[2642] | 1 | SUBROUTINE OROSETUP( ngrid, nlayer, ktest, pplev, pplay, pu, pv, pt, zgeom, & |
---|
| 2 | pvar,pthe, pgam, & |
---|
| 3 | !output in capital |
---|
| 4 | IKCRIT, IKCRITH, ICRIT, IKENVH,IKNU,IKNU2, & |
---|
| 5 | !ISECT, IKHLIM, not used |
---|
| 6 | ZRHO,PRI,BV,ZTAU,ZVPH,ZPSI,ZZDEP,ZNU,ZD1,ZD2,ZDMOD, & |
---|
| 7 | PULOW, PVLOW) |
---|
| 8 | !--------------------------------------------------------------------------------------------- |
---|
| 9 | !!**** *GWSETUP*! Computes low level stresses using subcritical and super critical forms. |
---|
| 10 | ! As well as, computes anisotropy coefficient as measure of orographic two-dimensionality |
---|
| 11 | ! F.LOTT FOR THE NEW-GWDRAG SCHEME NOVEMBER 1993! |
---|
| 12 | !-- |
---|
| 13 | ! REFERENCE. |
---|
| 14 | ! 1. SEE ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE "I.F.S." |
---|
| 15 | ! 2. Lott, F., & Miller, M. J. (1997). A new subgrid‐scale orographic drag parametrization: |
---|
| 16 | ! Its formulation and testing.Quarterly Journal of the Royal cMeteorological Society, |
---|
| 17 | ! 123(537), 101-127. |
---|
| 18 | !-- |
---|
| 19 | ! MODIFICATIONS. |
---|
| 20 | ! 1.Rewiten by J.liu 03/03/2022 |
---|
| 21 | !----------------------------------------------------------------------- |
---|
| 22 | use dimradmars_mod, only: ndomainsz |
---|
[2651] | 23 | use comcstfi_h, only: cpp, g, r, pi |
---|
| 24 | use yoegwd_h, only: gfrcrit, grcrit, gsigcr, gssec, gtsec, gvsec |
---|
| 25 | use yoegwd_h, only: nktopg |
---|
| 26 | |
---|
[38] | 27 | implicit none |
---|
[2642] | 28 | |
---|
| 29 | ! 0. DECLARATIONS: |
---|
| 30 | |
---|
| 31 | ! 0.1 inputs: |
---|
| 32 | integer,intent(in):: ngrid ! number of atmospheric columns |
---|
| 33 | integer,intent(in):: nlayer ! number of atmospheric layers |
---|
| 34 | INTEGER,intent(in):: ktest(ndomainsz) ! map of calling points |
---|
[38] | 35 | |
---|
[2642] | 36 | real, intent(in) :: pplev(ndomainsz,nlayer+1)! Pressure at 1/2 levels(Pa) (has been inversed by DRAG_NORO=inv_pplev) |
---|
| 37 | real, intent(in) :: pplay(ndomainsz,nlayer) ! Pressure at full levels(Pa) (has been inversed by DRAG_NORO=inv_pplay) |
---|
| 38 | real, intent(in) :: pu(ndomainsz,nlayer) ! Zonal wind at full levels(m/s) (has been inversed by DRAG_NORO, =inv_pu) |
---|
| 39 | real, intent(in) :: pv(ndomainsz,nlayer) ! Meridional winds at full levels(m/s)(has been inversed by DRAG_NORO, =inv_pv) |
---|
| 40 | real, intent(in) :: pt(ndomainsz,nlayer) ! Temperature at full levels(m/s) (has been inversed by DRAG_NORO=inv_pt) |
---|
| 41 | real, intent(in) :: zgeom(ndomainsz,nlayer) ! Geopotetial height |
---|
| 42 | real, intent(in) :: pvar(ndomainsz) ! Sub-grid scale standard deviation |
---|
| 43 | real, intent(in) :: pthe(ndomainsz) ! Sub-grid scale principal axes angle |
---|
| 44 | real, intent(inout) :: pgam(ndomainsz) ! Sub-grid scale anisotropy |
---|
| 45 | |
---|
| 46 | ! 0.2 outputs: |
---|
| 47 | INTEGER,intent(out):: IKCRIT(ndomainsz) ! top of low level flow height |
