
---|
101 | fscat_0=0. |
---|
102 | fscat=0. |
---|
103 | fref=0. |
---|
104 | else |
---|
105 | |
---|
106 | !! |
---|
107 | !! Low incidence fix |
---|
108 | !! |
---|
109 | ! if (csza .lt. 0.15) csza = 0.15 |
---|
110 | |
---|
111 | ! |
---|
112 | ! 'Slope vs Sun' azimuth (radian) |
---|
113 | ! |
---|
114 | if ( ( (cos(declin)*sin(rho)) .eq. 0.0 ) & |
---|
115 | .and. & |
---|
116 | ( ( sin(deg2rad*latitude)*cos(declin)*cos(rho) & |
---|
117 | -cos(deg2rad*latitude)*sin(declin) ) .eq. 0.0 ) ) then |
---|
118 | a = deg2rad*psi_s ! some compilator need specfying value for atan2(0,0) |
---|
119 | else |
---|
120 | a = deg2rad*psi_s + atan2(cos(declin)*sin(rho), & |
---|
121 | sin(deg2rad*latitude)*cos(declin)*cos(rho)-cos(deg2rad*latitude)*sin(declin)) |
---|
122 | end if |
---|
123 | |
---|
124 | ! |
---|
125 | ! Cosine of slope-sun phase angle |
---|
126 | ! |
---|
127 | mu_s = csza*cos(deg2rad*theta_s) - cos(a)*sin(deg2rad*theta_s)*sqrt(1-csza**2) |
---|
128 | if (mu_s .le. 0.) mu_s=0. |
---|
129 | |
---|
130 | ! |
---|
131 | ! Sky-view factor |
---|
132 | ! |
---|
133 | sigma_s=0.5*(1.+cos(deg2rad*theta_s)) |
---|
134 | |
---|
135 | ! |
---|
136 | ! Direct flux on the slope |
---|
137 | ! |
---|
138 | fdir = fdir_0 * mu_s/csza |
---|
139 | |
---|
140 | ! |
---|
141 | ! Reflected flux on the slope |
---|
142 | ! |
---|
143 | fref = albedo * (1-sigma_s) * ftot_0 |
---|
144 | |
---|
145 | ! |
---|
146 | ! Scattered flux on a flat surface |
---|
147 | ! |
---|
148 | fscat_0 = ftot_0 - fdir_0 |
---|
149 | |
---|
150 | ! |
---|
151 | ! Scattering vector (slope vs sky) |
---|
152 | ! |
---|
153 | s_vector=(/ 1., exp(-taudust) , sin(deg2rad*theta_s), sin(deg2rad*theta_s)*exp(-taudust) /) |
---|
154 | |
---|
155 | ! |
---|
156 | ! Geometry vector (slope vs sun) |
---|
157 | ! |
---|
158 | g_vector=(/ mu_s/csza, 1. /) |
---|
159 | |
---|
160 | ! |
---|
161 | ! Coupling matrix |
---|
162 | ! |
---|
163 | if (csza .ge. 0.5) then |
---|
164 | mat_M(:,1) = (/ -0.264, 1.309, 0.208, -0.828 /) |
---|
165 | mat_M(:,2) = (/ 1.291*sigma_s, -1.371*sigma_s, -0.581, 1.641 /) |
---|
166 | mat_N(:,1) = (/ 0.911, -0.777, -0.223, 0.623 /) |
---|
167 | mat_N(:,2) = (/ -0.933*sigma_s, 0.822*sigma_s, 0.514, -1.195 /) |
---|
168 | |
---|
169 | else |
---|
170 | mat_M(:,1) = (/ -0.373, 0.792, -0.095, 0.398 /) |
---|
171 | mat_M(:,2) = (/ 1.389*sigma_s, -0.794*sigma_s, -0.325, 0.183 /) |
---|
172 | mat_N(:,1) = (/ 1.079, 0.275, 0.419, -1.855 /) |
---|
173 | mat_N(:,2) = (/ -1.076*sigma_s, -0.357*sigma_s, -0.075, 1.844 /) |
---|
174 | endif |
---|
175 | ! |
---|
176 | mat_T = mat_M + csza*mat_N |
---|
177 | |
---|
178 | |
---|
179 | ! |
---|
180 | ! Scattered flux slope ratio |
---|
181 | ! |
---|
182 | if (deg2rad*theta_s <= 0.0872664626) then |
---|
183 | ! |
---|
184 | ! low angles |
---|
185 | ! |
---|
186 | s_vector = (/ 1., exp(-taudust) , sin(0.0872664626), sin(0.0872664626)*exp(-taudust) /) |
---|
187 | ratio = DOT_PRODUCT ( MATMUL( s_vector, mat_T), g_vector ) |
---|
188 | ratio = 1. + (ratio - 1.)*deg2rad*theta_s/0.0872664626 |
---|
189 | else |
---|
190 | ! |
---|
191 | ! general case |
---|
192 | ! |
---|
193 | ratio= DOT_PRODUCT ( MATMUL( s_vector, mat_T), g_vector ) |
---|
194 | ! |
---|
195 | ! NB: ratio= DOT_PRODUCT ( s_vector, MATMUL( mat_T, g_vector ) ) is equivalent |
---|
196 | endif |
---|
197 | |
---|
198 | ! |
---|
199 | ! Scattered flux on the slope |
---|
200 | ! |
---|
201 | fscat = ratio * fscat_0 |
---|
202 | |
---|
203 | |
---|
204 | endif !! if (csza < 0.01) |
---|
205 | |
---|
206 | ! |
---|
207 | ! Total flux on the slope |
---|
208 | ! |
---|
209 | ftot = fdir + fref + fscat |
---|
210 | |
---|
211 | !! |
---|
212 | !! Display results |
---|
213 | !! |
---|
214 | ! print *, 'sca component 0 ', ftot_0-fdir_0 |
---|
215 | ! print *, 'dir component 0 ', fdir_0 |
---|
216 | ! print *, 'scattered component ', fscat |
---|
217 | ! print *, 'direct component ', fdir |
---|
218 | ! print *, 'reflected component ', fref |
---|
219 | |
---|
220 | END SUBROUTINE param_slope |
---|