| [1617] | 1 | ******************************************************* |
|---|
| 2 | * * |
|---|
| [2156] | 3 | subroutine nucleaco2(pco2,temp,sat,n_ccn,nucrate, |
|---|
| [1685] | 4 | & n_ccn_h2oice,rad_h2oice,nucrate_h2oice, |
|---|
| 5 | & vo2co2) |
|---|
| [1617] | 6 | USE comcstfi_h |
|---|
| 7 | |
|---|
| 8 | implicit none |
|---|
| 9 | * * |
|---|
| 10 | * This subroutine computes the nucleation rate * |
|---|
| 11 | * as given in Pruppacher & Klett (1978) in the * |
|---|
| 12 | * case of water ice forming on a solid substrate. * |
|---|
| 13 | * Definition refined by Keese (jgr,1989) * |
|---|
| 14 | * Authors: F. Montmessin * |
|---|
| 15 | * Adapted for the LMD/GCM by J.-B. Madeleine * |
|---|
| 16 | * (October 2011) * |
|---|
| [1816] | 17 | * Optimisation by A. Spiga (February 2012) * |
|---|
| 18 | * CO2 nucleation routine dev. by Constantino * |
|---|
| 19 | * Listowski and Joachim Audouard (2016-2017), * |
|---|
| [1818] | 20 | * adapted from the water ice nucleation |
|---|
| 21 | * It computes two different nucleation rates : one |
|---|
| 22 | * on the dust CCN distribution and the other one on |
|---|
| 23 | * the water ice particles distribution |
|---|
| [1617] | 24 | ******************************************************* |
|---|
| 25 | ! nucrate = output |
|---|
| [1816] | 26 | ! nucrate_h2o en sortie aussi : |
|---|
| [1617] | 27 | !nucleation sur dust et h2o separement ici |
|---|
| 28 | |
|---|
| [1921] | 29 | include "microphys.h" |
|---|
| 30 | include "callkeys.h" |
|---|
| 31 | |
|---|
| [1617] | 32 | c Inputs |
|---|
| [1685] | 33 | DOUBLE PRECISION pco2,sat,vo2co2 |
|---|
| [1617] | 34 | DOUBLE PRECISION n_ccn(nbinco2_cld), n_ccn_h2oice(nbinco2_cld) |
|---|
| [1816] | 35 | REAL temp !temperature |
|---|
| [1617] | 36 | c Output |
|---|
| 37 | DOUBLE PRECISION nucrate(nbinco2_cld) |
|---|
| 38 | DOUBLE PRECISION nucrate_h2oice(nbinco2_cld) ! h2o as substrate |
|---|
| 39 | double precision rad_h2oice(nbinco2_cld) ! h2o ice grid (as substrate) |
|---|
| 40 | |
|---|
| 41 | c Local variables |
|---|
| 42 | DOUBLE PRECISION nco2 |
|---|
| 43 | DOUBLE PRECISION rstar ! Radius of the critical germ (m) |
|---|
| 44 | DOUBLE PRECISION gstar ! # of molecules forming a critical embryo |
|---|
| 45 | DOUBLE PRECISION fistar ! Activation energy required to form a critical embryo (J) |
|---|
| 46 | DOUBLE PRECISION fshapeco2 ! function defined at the end of the file |
|---|
| [1816] | 47 | DOUBLE PRECISION deltaf |
|---|
| [1685] | 48 | double precision mtetalocal,mtetalocalh ! local mteta in double precision |
|---|
| [1617] | 49 | double precision fshapeco2simple,zefshapeco2 |
|---|
