[3008] | 1 | MODULE nuclea_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
[358] | 7 | subroutine nuclea(ph2o,temp,sat,n_ccn,nucrate) |
---|
[3008] | 8 | use comcstfi_h, only: pi |
---|
| 9 | use microphys_h, only: nbin_cld, rad_cld, nav, mteta, m0 |
---|
| 10 | use microphys_h, only: desorp, kbz, nus, rgp, surfdif, vo1 |
---|
[358] | 11 | implicit none |
---|
| 12 | * * |
---|
| 13 | * This subroutine computes the nucleation rate * |
---|
| 14 | * as given in Pruppacher & Klett (1978) in the * |
---|
| 15 | * case of water ice forming on a solid substrate. * |
---|
| 16 | * Definition refined by Keese (jgr,1989) * |
---|
| 17 | * Authors: F. Montmessin * |
---|
| 18 | * Adapted for the LMD/GCM by J.-B. Madeleine * |
---|
| 19 | * (October 2011) * |
---|
[530] | 20 | * Optimisation by A. Spiga (February 2012) * |
---|
[358] | 21 | ******************************************************* |
---|
| 22 | |
---|
[2522] | 23 | include "callkeys.h" |
---|
[358] | 24 | |
---|
| 25 | c Inputs |
---|
[3008] | 26 | DOUBLE PRECISION, INTENT(IN) :: ph2o,sat |
---|
| 27 | DOUBLE PRECISION, INTENT(IN) :: n_ccn(nbin_cld) |
---|
| 28 | REAL, INTENT(IN) :: temp |
---|
[358] | 29 | |
---|
| 30 | c Output |
---|
[633] | 31 | ! DOUBLE PRECISION nucrate(nbin_cld) |
---|
[3008] | 32 | REAL, INTENT(OUT) :: nucrate(nbin_cld) |
---|
[358] | 33 | |
---|
| 34 | c Local variables |
---|
| 35 | DOUBLE PRECISION nh2o |
---|
| 36 | DOUBLE PRECISION sig ! Water-ice/air surface tension (N.m) |
---|
| 37 | external sig |
---|
| 38 | DOUBLE PRECISION rstar ! Radius of the critical germ (m) |
---|
| 39 | DOUBLE PRECISION gstar ! # of molecules forming a critical embryo |
---|
| 40 | DOUBLE PRECISION fistar ! Activation energy required to form a critical embryo (J) |
---|
[530] | 41 | ! DOUBLE PRECISION zeldov ! Zeldovitch factor (no dim) |
---|
[358] | 42 | DOUBLE PRECISION deltaf |
---|
| 43 | |
---|
| 44 | c Ratio rstar/radius of the nucleating dust particle |
---|
[530] | 45 | c double precision xratio |
---|
[358] | 46 | |
---|
| 47 | double precision mtetalocal ! local mteta in double precision |
---|
| 48 | |
---|
[530] | 49 | double precision fshapesimple,zefshape |
---|
| 50 | |
---|
| 51 | |
---|
[358] | 52 | integer i |
---|
[520] | 53 | |
---|
[3008] | 54 | LOGICAL, SAVE :: firstcall = .true. |
---|
[2616] | 55 | !$OMP THREADPRIVATE(firstcall) |
---|
[358] | 56 | |
---|
| 57 | c ************************************************* |
---|
| 58 | |
---|
[530] | 59 | mtetalocal = mteta !! use mtetalocal for better performance |
---|
[358] | 60 | |
---|
[3062] | 61 | IF (temp_dependent_m) THEN |
---|
[3061] | 62 | c J.Naar - sep 2023 : |
---|
[3064] | 63 | if (.not.cloud_adapt_ts) then |
---|
| 64 | ! Simple linear parametrisation from Maattaanen 2014 |
---|
| 65 | ! Maxed out at 0.97 for physical realism |
---|
| 66 | ! Used to tune the WC without adaptative ts of microphy (MCD6.1 configuration) |
---|