---|
| 48 | INTEGER,intent(out):: IKCRITH(ndomainsz) ! dynamical mixing height for the breaking of gravity waves |
---|
| 49 | INTEGER,intent(out):: ICRIT(ndomainsz) ! Critical layer where orographic GW breaks |
---|
| 50 | ! INTEGER,intent(out):: ISECT(ndomainsz) ! not used |
---|
| 51 | ! INTEGER,intent(out):: IKHLIM(ndomainsz) ! not used |
---|
| 52 | INTEGER,intent(out):: IKENVH(ndomainsz) ! Top of the blocked layer |
---|
| 53 | INTEGER,intent(out):: IKNU(ndomainsz) ! 4*pvar layer |
---|
| 54 | INTEGER,intent(out):: IKNU2(ndomainsz) ! 3*pvar layer |
---|
[38] | 55 | |
---|
[2642] | 56 | REAL, intent(out):: ZRHO(ndomainsz,nlayer+1) ! Density at 1/2 level |
---|
| 57 | REAL, intent(out):: PRI(ndomainsz,nlayer+1) ! Mean flow richardson number at 1/2 level |
---|
| 58 | REAL, intent(out):: BV(ndomainsz,nlayer+1) ! Brunt–Väisälä frequency at 1/2 level |
---|
| 59 | REAL, intent(out):: ZTAU(ndomainsz,nlayer+1) ! Gravity wave stress. Set to 0.0 here and will calculate in GWSTRESS later |
---|
| 60 | REAL, intent(out):: ZVPH(ndomainsz,nlayer+1) ! Low level wind speed U_H |
---|
| 61 | REAL, intent(out):: ZPSI(ndomainsz,nlayer+1) ! The angle between the incident flow direction and the normal ridge direction pthe |
---|
| 62 | REAL, intent(out):: ZZDEP(ndomainsz,nlayer) ! dp by full level |
---|
| 63 | |
---|
| 64 | REAL, intent(out):: PULOW(ndomainsz) ! Low level zonal wind |
---|
| 65 | REAL, intent(out):: PVLOW(ndomainsz) ! Low level meridional wind |
---|
| 66 | REAL, intent(out):: ZNU(ndomainsz) ! A critical value see equation 9 |
---|
| 67 | REAL, intent(out):: ZD1(ndomainsz) ! Bcos^2(psi)-Csin^2(psi) see equation 17 or 18 |
---|
| 68 | REAL, intent(out):: ZD2(ndomainsz) ! (B-C)sin(psi)cos(psi) see equation 17 or 18 |
---|
| 69 | REAL, intent(out):: ZDMOD(ndomainsz) ! sqrt(zd1^2+zd2^2) |
---|
[38] | 70 | |
---|
[2642] | 71 | !0.3 Local arrays |
---|
| 72 | integer IKNUb(ndomainsz) ! 2*pvar layer |
---|
| 73 | integer IKNUl(ndomainsz) ! 1*pvar layer |
---|
| 74 | integer kentp(ndomainsz) ! initialized value but never used |
---|
| 75 | integer ncount(ndomainsz) ! initialized value but never used |
---|
[38] | 76 | |
---|
[2642] | 77 | REAL ZHCRIT(ndomainsz,nlayer) ! tag for 1*pvar, 2*pvar,3*pvar and 4*pvar, pvar is mu means SD |
---|
| 78 | ! REAL ZNCRIT(ndomainsz,nlayer) ! not used |
---|
| 79 | REAL ZVPF(ndomainsz,nlayer) ! Flow in plane of low level stress. Seems a unit vector |
---|
| 80 | REAL ZDP(ndomainsz,nlayer) ! dp differitial of pressure |
---|
| 81 | |
---|
| 82 | REAL ZNORM(ndomainsz) ! The norm ridge of a moutain? |
---|
| 83 | REAL zb(ndomainsz) ! Parameter B in eqution 17 |
---|
| 84 | REAL zc(ndomainsz) ! Parameter C in eqution 17 |
---|
| 85 | REAL zulow(ndomainsz) ! initialized value but never used |
---|
| 86 | REAL zvlow(ndomainsz) ! initialized value but never used |
---|
| 87 | REAL znup(ndomainsz) ! znu in top of 1/2 level |
---|
| 88 | REAL znum(ndomainsz) ! znu in bottom of 1/2 level |
---|
| 89 | |
---|
