[358] | 1 | ******************************************************* |
---|
| 2 | * * |
---|
| 3 | subroutine nuclea(ph2o,temp,sat,n_ccn,nucrate) |
---|
[1226] | 4 | USE comcstfi_h |
---|
[358] | 5 | implicit none |
---|
| 6 | * * |
---|
| 7 | * This subroutine computes the nucleation rate * |
---|
| 8 | * as given in Pruppacher & Klett (1978) in the * |
---|
| 9 | * case of water ice forming on a solid substrate. * |
---|
| 10 | * Definition refined by Keese (jgr,1989) * |
---|
| 11 | * Authors: F. Montmessin * |
---|
| 12 | * Adapted for the LMD/GCM by J.-B. Madeleine * |
---|
| 13 | * (October 2011) * |
---|
[530] | 14 | * Optimisation by A. Spiga (February 2012) * |
---|
[358] | 15 | ******************************************************* |
---|
| 16 | |
---|
| 17 | #include "microphys.h" |
---|
[2522] | 18 | include "callkeys.h" |
---|
[358] | 19 | |
---|
| 20 | c Inputs |
---|
| 21 | DOUBLE PRECISION ph2o,sat |
---|
| 22 | DOUBLE PRECISION n_ccn(nbin_cld) |
---|
| 23 | REAL temp |
---|
| 24 | |
---|
| 25 | c Output |
---|
[633] | 26 | ! DOUBLE PRECISION nucrate(nbin_cld) |
---|
| 27 | REAL nucrate(nbin_cld) |
---|
[358] | 28 | |
---|
| 29 | c Local variables |
---|
| 30 | DOUBLE PRECISION nh2o |
---|
| 31 | DOUBLE PRECISION sig ! Water-ice/air surface tension (N.m) |
---|
| 32 | external sig |
---|
| 33 | DOUBLE PRECISION rstar ! Radius of the critical germ (m) |
---|
| 34 | DOUBLE PRECISION gstar ! # of molecules forming a critical embryo |
---|
| 35 | DOUBLE PRECISION fistar ! Activation energy required to form a critical embryo (J) |
---|
[530] | 36 | ! DOUBLE PRECISION zeldov ! Zeldovitch factor (no dim) |
---|
[358] | 37 | DOUBLE PRECISION fshape ! function defined at the end of the file |
---|
| 38 | DOUBLE PRECISION deltaf |
---|
| 39 | |
---|
| 40 | c Ratio rstar/radius of the nucleating dust particle |
---|
[530] | 41 | c double precision xratio |
---|
[358] | 42 | |
---|
| 43 | double precision mtetalocal ! local mteta in double precision |
---|
| 44 | |
---|
[530] | 45 | double precision fshapesimple,zefshape |
---|
| 46 | |
---|
| 47 | |
---|
[358] | 48 | integer i |
---|
[520] | 49 | |
---|
| 50 | LOGICAL firstcall |
---|
| 51 | DATA firstcall/.true./ |
---|
| 52 | SAVE firstcall |
---|
[358] | 53 | |
---|
| 54 | c ************************************************* |
---|
| 55 | |
---|
[530] | 56 | mtetalocal = mteta !! use mtetalocal for better performance |
---|
[358] | 57 | |
---|
[2522] | 58 | IF (temp_dependant_m) THEN |
---|
| 59 | mtetalocal = min(0.0044*temp + 0.1831,0.97) |
---|
| 60 | ENDIF ! (temp_dependant_m) THEN |
---|
[520] | 61 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 62 | ccccccccccc ESSAIS TN MTETA = F (T) cccccccccccccc |
---|
| 63 | c if (temp .gt. 200) then |
---|
| 64 | c mtetalocal = mtetalocal |
---|
| 65 | c else if (temp .lt. 190) then |
---|
| 66 | c mtetalocal = mtetalocal-0.05 |
---|
| 67 | c else |
---|
| 68 | c mtetalocal = mtetalocal - (190-temp)*0.005 |
---|
| 69 | c endif |
---|