| 67 | mtetalocal = min(0.0044*temp + 0.1831,0.97) |
---|
| 68 | else |
---|
| 69 | ! With adapt_ts, need to use this relation (same paper, tanh relation): |
---|
| 70 | mtetalocal = 0.469+((0.972-0.469)*tanh((temp/158.282)**4.244)) |
---|
| 71 | endif ! (.not.cloud_adapt_ts) |
---|
| 72 | ENDIF ! (temp_dependent_m) |
---|
[520] | 73 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 74 | ccccccccccc ESSAIS TN MTETA = F (T) cccccccccccccc |
---|
| 75 | c if (temp .gt. 200) then |
---|
| 76 | c mtetalocal = mtetalocal |
---|
| 77 | c else if (temp .lt. 190) then |
---|
| 78 | c mtetalocal = mtetalocal-0.05 |
---|
| 79 | c else |
---|
| 80 | c mtetalocal = mtetalocal - (190-temp)*0.005 |
---|
| 81 | c endif |
---|
| 82 | c----------------exp law, see Trainer 2008, J. Phys. Chem. C 2009, 113, 2036\u20132040 |
---|
| 83 | !mtetalocal = max(mtetalocal - 6005*exp(-0.065*temp),0.1) |
---|
| 84 | !mtetalocal = max(mtetalocal - 6005*exp(-0.068*temp),0.1) |
---|
| 85 | !print*, mtetalocal, temp |
---|
| 86 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 87 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
[3062] | 88 | IF (firstcall.and.temp_dependent_m) THEN |
---|
[3064] | 89 | if (.not.cloud_adapt_ts) then |
---|
[520] | 90 | print*, ' ' |
---|
| 91 | print*, 'dear user, please keep in mind that' |
---|
[2522] | 92 | print*, 'contact parameter IS NOT constant ;' |
---|
[3064] | 93 | print*, 'Using the following linear fit from' |
---|
| 94 | print*, 'Maattanen et al. 2014 (SM linear fit) :' |
---|
| 95 | print*, 'm=min(0.0044*temp + 0.1831,0.97)' |
---|
| 96 | print*, ' ' |
---|
| 97 | else !cloud_adapt_ts=.true. |
---|
| 98 | print*, ' ' |
---|
| 99 | print*, 'dear user, please keep in mind that' |
---|
| 100 | print*, 'contact parameter IS NOT constant ;' |
---|
[3061] | 101 | print*, 'Using the tanh fit n2 (jsc sample) from' |
---|
| 102 | print*, 'Maattanen et al. 2014 (10.1016/j.grj.2014.09.002) :' |
---|
| 103 | print*, 'm=0.469+((0.972-0.469)*tanh((temp/158.282)**4.244))' |
---|
[3064] | 104 | print*, ' ' |
---|
| 105 | endif |
---|
| 106 | firstcall=.false. |
---|
[3062] | 107 | ELSE IF (firstcall.and.(.not.(temp_dependent_m))) THEN |
---|
[3064] | 108 | print*, ' ' |
---|
| 109 | print*, 'dear user, please keep in mind that' |
---|
| 110 | print*, 'contact parameter IS constant' |
---|
| 111 | print*, ' ' |
---|
| 112 | firstcall=.false. |
---|
[520] | 113 | END IF |
---|
| 114 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 115 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 116 | |
---|
| 117 | |
---|
[358] | 118 | if (sat .gt. 1.) then ! minimum condition to activate nucleation |
---|
| 119 | |
---|
| 120 | nh2o = ph2o / kbz / temp |
---|
[2456] | 121 | rstar = 2. * sig(temp) * vo1 / (rgp*temp*log(sat)) |
---|
[530] | 122 | gstar = 4. * nav * pi * (rstar * rstar * rstar) / (3.*vo1) |
---|
| 123 | |
---|
| 124 | fshapesimple = (2.+mtetalocal)*(1.-mtetalocal)*(1.-mtetalocal) |