| 90 | integer jk,jl |
---|
| 91 | integer ilevm1 !=nlayer-1 |
---|
| 92 | integer ilevm2 !=nlayer-2 |
---|
| 93 | integer ilevh !=nalyer/3 |
---|
| 94 | INTEGER kidia !=1 |
---|
| 95 | INTEGER kfdia !=ngrid |
---|
| 96 | real zcons1 !=1/r |
---|
| 97 | real zcons2 !=g^2/cpp |
---|
| 98 | real zcons3 !=1.5*pi |
---|
| 99 | real zphi ! direction of the incident flow |
---|
| 100 | real zhgeo ! Height calculated by geopotential/g |
---|
| 101 | real zu ! Low level zonal wind (to denfine the dirction of background wind) |
---|
| 102 | real zwind,zdwind |
---|
| 103 | real zvt1,zvt2,zst,zvar |
---|
| 104 | real zdelp !dp differitial of pressure |
---|
| 105 | ! variables for bv and density rho |
---|
| 106 | real zstabm,zstabp,zrhom,zrhop |
---|
| 107 | ! real alpha !=3. but never used |
---|
| 108 | real zggeenv,zggeom1,zgvar |
---|
[38] | 109 | logical lo |
---|
[2642] | 110 | LOGICAL LL1(ndomainsz,nlayer+1) |
---|
| 111 | |
---|
| 112 | !-------------------------------------------------------------------------------- |
---|
| 113 | ! 1. INITIALIZATION |
---|
| 114 | !-------------------------------------------------------------------------------- |
---|
| 115 | ! 100 CONTINUE ! continue tag without source, maybe need delete in future |
---|
[38] | 116 | |
---|
[2642] | 117 | !* 1.1 COMPUTATIONAL CONSTANTS |
---|
[38] | 118 | kidia=1 |
---|
[2642] | 119 | kfdia=ngrid |
---|
| 120 | ! 110 CONTINUE ! continue tag without source, maybe need delete in future |
---|
| 121 | ILEVM1=nlayer-1 |
---|
| 122 | ILEVM2=nlayer-2 |
---|
| 123 | ILEVH =nlayer/3 !!!! maybe not enough for Mars, need check later |
---|
[38] | 124 | ZCONS1=1./r |
---|
| 125 | ZCONS2=g**2/cpp |
---|
| 126 | ZCONS3=1.5*PI |
---|
| 127 | |
---|
[2642] | 128 | !------------------------------------------------------------------------------------------------------ |
---|
| 129 | ! 2. Compute all the critical levels and the coeffecients of anisotropy |
---|
| 130 | !----------------------------------------------------------------------------------------------------- |
---|
| 131 | ! 200 CONTINUE ! continue tag without source, maybe need delete in future |
---|
| 132 | ! 2.1 Define low level wind, project winds in plane of low level wind, |
---|
| 133 | ! determine sector in which to take the variance and set indicator for critical levels. |
---|
| 134 | DO JL=kidia,kfdia |
---|
| 135 | ! initialize all the height into surface (notice the layers have been inversed by preious rountines) |
---|
| 136 | IKNU(JL) =nlayer |
---|
| 137 | IKNU2(JL) =nlayer |
---|
| 138 | IKNUb(JL) =nlayer |
---|
| 139 | IKNUl(JL) =nlayer |
---|
| 140 | pgam(JL) =max(pgam(jl),gtsec) ! gtsec is from yoegwd.h which is a common variable |
---|
| 141 | ll1(jl,nlayer+1)=.false. |
---|
| 142 | end DO |
---|
[38] | 143 | |
---|
[2642] | 144 | ! Define top of low level flow (since pressure, zonal and meridional wind have been inversed |
---|
| 145 | ! the process is to find the layer from surface (nlayer) to some levels ) by searching several |
