| 1 | ******************************************************* |
|---|
| 2 | * * |
|---|
| 3 | subroutine nuclea(ph2o,temp,sat,n_ccn,nucrate) |
|---|
| 4 | USE comcstfi_h |
|---|
| 5 | implicit none |
|---|
| 6 | * * |
|---|
| 7 | * This subroutine computes the nucleation rate * |
|---|
| 8 | * as given in Pruppacher & Klett (1978) in the * |
|---|
| 9 | * case of water ice forming on a solid substrate. * |
|---|
| 10 | * Definition refined by Keese (jgr,1989) * |
|---|
| 11 | * Authors: F. Montmessin * |
|---|
| 12 | * Adapted for the LMD/GCM by J.-B. Madeleine * |
|---|
| 13 | * (October 2011) * |
|---|
| 14 | * Optimisation by A. Spiga (February 2012) * |
|---|
| 15 | ******************************************************* |
|---|
| 16 | |
|---|
| 17 | #include "microphys.h" |
|---|
| 18 | |
|---|
| 19 | c Inputs |
|---|
| 20 | DOUBLE PRECISION ph2o,sat |
|---|
| 21 | DOUBLE PRECISION n_ccn(nbin_cld) |
|---|
| 22 | REAL temp |
|---|
| 23 | |
|---|
| 24 | c Output |
|---|
| 25 | ! DOUBLE PRECISION nucrate(nbin_cld) |
|---|
| 26 | REAL nucrate(nbin_cld) |
|---|
| 27 | |
|---|
| 28 | c Local variables |
|---|
| 29 | DOUBLE PRECISION nh2o |
|---|
| 30 | DOUBLE PRECISION sig ! Water-ice/air surface tension (N.m) |
|---|
| 31 | external sig |
|---|
| 32 | DOUBLE PRECISION rstar ! Radius of the critical germ (m) |
|---|
| 33 | DOUBLE PRECISION gstar ! # of molecules forming a critical embryo |
|---|
| 34 | DOUBLE PRECISION fistar ! Activation energy required to form a critical embryo (J) |
|---|
| 35 | ! DOUBLE PRECISION zeldov ! Zeldovitch factor (no dim) |
|---|
| 36 | DOUBLE PRECISION fshape ! function defined at the end of the file |
|---|
| 37 | DOUBLE PRECISION deltaf |
|---|
| 38 | |
|---|
| 39 | c Ratio rstar/radius of the nucleating dust particle |
|---|
| 40 | c double precision xratio |
|---|
| 41 | |
|---|
| 42 | double precision mtetalocal ! local mteta in double precision |
|---|
| 43 | |
|---|
| 44 | double precision fshapesimple,zefshape |
|---|
| 45 | |
|---|
| 46 | |
|---|
| 47 | integer i |
|---|
| 48 | |
|---|
| 49 | LOGICAL firstcall |
|---|
| 50 | DATA firstcall/.true./ |
|---|
| 51 | SAVE firstcall |
|---|
| 52 | |
|---|
| 53 | c ************************************************* |
|---|
| 54 | |
|---|
| 55 | mtetalocal = mteta !! use mtetalocal for better performance |
|---|
| 56 | |
|---|
| 57 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
|---|
| 58 | ccccccccccc ESSAIS TN MTETA = F (T) cccccccccccccc |
|---|
| 59 | c if (temp .gt. 200) then |
|---|
| 60 | c mtetalocal = mtetalocal |
|---|
| 61 | c else if (temp .lt. 190) then |
|---|
| 62 | c mtetalocal = mtetalocal-0.05 |
|---|
| 63 | c else |
|---|
| 64 | c mtetalocal = mtetalocal - (190-temp)*0.005 |
|---|
| 65 | c endif |
|---|
| 66 | c----------------exp law, see Trainer 2008, J. Phys. Chem. C 2009, 113, 2036\u20132040 |
|---|
| 67 | !mtetalocal = max(mtetalocal - 6005*exp(-0.065*temp),0.1) |
|---|
| 68 | !mtetalocal = max(mtetalocal - 6005*exp(-0.068*temp),0.1) |
|---|
| 69 | !print*, mtetalocal, temp |
|---|
| 70 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
|---|
| 71 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
|---|
| 72 | IF (firstcall) THEN |
|---|
| 73 | print*, ' ' |
|---|
| 74 | print*, 'dear user, please keep in mind that' |
|---|
| 75 | print*, 'contact parameter IS constant' |
|---|
| 76 | !print*, 'contact parameter IS NOT constant:' |
