1 | MODULE nuclea_mod |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | subroutine nuclea(ph2o,temp,sat,n_ccn,nucrate) |
---|
8 | use comcstfi_h, only: pi |
---|
9 | use microphys_h, only: nbin_cld, rad_cld, nav, mteta, m0 |
---|
10 | use microphys_h, only: desorp, kbz, nus, rgp, surfdif, vo1 |
---|
11 | implicit none |
---|
12 | * * |
---|
13 | * This subroutine computes the nucleation rate * |
---|
14 | * as given in Pruppacher & Klett (1978) in the * |
---|
15 | * case of water ice forming on a solid substrate. * |
---|
16 | * Definition refined by Keese (jgr,1989) * |
---|
17 | * Authors: F. Montmessin * |
---|
18 | * Adapted for the LMD/GCM by J.-B. Madeleine * |
---|
19 | * (October 2011) * |
---|
20 | * Optimisation by A. Spiga (February 2012) * |
---|
21 | ******************************************************* |
---|
22 | |
---|
23 | include "callkeys.h" |
---|
24 | |
---|
25 | c Inputs |
---|
26 | DOUBLE PRECISION, INTENT(IN) :: ph2o,sat |
---|
27 | DOUBLE PRECISION, INTENT(IN) :: n_ccn(nbin_cld) |
---|
28 | REAL, INTENT(IN) :: temp |
---|
29 | |
---|
30 | c Output |
---|
31 | ! DOUBLE PRECISION nucrate(nbin_cld) |
---|
32 | REAL, INTENT(OUT) :: nucrate(nbin_cld) |
---|
33 | |
---|
34 | c Local variables |
---|
35 | DOUBLE PRECISION nh2o |
---|
36 | DOUBLE PRECISION sig ! Water-ice/air surface tension (N.m) |
---|
37 | external sig |
---|
38 | DOUBLE PRECISION rstar ! Radius of the critical germ (m) |
---|
39 | DOUBLE PRECISION gstar ! # of molecules forming a critical embryo |
---|
40 | DOUBLE PRECISION fistar ! Activation energy required to form a critical embryo (J) |
---|
41 | ! DOUBLE PRECISION zeldov ! Zeldovitch factor (no dim) |
---|
42 | DOUBLE PRECISION deltaf |
---|
43 | |
---|
44 | c Ratio rstar/radius of the nucleating dust particle |
---|
45 | c double precision xratio |
---|
46 | |
---|
47 | double precision mtetalocal ! local mteta in double precision |
---|
48 | |
---|
49 | double precision fshapesimple,zefshape |
---|
50 | |
---|
51 | |
---|
52 | integer i |
---|
53 | |
---|
54 | LOGICAL, SAVE :: firstcall = .true. |
---|
55 | !$OMP THREADPRIVATE(firstcall) |
---|
56 | |
---|
57 | c ************************************************* |
---|
58 | |
---|
59 | mtetalocal = mteta !! use mtetalocal for better performance |
---|
60 | |
---|
61 | IF (temp_dependent_m) THEN |
---|
62 | c J.Naar - sep 2023 : |
---|
63 | if (.not.cloud_adapt_ts) then |
---|
64 | ! Simple linear parametrisation from Maattaanen 2014 |
---|
65 | ! Maxed out at 0.97 for physical realism |
---|
66 | ! Used to tune the WC without adaptative ts of microphy (MCD6.1 configuration) |
---|
67 | mtetalocal = min(0.0044*temp + 0.1831,0.97) |
---|
68 | else |
---|
69 | ! With adapt_ts, need to use this relation (same paper, tanh relation): |
---|
70 | mtetalocal = 0.469+((0.972-0.469)*tanh((temp/158.282)**4.244)) |
---|
71 | endif ! (.not.cloud_adapt_ts) |
---|
72 | ENDIF ! (temp_dependent_m) |
---|
73 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
74 | ccccccccccc ESSAIS TN MTETA = F (T) cccccccccccccc |
---|
75 | c if (temp .gt. 200) then |
---|
76 | c mtetalocal = mtetalocal |
---|
77 | c else if (temp .lt. 190) then |
---|
78 | c mtetalocal = mtetalocal-0.05 |
---|
79 | c else |
---|
80 | c mtetalocal = mtetalocal - (190-temp)*0.005 |
---|
81 | c endif |
---|
82 | c----------------exp law, see Trainer 2008, J. Phys. Chem. C 2009, 113, 2036\u20132040 |
---|
83 | !mtetalocal = max(mtetalocal - 6005*exp(-0.065*temp),0.1) |
---|
84 | !mtetalocal = max(mtetalocal - 6005*exp(-0.068*temp),0.1) |
---|
85 | !print*, mtetalocal, temp |
---|
86 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
87 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
88 | IF (firstcall.and.temp_dependent_m) THEN |
---|
89 | if (.not.cloud_adapt_ts) then |
---|
90 | print*, ' ' |
---|
91 | print*, 'dear user, please keep in mind that' |
---|
92 | print*, 'contact parameter IS NOT constant ;' |
---|
93 | print*, 'Using the following linear fit from' |