---|
| 146 | ! altitude scope |
---|
[38] | 147 | |
---|
[2642] | 148 | ! using 4 times sub-grid scale deviation as the threahold of the critical height |
---|
| 149 | DO JK=nlayer,ilevh,-1 ! ilevh=nlayer/3=16 |
---|
| 150 | DO JL=kidia,kfdia ! jl=1:ngrid |
---|
| 151 | ! To found the layer of the "top of low level flow" |
---|
| 152 | LO=(pplev(JL,JK)/pplev(JL,nlayer+1)).GE.GSIGCR |
---|
| 153 | IF(LO) THEN |
---|
| 154 | IKCRIT(JL)=JK |
---|
| 155 | ENDIF |
---|
| 156 | ZHCRIT(JL,JK)=4.*pvar(JL) ! |
---|
| 157 | ! use geopotetial denfination to get geoheight[in meters] of the layer |
---|
| 158 | ZHGEO=zgeom(JL,JK)/g |
---|
| 159 | ll1(JL,JK)=(ZHGEO.GT.ZHCRIT(JL,JK)) |
---|
| 160 | IF(ll1(JL,JK).NEQV.ll1(JL,JK+1)) THEN |
---|
| 161 | IKNU(JL)=JK |
---|
| 162 | ENDIF |
---|
| 163 | ENDDO |
---|
| 164 | end DO |
---|
[38] | 165 | |
---|
[2642] | 166 | ! using 3 times sub-grid scale deviation as the threahold of the critical height |
---|
| 167 | DO JK=nlayer,ilevh,-1 |
---|
| 168 | DO JL=kidia,kfdia |
---|
| 169 | ZHCRIT(JL,JK)=3.*pvar(JL) |
---|
| 170 | ZHGEO=zgeom(JL,JK)/g |
---|
| 171 | ll1(JL,JK)=(ZHGEO.GT.ZHCRIT(JL,JK)) |
---|
| 172 | IF(ll1(JL,JK).NEQV.ll1(JL,JK+1)) THEN |
---|
| 173 | IKNU2(JL)=JK |
---|
| 174 | ENDIF |
---|
| 175 | ENDDO |
---|
| 176 | end DO |
---|
| 177 | |
---|
| 178 | ! using 2 times sub-grid scale deviation as the threahold of the critical height |
---|
| 179 | DO JK=nlayer,ilevh,-1 |
---|
| 180 | DO JL=kidia,kfdia |
---|
| 181 | ZHCRIT(JL,JK)=2.*pvar(JL) |
---|
| 182 | ZHGEO=zgeom(JL,JK)/g |
---|
| 183 | ll1(JL,JK)=(ZHGEO.GT.ZHCRIT(JL,JK)) |
---|
| 184 | IF(ll1(JL,JK).NEQV.ll1(JL,JK+1)) THEN |
---|
| 185 | IKNUb(JL)=JK |
---|
| 186 | ENDIF |
---|
| 187 | ENDDO |
---|
| 188 | end DO |
---|
| 189 | |
---|
| 190 | ! using 1 times sub-grid scale deviation as the threahold of the critical height |
---|
| 191 | DO JK=nlayer,ilevh,-1 |
---|
| 192 | DO JL=kidia,kfdia |
---|
| 193 | ZHCRIT(JL,JK)=pvar(JL) |
---|
| 194 | ZHGEO=zgeom(JL,JK)/g |
---|
| 195 | ll1(JL,JK)=(ZHGEO.GT.ZHCRIT(JL,JK)) |
---|
| 196 | IF(ll1(JL,JK).NEQV.ll1(JL,JK+1)) THEN |
---|
| 197 | IKNUl(JL)=JK |
---|
| 198 | ENDIF |
---|
| 199 | ENDDO |
---|
| 200 | end DO |
---|
| 201 | ! loop to relocate the critical height to make sure everything is okay if theses |
---|
| 202 | ! levels hit the model surface or top. |
---|
| 203 | do jl=kidia,kfdia |
---|
| 204 | IKNU(jl)=min(IKNU(jl),nktopg) ! nktopg is a common variable from yoegwd.h |
---|
| 205 | IKNUb(jl)=min(IKNUb(jl),nktopg) |
---|
| 206 | if(IKNUb(jl).eq.nktopg) IKNUl(jl)=nlayer |
---|
| 207 | ! Change in here to stop IKNUl=IKNUb |
---|
| 208 | if(IKNUl(jl).le.IKNUb(jl)) IKNUl(jl)=nktopg |
---|
| 209 | enddo |
---|
| 210 | |
---|
| 211 | ! 210 CONTINUE ! continue tag without source, maybe need delete in future |
---|
| 212 | ! Initialize various arrays for the following computes |
---|
| 213 | DO JL=kidia,kfdia |
---|
| 214 | ZRHO(JL,nlayer+1) =0.0 |
---|
| 215 | BV(JL,nlayer+1) =0.0 |