|---|
| 77 | !print*, 'max(mteta - 6005*exp(-0.065*temp),0.1)' |
|---|
| 78 | !print*, 'max(mteta - 6005*exp(-0.068*temp),0.1)' |
|---|
| 79 | print*, ' ' |
|---|
| 80 | firstcall=.false. |
|---|
| 81 | END IF |
|---|
| 82 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
|---|
| 83 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
|---|
| 84 | |
|---|
| 85 | |
|---|
| 86 | if (sat .gt. 1.) then ! minimum condition to activate nucleation |
|---|
| 87 | |
|---|
| 88 | nh2o = ph2o / kbz / temp |
|---|
| 89 | rstar = 2. * sig(temp) * vo1 / (rgp*temp*dlog(sat)) |
|---|
| 90 | gstar = 4. * nav * pi * (rstar * rstar * rstar) / (3.*vo1) |
|---|
| 91 | |
|---|
| 92 | fshapesimple = (2.+mtetalocal)*(1.-mtetalocal)*(1.-mtetalocal) |
|---|
| 93 | & / 4. |
|---|
| 94 | |
|---|
| 95 | c Loop over size bins |
|---|
| 96 | do 200 i=1,nbin_cld |
|---|
| 97 | |
|---|
| 98 | if ( n_ccn(i) .lt. 1e-10 ) then |
|---|
| 99 | c no dust, no need to compute nucleation! |
|---|
| 100 | nucrate(i)=0. |
|---|
| 101 | goto 200 |
|---|
| 102 | endif |
|---|
| 103 | |
|---|
| 104 | if (rad_cld(i).gt.3000.*rstar) then |
|---|
| 105 | zefshape = fshapesimple |
|---|
| 106 | else |
|---|
| 107 | zefshape = fshape(mtetalocal,rad_cld(i)/rstar) |
|---|
| 108 | endif |
|---|
| 109 | |
|---|
| 110 | fistar = (4./3.*pi) * sig(temp) * (rstar * rstar) * |
|---|
| 111 | & zefshape |
|---|
| 112 | deltaf = (2.*desorp-surfdif-fistar)/ |
|---|
| 113 | & (kbz*temp) |
|---|
| 114 | deltaf = min( max(deltaf, -100.d0), 100.d0) |
|---|
| 115 | |
|---|
| 116 | if (deltaf.eq.-100.) then |
|---|
| 117 | nucrate(i) = 0. |
|---|
| 118 | else |
|---|
| 119 | nucrate(i)= real(sqrt ( fistar / |
|---|
| 120 | & (3.*pi*kbz*temp*(gstar*gstar)) ) |
|---|
| 121 | & * kbz * temp * rstar |
|---|
| 122 | & * rstar * 4. * pi |
|---|
| 123 | & * ( nh2o*rad_cld(i) ) |
|---|
| 124 | & * ( nh2o*rad_cld(i) ) |
|---|
| 125 | & / ( zefshape * nus * m0 ) |
|---|
| 126 | & * dexp (deltaf)) |
|---|
| 127 | endif |
|---|
| 128 | |
|---|
| 129 | 200 continue |
|---|
| 130 | |
|---|
| 131 | else |
|---|
| 132 | |
|---|
| 133 | do i=1,nbin_cld |
|---|
| 134 | nucrate(i) = 0. |
|---|
| 135 | enddo |
|---|
| 136 | |
|---|
| 137 | endif |
|---|
| 138 | |
|---|
| 139 | return |
|---|
| 140 | end |
|---|
| 141 | |
|---|
| 142 | ********************************************************* |
|---|
| 143 | double precision function fshape(cost,rap) |
|---|
| 144 | implicit none |
|---|
| 145 | * function computing the f(m,x) factor * |
|---|
| 146 | * related to energy required to form a critical embryo * |
|---|
| 147 | ********************************************************* |
|---|
| 148 | |
|---|
| 149 | double precision cost,rap |
|---|
| 150 | double precision yeah |
|---|
| 151 | |
|---|
| 152 | !! PHI |
|---|
| 153 | yeah = sqrt( 1. - 2.*cost*rap + rap*rap ) |
|---|
| 154 | !! FSHAPE = TERM A |
|---|
| 155 | fshape = (1.-cost*rap) / yeah |
|---|
| 156 | fshape = fshape * fshape * fshape |
|---|
| 157 | fshape = 1. + fshape |
|---|
| 158 | !! ... + TERM B |
|---|
| 159 | yeah = (rap-cost)/yeah |
|---|
| 160 | fshape = fshape + |
|---|
| 161 | & rap*rap*rap*(2.-3.*yeah+yeah*yeah*yeah) |
|---|
| 162 | !! ... + TERM C |
|---|
| 163 | fshape = fshape + 3. * cost * rap * rap * (yeah-1.) |
|---|
| 164 | !! FACTOR 1/2 |
|---|
| 165 | fshape = 0.5*fshape |
|---|
| 166 | |
|---|
| 167 | return |
|---|
| 168 | end |
|---|