---|
94 | print*, 'Maattanen et al. 2014 (SM linear fit) :' |
---|
95 | print*, 'm=min(0.0044*temp + 0.1831,0.97)' |
---|
96 | print*, ' ' |
---|
97 | else !cloud_adapt_ts=.true. |
---|
98 | print*, ' ' |
---|
99 | print*, 'dear user, please keep in mind that' |
---|
100 | print*, 'contact parameter IS NOT constant ;' |
---|
101 | print*, 'Using the tanh fit n2 (jsc sample) from' |
---|
102 | print*, 'Maattanen et al. 2014 (10.1016/j.grj.2014.09.002) :' |
---|
103 | print*, 'm=0.469+((0.972-0.469)*tanh((temp/158.282)**4.244))' |
---|
104 | print*, ' ' |
---|
105 | endif |
---|
106 | firstcall=.false. |
---|
107 | ELSE IF (firstcall.and.(.not.(temp_dependent_m))) THEN |
---|
108 | print*, ' ' |
---|
109 | print*, 'dear user, please keep in mind that' |
---|
110 | print*, 'contact parameter IS constant' |
---|
111 | print*, ' ' |
---|
112 | firstcall=.false. |
---|
113 | END IF |
---|
114 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
115 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
116 | |
---|
117 | |
---|
118 | if (sat .gt. 1.) then ! minimum condition to activate nucleation |
---|
119 | |
---|
120 | nh2o = ph2o / kbz / temp |
---|
121 | rstar = 2. * sig(temp) * vo1 / (rgp*temp*log(sat)) |
---|
122 | gstar = 4. * nav * pi * (rstar * rstar * rstar) / (3.*vo1) |
---|
123 | |
---|
124 | fshapesimple = (2.+mtetalocal)*(1.-mtetalocal)*(1.-mtetalocal) |
---|
125 | & / 4. |
---|
126 | |
---|
127 | c Loop over size bins |
---|
128 | do i=1,nbin_cld |
---|
129 | |
---|
130 | if ( n_ccn(i) .lt. 1e-10 ) then |
---|
131 | c no dust, no need to compute nucleation! |
---|
132 | nucrate(i)=0. |
---|
133 | ! move on to next bin |
---|
134 | cycle |
---|
135 | endif |
---|
136 | |
---|
137 | if (rad_cld(i).gt.3000.*rstar) then |
---|
138 | zefshape = fshapesimple |
---|
139 | else |
---|
140 | zefshape = fshape(mtetalocal,rad_cld(i)/rstar) |
---|
141 | endif |
---|
142 | |
---|
143 | fistar = (4./3.*pi) * sig(temp) * (rstar * rstar) * |
---|
144 | & zefshape |
---|
145 | deltaf = (2.*desorp-surfdif-fistar)/ |
---|
146 | & (kbz*temp) |
---|
147 | deltaf = min( max(deltaf, -100.d0), 100.d0) |
---|
148 | |
---|
149 | if (deltaf.eq.-100.) then |
---|
150 | nucrate(i) = 0. |
---|
151 | else |
---|
152 | nucrate(i)= real(sqrt ( fistar / |
---|
153 | & (3.*pi*kbz*temp*(gstar*gstar)) ) |
---|
154 | & * kbz * temp * rstar |
---|
155 | & * rstar * 4. * pi |
---|
156 | & * ( nh2o*rad_cld(i) ) |
---|
157 | & * ( nh2o*rad_cld(i) ) |
---|
158 | & / ( zefshape * nus * m0 ) |
---|
159 | & * exp (deltaf)) |
---|
160 | endif |
---|
161 | |
---|
162 | enddo ! of do i=1,nbin_cld |
---|
163 | |
---|
164 | else |
---|
165 | |
---|
166 | do i=1,nbin_cld |
---|
167 | nucrate(i) = 0. |
---|
168 | enddo |
---|
169 | |
---|
170 | endif ! of if (sat .gt. 1.) |
---|
171 | |
---|
172 | end subroutine nuclea |
---|
173 | |
---|
174 | ********************************************************* |
---|
175 | double precision function fshape(cost,rap) |
---|
176 | implicit none |
---|
177 | * function computing the f(m,x) factor * |
---|
178 | * related to energy required to form a critical embryo * |
---|
179 | ********************************************************* |
---|
180 | |
---|
181 | double precision, intent(in) :: cost,rap |
---|
182 | double precision yeah |
---|
183 | |
---|
184 | !! PHI |
---|
185 | yeah = sqrt( 1. - 2.*cost*rap + rap*rap ) |
---|
186 | !! FSHAPE = TERM A |
---|
187 | fshape = (1.-cost*rap) / yeah |
---|
188 | fshape = fshape * fshape * fshape |
---|
189 | fshape = 1. + fshape |
---|
190 | !! ... + TERM B |
---|
191 | yeah = (rap-cost)/yeah |
---|
192 | fshape = fshape + |
---|
193 | & rap*rap*rap*(2.-3.*yeah+yeah*yeah*yeah) |
---|
194 | !! ... + TERM C |
---|
195 | fshape = fshape + 3. * cost * rap * rap * (yeah-1.) |
---|
196 | !! FACTOR 1/2 |
---|
197 | fshape = 0.5*fshape |
---|
198 | |
---|
199 | end function fshape |
---|
200 | |
---|
201 | |
---|
202 | END MODULE nuclea_mod |
---|