---|
| 216 | BV(JL,1) =0.0 |
---|
| 217 | PRI(JL,nlayer+1) =9999.0 |
---|
| 218 | ZPSI(JL,nlayer+1) =0.0 |
---|
| 219 | PRI(JL,1) =0.0 |
---|
| 220 | ZVPH(JL,1) =0.0 |
---|
| 221 | PULOW(JL) =0.0 |
---|
| 222 | PVLOW(JL) =0.0 |
---|
| 223 | zulow(JL) =0.0 |
---|
| 224 | zvlow(JL) =0.0 |
---|
| 225 | IKCRITH(JL) =nlayer ! surface |
---|
| 226 | IKENVH(JL) =nlayer ! surface |
---|
| 227 | Kentp(JL) =nlayer ! surface |
---|
| 228 | ICRIT(JL) =1 ! topmost layer |
---|
| 229 | ncount(JL) =0 |
---|
| 230 | ll1(JL,nlayer+1) =.false. |
---|
| 231 | ENDDO |
---|
| 232 | |
---|
| 233 | ! Define low-level flow Brunt–Väisälä frequency N^2, density ZRHO |
---|
| 234 | ! The incident flow passes over the mean orography is evaluated by averaging the wind, |
---|
| 235 | ! the Brunt–Väisälä frequency, and the fluid density between 1*pvar and 2*pvar over the |
---|
| 236 | ! model mean orography |
---|
| 237 | DO JK=nlayer,2,-1 ! from surface to topmost-1 layer |
---|
| 238 | DO JL=kidia,kfdia |
---|
| 239 | IF(ktest(JL).EQ.1) THEN ! if the map of the calling points is true |
---|
| 240 | ! calcalate density and BV |
---|
| 241 | ZDP(JL,JK)=pplay(JL,JK)-pplay(JL,JK-1) !dp>0 |
---|
| 242 | ZRHO(JL,JK)=2.*pplev(JL,JK)*ZCONS1/(pt(JL,JK)+pt(JL,JK-1)) !rho=p/(r*T) |
---|
| 243 | ! Brunt–Väisälä frequency N^2. This equation for BV is illness since |
---|
| 244 | ! too many variables are used. Use N^2=g/T[1/(cpp*T)+dT/dz] to replace in the future |
---|
| 245 | BV(JL,JK)=2.*ZCONS2/(pt(JL,JK)+pt(JL,JK-1))*(1.-cpp*ZRHO(JL,JK)*(pt(JL,JK)-pt(JL,JK-1))/ZDP(JL,JK)) |
---|
| 246 | BV(JL,JK)=MAX(BV(JL,JK),GSSEC) |
---|
| 247 | ENDIF |
---|
| 248 | ENDDO |
---|
| 249 | end DO |
---|
[38] | 250 | |
---|
[2642] | 251 | DO JK=nlayer,ilevh,-1 |
---|
| 252 | DO JL=kidia,kfdia |
---|
| 253 | if(jk.ge.IKNUb(jl).and.jk.le.IKNUl(jl)) then ! IF the layer between 1*pvar and 2*pvar |
---|
| 254 | ! calculate the low level wind U_H |
---|
| 255 | ! pulow/pvlow at a speicfic location equals to sum of u*dp of all levels |
---|
| 256 | ! notice here dp is already a positive number |
---|
| 257 | pulow(JL)=pulow(JL)+pu(JL,JK)*(pplev(JL,JK+1)-pplev(JL,JK)) |
---|
| 258 | pvlow(JL)=pvlow(JL)+pv(JL,JK)*(pplev(JL,JK+1)-pplev(JL,JK)) |
---|
| 259 | end if |
---|
| 260 | ENDDO |
---|
| 261 | end DO |
---|
| 262 | ! averaging the wind |
---|
| 263 | DO JL=kidia,kfdia |
---|
| 264 | ! by divide dp [p differ between iknul and uknub level] |
---|
| 265 | pulow(JL)=pulow(JL)/(pplev(JL,IKNUl(jl)+1)-pplev(JL,IKNUb(jl))) |
---|
| 266 | pvlow(JL)=pvlow(JL)/(pplev(JL,IKNUl(jl)+1)-pplev(JL,IKNUb(jl))) |
---|
| 267 | ! average U to get background U? |
---|
| 268 | ZNORM(JL)=MAX(SQRT(PULOW(JL)**2+PVLOW(JL)**2),GVSEC) |
---|
| 269 | ZVPH(JL,nlayer+1)=ZNORM(JL) ! The wind below the surface level (e.g., start of the 1/2 level) |
---|
| 270 | ENDDO |
---|
[38] | 271 | |
---|
[2642] | 272 | ! The gravity wave drag caused by the flow passes over an single elliptic mountain can be calculated |
---|
| 273 | ! by equation 17 and 18 |
