[358] | 1 | ******************************************************* |
---|
| 2 | * * |
---|
| 3 | subroutine nuclea(ph2o,temp,sat,n_ccn,nucrate) |
---|
| 4 | implicit none |
---|
| 5 | * * |
---|
| 6 | * This subroutine computes the nucleation rate * |
---|
| 7 | * as given in Pruppacher & Klett (1978) in the * |
---|
| 8 | * case of water ice forming on a solid substrate. * |
---|
| 9 | * Definition refined by Keese (jgr,1989) * |
---|
| 10 | * Authors: F. Montmessin * |
---|
| 11 | * Adapted for the LMD/GCM by J.-B. Madeleine * |
---|
| 12 | * (October 2011) * |
---|
[530] | 13 | * Optimisation by A. Spiga (February 2012) * |
---|
[358] | 14 | ******************************************************* |
---|
| 15 | |
---|
| 16 | #include "dimensions.h" |
---|
| 17 | #include "dimphys.h" |
---|
| 18 | #include "comcstfi.h" |
---|
| 19 | #include "tracer.h" |
---|
| 20 | #include "microphys.h" |
---|
| 21 | |
---|
| 22 | c Inputs |
---|
| 23 | DOUBLE PRECISION ph2o,sat |
---|
| 24 | DOUBLE PRECISION n_ccn(nbin_cld) |
---|
| 25 | REAL temp |
---|
| 26 | |
---|
| 27 | c Output |
---|
[633] | 28 | ! DOUBLE PRECISION nucrate(nbin_cld) |
---|
| 29 | REAL nucrate(nbin_cld) |
---|
[358] | 30 | |
---|
| 31 | c Local variables |
---|
| 32 | DOUBLE PRECISION nh2o |
---|
| 33 | DOUBLE PRECISION sig ! Water-ice/air surface tension (N.m) |
---|
| 34 | external sig |
---|
| 35 | DOUBLE PRECISION rstar ! Radius of the critical germ (m) |
---|
| 36 | DOUBLE PRECISION gstar ! # of molecules forming a critical embryo |
---|
| 37 | DOUBLE PRECISION fistar ! Activation energy required to form a critical embryo (J) |
---|
[530] | 38 | ! DOUBLE PRECISION zeldov ! Zeldovitch factor (no dim) |
---|
[358] | 39 | DOUBLE PRECISION fshape ! function defined at the end of the file |
---|
| 40 | DOUBLE PRECISION deltaf |
---|
| 41 | |
---|
| 42 | c Ratio rstar/radius of the nucleating dust particle |
---|
[530] | 43 | c double precision xratio |
---|
[358] | 44 | |
---|
| 45 | double precision mtetalocal ! local mteta in double precision |
---|
| 46 | |
---|
[530] | 47 | double precision fshapesimple,zefshape |
---|
| 48 | |
---|
| 49 | |
---|
[358] | 50 | integer i |
---|
[520] | 51 | |
---|
| 52 | LOGICAL firstcall |
---|
| 53 | DATA firstcall/.true./ |
---|
| 54 | SAVE firstcall |
---|
[358] | 55 | |
---|
| 56 | c ************************************************* |
---|
| 57 | |
---|
[530] | 58 | mtetalocal = mteta !! use mtetalocal for better performance |
---|
[358] | 59 | |
---|
[520] | 60 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 61 | ccccccccccc ESSAIS TN MTETA = F (T) cccccccccccccc |
---|
| 62 | c if (temp .gt. 200) then |
---|
| 63 | c mtetalocal = mtetalocal |
---|
| 64 | c else if (temp .lt. 190) then |
---|
| 65 | c mtetalocal = mtetalocal-0.05 |
---|
| 66 | c else |
---|
| 67 | c mtetalocal = mtetalocal - (190-temp)*0.005 |
---|
| 68 | c endif |
---|
| 69 | c----------------exp law, see Trainer 2008, J. Phys. Chem. C 2009, 113, 2036\u20132040 |
---|
| 70 | !mtetalocal = max(mtetalocal - 6005*exp(-0.065*temp),0.1) |
---|
| 71 | !mtetalocal = max(mtetalocal - 6005*exp(-0.068*temp),0.1) |
---|
| 72 | !print*, mtetalocal, temp |
---|
| 73 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 74 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 75 | IF (firstcall) THEN |
---|
| 76 | print*, ' ' |
---|
| 77 | print*, 'dear user, please keep in mind that' |
---|
| 78 | print*, 'contact parameter IS constant' |
---|