| 50 | integer i |
|---|
| 51 | c ************************************************* |
|---|
| 52 | |
|---|
| 53 | mtetalocal = dble(mtetaco2) !! use mtetalocal for better performance |
|---|
| [1685] | 54 | mtetalocalh=dble(mteta) |
|---|
| [1617] | 55 | |
|---|
| 56 | |
|---|
| [1921] | 57 | IF (sat .gt. 1.) THEN ! minimum condition to activate nucleation |
|---|
| [1617] | 58 | |
|---|
| 59 | nco2 = pco2 / kbz / temp |
|---|
| [1685] | 60 | rstar = 2. * sigco2 * vo2co2 / (kbz*temp*dlog(sat)) |
|---|
| 61 | gstar = 4. * pi * (rstar * rstar * rstar) / (3.*vo2co2) |
|---|
| [1617] | 62 | |
|---|
| 63 | fshapeco2simple = (2.+mtetalocal)*(1.-mtetalocal)*(1.-mtetalocal) |
|---|
| 64 | & / 4. |
|---|
| 65 | |
|---|
| 66 | c Loop over size bins |
|---|
| [1921] | 67 | do i=1,nbinco2_cld |
|---|
| [1617] | 68 | c write(*,*) "IN NUCLEA, i, RAD_CLDCO2(i) = ",i, rad_cldco2(i), |
|---|
| 69 | c & n_ccn(i) |
|---|
| 70 | |
|---|
| 71 | if ( n_ccn(i) .lt. 1e-10 ) then |
|---|
| 72 | c no dust, no need to compute nucleation! |
|---|
| 73 | nucrate(i)=0. |
|---|
| [1921] | 74 | c goto 210 |
|---|
| 75 | c endif |
|---|
| [1617] | 76 | else |
|---|
| [1921] | 77 | if (rad_cldco2(i).gt.3000.*rstar) then |
|---|
| 78 | zefshapeco2 = fshapeco2simple |
|---|
| 79 | else |
|---|
| 80 | zefshapeco2 = fshapeco2(mtetalocal,rad_cldco2(i)/rstar) |
|---|
| 81 | endif |
|---|
| [1617] | 82 | |
|---|
| [1921] | 83 | fistar = (4./3.*pi) * sigco2 * (rstar * rstar) * |
|---|
| [1617] | 84 | & zefshapeco2 |
|---|
| [1921] | 85 | deltaf = (2.*desorpco2-surfdifco2-fistar)/ |
|---|
| [1617] | 86 | & (kbz*temp) |
|---|
| [1921] | 87 | deltaf = min( max(deltaf, -100.d0), 100.d0) |
|---|
| [1617] | 88 | |
|---|
| [1921] | 89 | if (deltaf.eq.-100.) then |
|---|
| 90 | nucrate(i) = 0. |
|---|
| 91 | else |
|---|
| 92 | nucrate(i)= dble(sqrt ( fistar / |
|---|
| [1617] | 93 | & (3.*pi*kbz*temp*(gstar*gstar)) ) |
|---|
| 94 | & * kbz * temp * rstar |
|---|
| 95 | & * rstar * 4. * pi |
|---|
| 96 | & * ( nco2*rad_cldco2(i) ) |
|---|
| 97 | & * ( nco2*rad_cldco2(i) ) |
|---|
| 98 | & / ( zefshapeco2 * nusco2 * m0co2 ) |
|---|
| 99 | & * dexp (deltaf)) |
|---|
| 100 | |
|---|
| 101 | |
|---|
| [1921] | 102 | endif |
|---|
| 103 | endif ! if n_ccn(i) .lt. 1e-10 |
|---|
| [1617] | 104 | |
|---|
| [1921] | 105 | if (co2useh2o) then |
|---|
| [1617] | 106 | |
|---|
| [1921] | 107 | if ( n_ccn_h2oice(i) .lt. 1e-10 ) then |
|---|
| 108 | c no H2O ice, no need to compute nucleation! |
|---|
| 109 | nucrate_h2oice(i)=0. |
|---|
| 110 | else |
|---|
| 111 | if (rad_h2oice(i).gt.3000.*rstar) then |
|---|
| 112 | zefshapeco2 = (2.+mtetalocalh)*(1.-mtetalocalh)* |