---|
| 274 | DO JL=kidia,kfdia |
---|
| 275 | LO=(PULOW(JL).LT.GVSEC).AND.(PULOW(JL).GE.-GVSEC) |
---|
| 276 | IF(LO) THEN |
---|
| 277 | ZU=PULOW(JL)+2.*GVSEC |
---|
| 278 | ELSE |
---|
| 279 | ZU=PULOW(JL) |
---|
| 280 | ENDIF |
---|
| 281 | ! Here all physics for equation 17 and 18 |
---|
| 282 | ! Direction of the incident flow |
---|
| 283 | Zphi=ATAN(PVLOW(JL)/ZU) |
---|
| 284 | ! The angle between the incident flow direction and the normal ridge direction pthe |
---|
| 285 | ZPSI(jl,nlayer+1)=pthe(jl)*pi/180.-zphi |
---|
| 286 | ! equation(17) parameter B and C |
---|
| 287 | zb(jl)=1.-0.18*pgam(jl)-0.04*pgam(jl)**2 |
---|
| 288 | zc(jl)=0.48*pgam(jl)+0.3*pgam(jl)**2 |
---|
| 289 | ! Bcos^2(psi)-Csin^2(psi) |
---|
| 290 | ZD1(jl)=zb(jl)-(zb(jl)-zc(jl))*(sin(ZPSI(jl,nlayer+1))**2) |
---|
| 291 | ! (B-C)sin(psi)cos(psi) |
---|
| 292 | ZD2(jl)=(zb(jl)-zc(jl))*sin(ZPSI(jl,nlayer+1))*cos(ZPSI(jl,nlayer+1)) |
---|
| 293 | ! squre root of tao1 and tao2 without the constant see equation 17 or 18 |
---|
| 294 | ZDMOD(jl)=sqrt(ZD1(jl)**2+ZD2(jl)**2) |
---|
| 295 | ENDDO |
---|
| 296 | |
---|
| 297 | ! Define blocked flow |
---|
| 298 | ! Setup orogrphy axes and define plane of profiles |
---|
| 299 | ! Define blocked flow in plane of the low level stress |
---|
| 300 | DO JK=1,nlayer |
---|
| 301 | DO JL=kidia,kfdia |
---|
| 302 | IF(ktest(JL).EQ.1) THEN |
---|
| 303 | ZVt1 =PULOW(JL)*pu(JL,JK)+PVLOW(JL)*pv(JL,JK) |
---|
| 304 | ZVt2 =-PvLOW(JL)*pu(JL,JK)+PuLOW(JL)*pv(JL,JK) |
---|
| 305 | ! zvpf is a normalized variable |
---|
| 306 | ZVPF(JL,JK)=(zvt1*ZD1(jl)+zvt2*ZD2(JL))/(znorm(jl)*ZDMOD(jl)) |
---|
| 307 | ENDIF |
---|
| 308 | ZTAU(JL,JK) =0.0 |
---|
| 309 | ZZDEP(JL,JK) =0.0 |
---|
| 310 | ZPSI(JL,JK) =0.0 |
---|
| 311 | ll1(JL,JK) =.FALSE. |
---|
| 312 | ENDDO |
---|
| 313 | end DO |
---|
| 314 | |
---|
| 315 | DO JK=2,nlayer |
---|
| 316 | DO JL=kidia,kfdia |
---|
| 317 | IF(ktest(JL).EQ.1) THEN |
---|
| 318 | ZDP(JL,JK)=pplay(JL,JK)-pplay(JL,JK-1) ! dp |
---|
| 319 | ! zvph is the U_H in equation 17 e.g. low level wind speed |
---|
| 320 | ZVPH(JL,JK)=((pplev(JL,JK)-pplay(JL,JK-1))*ZVPF(JL,JK)+ & |
---|
| 321 | (pplay(JL,JK)-pplev(JL,JK))*ZVPF(JL,JK-1))/ZDP(JL,JK) |
---|
| 322 | IF(ZVPH(JL,JK).LT.GVSEC) THEN |
---|
| 323 | ZVPH(JL,JK)=GVSEC |
---|
| 324 | ICRIT(JL)=JK |
---|
| 325 | ENDIF |
---|
| 326 | endIF |
---|
| 327 | ENDDO |
---|
| 328 | end DO |
---|
[38] | 329 | |
---|
[2642] | 330 | ! 2.2 Brunt-vaisala frequency and density at half levels |
---|
| 331 | 220 CONTINUE ! continue tag without source, maybe need delete in future |
---|
| 332 | |
---|
| 333 | DO JK=ilevh,nlayer |
---|
| 334 | DO JL=kidia,kfdia |
---|
| 335 | IF(ktest(JL).EQ.1) THEN |
---|
| 336 | IF(jk.ge.(IKNUb(jl)+1).and.jk.le.IKNUl(jl)) THEN |
---|
| 337 | ZST=ZCONS2/pt(JL,JK)*(1.-cpp*ZRHO(JL,JK)* & |
---|
| 338 | (pt(JL,JK)-pt(JL,JK-1))/ZDP(JL,JK)) |
---|
| 339 | BV(JL,nlayer+1)=BV(JL,nlayer+1)+ZST*ZDP(JL,JK) |
---|
| 340 | BV(JL,nlayer+1)=MAX(BV(JL,nlayer+1),GSSEC) |