---|
| 125 | & / 4. |
---|
[358] | 126 | |
---|
| 127 | c Loop over size bins |
---|
[3008] | 128 | do i=1,nbin_cld |
---|
[358] | 129 | |
---|
| 130 | if ( n_ccn(i) .lt. 1e-10 ) then |
---|
| 131 | c no dust, no need to compute nucleation! |
---|
| 132 | nucrate(i)=0. |
---|
[3008] | 133 | ! move on to next bin |
---|
| 134 | cycle |
---|
[358] | 135 | endif |
---|
| 136 | |
---|
[530] | 137 | if (rad_cld(i).gt.3000.*rstar) then |
---|
| 138 | zefshape = fshapesimple |
---|
| 139 | else |
---|
| 140 | zefshape = fshape(mtetalocal,rad_cld(i)/rstar) |
---|
| 141 | endif |
---|
| 142 | |
---|
| 143 | fistar = (4./3.*pi) * sig(temp) * (rstar * rstar) * |
---|
| 144 | & zefshape |
---|
[358] | 145 | deltaf = (2.*desorp-surfdif-fistar)/ |
---|
| 146 | & (kbz*temp) |
---|
[706] | 147 | deltaf = min( max(deltaf, -100.d0), 100.d0) |
---|
[358] | 148 | |
---|
| 149 | if (deltaf.eq.-100.) then |
---|
| 150 | nucrate(i) = 0. |
---|
| 151 | else |
---|
[633] | 152 | nucrate(i)= real(sqrt ( fistar / |
---|
[530] | 153 | & (3.*pi*kbz*temp*(gstar*gstar)) ) |
---|
| 154 | & * kbz * temp * rstar |
---|
[358] | 155 | & * rstar * 4. * pi |
---|
[530] | 156 | & * ( nh2o*rad_cld(i) ) |
---|
| 157 | & * ( nh2o*rad_cld(i) ) |
---|
| 158 | & / ( zefshape * nus * m0 ) |
---|
[2456] | 159 | & * exp (deltaf)) |
---|
[358] | 160 | endif |
---|
| 161 | |
---|
[3008] | 162 | enddo ! of do i=1,nbin_cld |
---|
[358] | 163 | |
---|
| 164 | else |
---|
| 165 | |
---|
| 166 | do i=1,nbin_cld |
---|
| 167 | nucrate(i) = 0. |
---|
| 168 | enddo |
---|
| 169 | |
---|
[3008] | 170 | endif ! of if (sat .gt. 1.) |
---|
[358] | 171 | |
---|
[3008] | 172 | end subroutine nuclea |
---|
[358] | 173 | |
---|
| 174 | ********************************************************* |
---|
| 175 | double precision function fshape(cost,rap) |
---|
| 176 | implicit none |
---|
| 177 | * function computing the f(m,x) factor * |
---|
| 178 | * related to energy required to form a critical embryo * |
---|
| 179 | ********************************************************* |
---|
| 180 | |
---|
[3008] | 181 | double precision, intent(in) :: cost,rap |
---|
[530] | 182 | double precision yeah |
---|
[358] | 183 | |
---|
[530] | 184 | !! PHI |
---|
| 185 | yeah = sqrt( 1. - 2.*cost*rap + rap*rap ) |
---|
| 186 | !! FSHAPE = TERM A |
---|
| 187 | fshape = (1.-cost*rap) / yeah |
---|
| 188 | fshape = fshape * fshape * fshape |
---|
| 189 | fshape = 1. + fshape |
---|
| 190 | !! ... + TERM B |
---|
| 191 | yeah = (rap-cost)/yeah |
---|
[695] | 192 | fshape = fshape + |
---|
| 193 | & rap*rap*rap*(2.-3.*yeah+yeah*yeah*yeah) |
---|
[530] | 194 | !! ... + TERM C |
---|
| 195 | fshape = fshape + 3. * cost * rap * rap * (yeah-1.) |
---|
| 196 | !! FACTOR 1/2 |
---|
| 197 | fshape = 0.5*fshape |
---|
[358] | 198 | |
---|
[3008] | 199 | end function fshape |
---|
| 200 | |
---|
| 201 | |
---|
| 202 | END MODULE nuclea_mod |
---|