|---|
| [1685] | 113 | & (1.-mtetalocalh) / 4. |
|---|
| [1921] | 114 | else ! same m for dust/h2o ice |
|---|
| 115 | zefshapeco2 = fshapeco2(mtetalocalh, |
|---|
| 116 | & (rad_h2oice(i)/rstar)) |
|---|
| 117 | endif |
|---|
| [1617] | 118 | |
|---|
| [1921] | 119 | fistar = (4./3.*pi) * sigco2 * (rstar * rstar) * |
|---|
| [1617] | 120 | & zefshapeco2 |
|---|
| [1921] | 121 | deltaf = (2.*desorpco2-surfdifco2-fistar)/ |
|---|
| [1617] | 122 | & (kbz*temp) |
|---|
| [1921] | 123 | deltaf = min( max(deltaf, -100.d0), 100.d0) |
|---|
| [1617] | 124 | |
|---|
| [1921] | 125 | if (deltaf.eq.-100.) then |
|---|
| 126 | nucrate_h2oice(i) = 0. |
|---|
| 127 | else |
|---|
| 128 | nucrate_h2oice(i)= dble(sqrt ( fistar / |
|---|
| [1617] | 129 | & (3.*pi*kbz*temp*(gstar*gstar)) ) |
|---|
| 130 | & * kbz * temp * rstar |
|---|
| 131 | & * rstar * 4. * pi |
|---|
| 132 | & * ( nco2*rad_h2oice(i) ) |
|---|
| 133 | & * ( nco2*rad_h2oice(i) ) |
|---|
| 134 | & / ( zefshapeco2 * nusco2 * m0co2 ) |
|---|
| 135 | & * dexp (deltaf)) |
|---|
| [1921] | 136 | endif |
|---|
| 137 | endif |
|---|
| [1617] | 138 | endif |
|---|
| [1921] | 139 | enddo |
|---|
| [1617] | 140 | |
|---|
| [1921] | 141 | ELSE ! parcelle d'air non saturée |
|---|
| [1617] | 142 | |
|---|
| 143 | do i=1,nbinco2_cld |
|---|
| 144 | nucrate(i) = 0. |
|---|
| 145 | nucrate_h2oice(i) = 0. |
|---|
| 146 | enddo |
|---|
| 147 | |
|---|
| [1921] | 148 | ENDIF ! if (sat .gt. 1.) |
|---|
| [1617] | 149 | |
|---|
| 150 | end |
|---|
| 151 | |
|---|
| 152 | ********************************************************* |
|---|
| 153 | double precision function fshapeco2(cost,rap) |
|---|
| 154 | implicit none |
|---|
| 155 | * function computing the f(m,x) factor * |
|---|
| 156 | * related to energy required to form a critical embryo * |
|---|
| 157 | ********************************************************* |
|---|
| 158 | |
|---|
| 159 | double precision cost,rap |
|---|
| 160 | double precision yeah |
|---|
| 161 | |
|---|
| 162 | !! PHI |
|---|
| 163 | yeah = sqrt( 1. - 2.*cost*rap + rap*rap ) |
|---|
| 164 | !! FSHAPECO2 = TERM A |
|---|
| 165 | fshapeco2 = (1.-cost*rap) / yeah |
|---|
| 166 | fshapeco2 = fshapeco2 * fshapeco2 * fshapeco2 |
|---|
| 167 | fshapeco2 = 1. + fshapeco2 |
|---|
| 168 | !! ... + TERM B |
|---|
| 169 | yeah = (rap-cost)/yeah |
|---|
| 170 | fshapeco2 = fshapeco2 + |
|---|
| 171 | & rap*rap*rap*(2.-3.*yeah+yeah*yeah*yeah) |
|---|
| 172 | !! ... + TERM C |
|---|
| 173 | fshapeco2 = fshapeco2 + 3. * cost * rap * rap * (yeah-1.) |
|---|
| 174 | !! FACTOR 1/2 |
|---|
| 175 | fshapeco2 = 0.5*fshapeco2 |
|---|
| 176 | |
|---|
| 177 | end |
|---|