---|
| 341 | ZRHO(JL,nlayer+1)=ZRHO(JL,nlayer+1)+pplev(JL,JK)*2.*ZDP(JL,JK) & |
---|
| 342 | *ZCONS1/(pt(JL,JK)+pt(JL,JK-1)) |
---|
| 343 | ENDIF |
---|
| 344 | endIF |
---|
| 345 | ENDDO |
---|
| 346 | end DO |
---|
[38] | 347 | |
---|
[2642] | 348 | DO JL=kidia,kfdia |
---|
| 349 | !***************************************************************************** |
---|
| 350 | ! Okay. There is a possible problem here. If IKNUl=IKNUb then division by zero |
---|
| 351 | ! occurs. I have put a fix in here but will ask Francois lott about it in Paris. |
---|
| 352 | ! Also if this is the case BV and ZRHO are not defined at nlayer+1 so I have |
---|
| 353 | ! added the else. |
---|
| 354 | ! by: MAT COLLINS 30.1.96 |
---|
| 355 | !***************************************************************************** |
---|
| 356 | IF (IKNUL(JL).NE.IKNUB(JL)) THEN |
---|
| 357 | BV(JL,nlayer+1)=BV(JL,nlayer+1)/(pplay(JL,IKNUl(jl))-pplay(JL,IKNUb(jl))) |
---|
| 358 | ZRHO(JL,nlayer+1)=ZRHO(JL,nlayer+1)/(pplay(JL,IKNUl(jl))-pplay(JL,IKNUb(jl))) |
---|
| 359 | ELSE |
---|
| 360 | WRITE(*,*) 'OROSETUP: IKNUB=IKNUL= ',IKNUB(JL),' AT JL= ',JL |
---|
| 361 | BV(JL,nlayer+1)=BV(JL,nlayer) |
---|
| 362 | ZRHO(JL,nlayer+1)=ZRHO(JL,nlayer) |
---|
| 363 | ENDIF |
---|
| 364 | ZVAR=pvar(JL) |
---|
| 365 | ENDDO !JL=kidia,kfdia |
---|
[38] | 366 | |
---|
[2642] | 367 | ! 2.3 Mean flow richardson number and critical height for proude layer |
---|
| 368 | ! 230 CONTINUE ! continue tag without source, maybe need delete in future |
---|
| 369 | |
---|
| 370 | DO JK=2,nlayer |
---|
| 371 | DO JL=kidia,kfdia |
---|
| 372 | IF(ktest(JL).EQ.1) THEN |
---|
| 373 | ! du |
---|
| 374 | ZDWIND=MAX(ABS(ZVPF(JL,JK)-ZVPF(JL,JK-1)),GVSEC) |
---|
| 375 | ! Mean flow Richardson number Ri=g/rho[drho/dz / (du/dz)^2] |
---|
| 376 | ! Here dp maybe dp^2 ? Need ask Francios lott later |
---|
| 377 | PRI(JL,JK)=BV(JL,JK)*(ZDP(JL,JK)/(g*ZRHO(JL,JK)*ZDWIND))**2 |
---|
| 378 | PRI(JL,JK)=MAX(PRI(JL,JK),GRCRIT) |
---|
| 379 | ENDIF |
---|
| 380 | ENDDO |
---|
| 381 | end DO |
---|
| 382 | |
---|
| 383 | !* Define top of 'envelope' layer |
---|
| 384 | DO JL=kidia,kfdia |
---|
| 385 | ZNU (jl)=0.0 |
---|
| 386 | znum(jl)=0.0 |
---|
| 387 | ENDDO |
---|
[38] | 388 | |
---|
[2642] | 389 | DO JK=2,nlayer-1 |
---|
| 390 | DO JL=kidia,kfdia |
---|
| 391 | IF(ktest(JL).EQ.1) THEN |
---|
| 392 | IF (JK.GE.IKNU2(JL)) THEN ! level lower than 3*par |
---|
| 393 | ! all codes here is to calculate equation 9 |
---|
| 394 | ZNUM(JL)=ZNU(JL) |
---|
| 395 | ZWIND=(pulow(JL)*pu(jl,jk)+pvlow(jl)*pv(jl,jk))/max(sqrt(pulow(jl)**2+pvlow(jl)**2),gvsec) |
---|
| 396 | ZWIND=max(sqrt(zwind**2),gvsec) |
---|
| 397 | ZDELP=pplev(JL,JK+1)-pplev(JL,JK) ! dp |
---|
| 398 | ZSTABM=SQRT(MAX(BV(JL,JK ),GSSEC)) |
---|
| 399 | ZSTABP=SQRT(MAX(BV(JL,JK+1),GSSEC)) |
---|
| 400 | ZRHOM=ZRHO(JL,JK ) |
---|
| 401 | ZRHOP=ZRHO(JL,JK+1) |
---|
| 402 | ! Equation 9. znu is a critical value to find the blocking layer |
---|