| 79 | !print*, 'contact parameter IS NOT constant:' |
---|
| 80 | !print*, 'max(mteta - 6005*exp(-0.065*temp),0.1)' |
---|
| 81 | !print*, 'max(mteta - 6005*exp(-0.068*temp),0.1)' |
---|
| 82 | print*, ' ' |
---|
| 83 | firstcall=.false. |
---|
| 84 | END IF |
---|
| 85 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 86 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 87 | |
---|
| 88 | |
---|
[358] | 89 | if (sat .gt. 1.) then ! minimum condition to activate nucleation |
---|
| 90 | |
---|
| 91 | nh2o = ph2o / kbz / temp |
---|
| 92 | rstar = 2. * sig(temp) * vo1 / (rgp*temp*dlog(sat)) |
---|
[530] | 93 | gstar = 4. * nav * pi * (rstar * rstar * rstar) / (3.*vo1) |
---|
| 94 | |
---|
| 95 | fshapesimple = (2.+mtetalocal)*(1.-mtetalocal)*(1.-mtetalocal) |
---|
| 96 | & / 4. |
---|
[358] | 97 | |
---|
| 98 | c Loop over size bins |
---|
| 99 | do 200 i=1,nbin_cld |
---|
| 100 | |
---|
| 101 | if ( n_ccn(i) .lt. 1e-10 ) then |
---|
| 102 | c no dust, no need to compute nucleation! |
---|
| 103 | nucrate(i)=0. |
---|
| 104 | goto 200 |
---|
| 105 | endif |
---|
| 106 | |
---|
[530] | 107 | if (rad_cld(i).gt.3000.*rstar) then |
---|
| 108 | zefshape = fshapesimple |
---|
| 109 | else |
---|
| 110 | zefshape = fshape(mtetalocal,rad_cld(i)/rstar) |
---|
| 111 | endif |
---|
| 112 | |
---|
| 113 | fistar = (4./3.*pi) * sig(temp) * (rstar * rstar) * |
---|
| 114 | & zefshape |
---|
[358] | 115 | deltaf = (2.*desorp-surfdif-fistar)/ |
---|
| 116 | & (kbz*temp) |
---|
[706] | 117 | deltaf = min( max(deltaf, -100.d0), 100.d0) |
---|
[358] | 118 | |
---|
| 119 | if (deltaf.eq.-100.) then |
---|
| 120 | nucrate(i) = 0. |
---|
| 121 | else |
---|
[633] | 122 | nucrate(i)= real(sqrt ( fistar / |
---|
[530] | 123 | & (3.*pi*kbz*temp*(gstar*gstar)) ) |
---|
| 124 | & * kbz * temp * rstar |
---|
[358] | 125 | & * rstar * 4. * pi |
---|
[530] | 126 | & * ( nh2o*rad_cld(i) ) |
---|
| 127 | & * ( nh2o*rad_cld(i) ) |
---|
| 128 | & / ( zefshape * nus * m0 ) |
---|
[633] | 129 | & * dexp (deltaf)) |
---|
[358] | 130 | endif |
---|
| 131 | |
---|
| 132 | 200 continue |
---|
| 133 | |
---|
| 134 | else |
---|
| 135 | |
---|
| 136 | do i=1,nbin_cld |
---|
| 137 | nucrate(i) = 0. |
---|
| 138 | enddo |
---|
| 139 | |
---|
| 140 | endif |
---|
| 141 | |
---|
| 142 | return |
---|
| 143 | end |
---|
| 144 | |
---|
| 145 | ********************************************************* |
---|
| 146 | double precision function fshape(cost,rap) |
---|
| 147 | implicit none |
---|
| 148 | * function computing the f(m,x) factor * |
---|
| 149 | * related to energy required to form a critical embryo * |
---|
| 150 | ********************************************************* |
---|
| 151 | |
---|
| 152 | double precision cost,rap |
---|
[530] | 153 | double precision yeah |
---|
[358] | 154 | |
---|
[530] | 155 | !! PHI |
---|
| 156 | yeah = sqrt( 1. - 2.*cost*rap + rap*rap ) |
---|
| 157 | !! FSHAPE = TERM A |
---|
| 158 | fshape = (1.-cost*rap) / yeah |
---|
| 159 | fshape = fshape * fshape * fshape |
---|
| 160 | fshape = 1. + fshape |
---|
| 161 | !! ... + TERM B |
---|
| 162 | yeah = (rap-cost)/yeah |
---|
[695] | 163 | fshape = fshape + |
---|
| 164 | & rap*rap*rap*(2.-3.*yeah+yeah*yeah*yeah) |
---|
[530] | 165 | !! ... + TERM C |
---|
| 166 | fshape = fshape + 3. * cost * rap * rap * (yeah-1.) |
---|
| 167 | !! FACTOR 1/2 |
---|
| 168 | fshape = 0.5*fshape |
---|
[358] | 169 | |
---|
[530] | 170 | return |
---|
[358] | 171 | end |
---|