| 403 | ZNU(JL) = ZNU(JL) + (ZDELP/g)*((zstabp/zrhop+zstabm/zrhom)/2.)/ZWIND |
---|
| 404 | ! Found the moutain top |
---|
| 405 | IF((ZNUM(JL).LE.GFRCRIT).AND.(ZNU(JL).GT.GFRCRIT).AND.(IKENVH(JL).EQ.nlayer)) THEN |
---|
| 406 | IKENVH(JL)=JK |
---|
| 407 | ENDIF |
---|
| 408 | ENDIF ! (JK.GE.IKNU2(JL)) |
---|
| 409 | ENDIF !(ktest(JL).EQ.1) |
---|
| 410 | ENDDO |
---|
| 411 | endDO |
---|
[38] | 412 | |
---|
[2642] | 413 | ! Calculation of a dynamical mixing height for the breaking of gravity waves |
---|
| 414 | DO JL=kidia,kfdia |
---|
| 415 | znup(jl)=0.0 |
---|
| 416 | znum(jl)=0.0 |
---|
| 417 | ENDDO |
---|
| 418 | |
---|
| 419 | DO JK=nlayer-1,2,-1 |
---|
| 420 | DO JL=kidia,kfdia |
---|
| 421 | IF(ktest(JL).EQ.1) THEN |
---|
| 422 | IF (JK.LT.IKENVH(JL)) THEN |
---|
| 423 | ZNUM(JL)=ZNUP(JL) |
---|
| 424 | ZWIND=(pulow(JL)*pu(jl,jk)+pvlow(jl)*pv(jl,jk))/max(sqrt(pulow(jl)**2+pvlow(jl)**2),gvsec) |
---|
| 425 | ZWIND=max(sqrt(zwind**2),gvsec) |
---|
| 426 | ZDELP=pplev(JL,JK+1)-pplev(JL,JK) |
---|
| 427 | ZSTABM=SQRT(MAX(BV(JL,JK ),GSSEC)) |
---|
| 428 | ZSTABP=SQRT(MAX(BV(JL,JK+1),GSSEC)) |
---|
| 429 | ZRHOM=ZRHO(JL,JK ) |
---|
| 430 | ZRHOP=ZRHO(JL,JK+1) |
---|
| 431 | ZNUP(JL) = ZNUP(JL) + (ZDELP/g)*((zstabp/zrhop+zstabm/zrhom)/2.)/ZWIND |
---|
| 432 | ! dynamical mixing height for the breaking of gravity waves |
---|
| 433 | IF((ZNUM(JL).LE.1.5).AND.(ZNUP(JL).GT.1.5).AND.(IKCRITH(JL).EQ.nlayer)) THEN |
---|
| 434 | IKCRITH(JL)=JK |
---|
| 435 | ENDIF |
---|
| 436 | ENDIF ! (JK.LT.IKENVH(JL)) |
---|
| 437 | ENDIF ! (ktest(JL).EQ.1) |
---|
| 438 | ENDDO |
---|
| 439 | end DO |
---|
[38] | 440 | |
---|
[2642] | 441 | DO JL=KIDIA,KFDIA |
---|
| 442 | IKCRITH(JL)=MIN0(IKCRITH(JL),IKNU(JL)) |
---|
| 443 | ENDDO |
---|
[38] | 444 | |
---|
[2642] | 445 | ! directional info for flow blocking ************************* |
---|
| 446 | DO jk=ilevh,nlayer |
---|
| 447 | DO JL=kidia,kfdia |
---|
| 448 | IF(jk.ge.IKENVH(jl)) THEN |
---|
| 449 | LO=(pu(JL,jk).LT.GVSEC).AND.(pu(JL,jk).GE.-GVSEC) |
---|
| 450 | IF(LO) THEN |
---|
| 451 | ZU=pu(JL,jk)+2.*GVSEC |
---|
| 452 | ELSE |
---|
| 453 | ZU=pu(JL,jk) |
---|
| 454 | ENDIF |
---|
| 455 | Zphi=ATAN(pv(JL,jk)/ZU) |
---|
| 456 | ZPSI(jl,jk)=pthe(jl)*pi/180.-zphi |
---|
| 457 | end IF |
---|
| 458 | ENDDO |
---|
| 459 | end DO |
---|
[38] | 460 | |
---|
[2642] | 461 | ! forms the vertical 'leakiness' ************************** |
---|
| 462 | DO JK=ilevh,nlayer |
---|
| 463 | DO JL=kidia,kfdia |
---|
| 464 | IF(jk.ge.IKENVH(jl)) THEN |
---|
| 465 | zggeenv=AMAX1(1.,(zgeom(jl,IKENVH(jl))+zgeom(jl,IKENVH(jl)-1))/2.) |
---|
| 466 | zggeom1=AMAX1(zgeom(jl,jk),1.) |
---|
| 467 | zgvar=amax1(pvar(jl)*g,1.) |
---|
| 468 | ZZDEP(jl,jk)=SQRT((zggeenv-zggeom1)/(zggeom1+zgvar)) |
---|
| 469 | endIF |
---|
| 470 | ENDDO |
---|
| 471 | end DO |
---|
[38] | 472 | |
---|
[2642] | 473 | ! 260 CONTINUE ! continue tag without source, maybe need delete in future |
---|
[38] | 474 | |
---|
[2642] | 475 | RETURN |
---|
| 476 | END |
---|