| 70 | c----------------exp law, see Trainer 2008, J. Phys. Chem. C 2009, 113, 2036\u20132040 |
---|
| 71 | !mtetalocal = max(mtetalocal - 6005*exp(-0.065*temp),0.1) |
---|
| 72 | !mtetalocal = max(mtetalocal - 6005*exp(-0.068*temp),0.1) |
---|
| 73 | !print*, mtetalocal, temp |
---|
| 74 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 75 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
[2522] | 76 | IF (firstcall.and.temp_dependant_m) THEN |
---|
[520] | 77 | print*, ' ' |
---|
| 78 | print*, 'dear user, please keep in mind that' |
---|
[2522] | 79 | print*, 'contact parameter IS NOT constant ;' |
---|
| 80 | print*, 'Using the following linear fit from' |
---|
| 81 | print*, 'Maattanen et al. 2014 (SM linear fit) :' |
---|
| 82 | print*, 'min(0.0044*temp + 0.1831,0.97)' |
---|
| 83 | print*, ' ' |
---|
| 84 | firstcall=.false. |
---|
| 85 | ELSE IF (firstcall.and.(.not.(temp_dependant_m))) THEN |
---|
| 86 | print*, ' ' |
---|
| 87 | print*, 'dear user, please keep in mind that' |
---|
[520] | 88 | print*, 'contact parameter IS constant' |
---|
| 89 | print*, ' ' |
---|
| 90 | firstcall=.false. |
---|
| 91 | END IF |
---|
| 92 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 93 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 94 | |
---|
| 95 | |
---|
[358] | 96 | if (sat .gt. 1.) then ! minimum condition to activate nucleation |
---|
| 97 | |
---|
| 98 | nh2o = ph2o / kbz / temp |
---|
[2456] | 99 | rstar = 2. * sig(temp) * vo1 / (rgp*temp*log(sat)) |
---|
[530] | 100 | gstar = 4. * nav * pi * (rstar * rstar * rstar) / (3.*vo1) |
---|
| 101 | |
---|
| 102 | fshapesimple = (2.+mtetalocal)*(1.-mtetalocal)*(1.-mtetalocal) |
---|
| 103 | & / 4. |
---|
[358] | 104 | |
---|
| 105 | c Loop over size bins |
---|
| 106 | do 200 i=1,nbin_cld |
---|
| 107 | |
---|
| 108 | if ( n_ccn(i) .lt. 1e-10 ) then |
---|
| 109 | c no dust, no need to compute nucleation! |
---|
| 110 | nucrate(i)=0. |
---|
| 111 | goto 200 |
---|
| 112 | endif |
---|
| 113 | |
---|
[530] | 114 | if (rad_cld(i).gt.3000.*rstar) then |
---|
| 115 | zefshape = fshapesimple |
---|
| 116 | else |
---|
| 117 | zefshape = fshape(mtetalocal,rad_cld(i)/rstar) |
---|
| 118 | endif |
---|
| 119 | |
---|
| 120 | fistar = (4./3.*pi) * sig(temp) * (rstar * rstar) * |
---|
| 121 | & zefshape |
---|
[358] | 122 | deltaf = (2.*desorp-surfdif-fistar)/ |
---|
| 123 | & (kbz*temp) |
---|
[706] | 124 | deltaf = min( max(deltaf, -100.d0), 100.d0) |
---|
[358] | 125 | |
---|
| 126 | if (deltaf.eq.-100.) then |
---|
| 127 | nucrate(i) = 0. |
---|
| 128 | else |
---|
[633] | 129 | nucrate(i)= real(sqrt ( fistar / |
---|
[530] | 130 | & (3.*pi*kbz*temp*(gstar*gstar)) ) |
---|
| 131 | & * kbz * temp * rstar |
---|
[358] | 132 | & * rstar * 4. * pi |
---|
[530] | 133 | & * ( nh2o*rad_cld(i) ) |
---|
| 134 | & * ( nh2o*rad_cld(i) ) |
---|
| 135 | & / ( zefshape * nus * m0 ) |
---|
[2456] | 136 | & * exp (deltaf)) |
---|
[358] | 137 | endif |
---|
| 138 | |
---|
| 139 | 200 continue |
---|
| 140 | |
---|
| 141 | else |
---|
| 142 | |
---|
| 143 | do i=1,nbin_cld |
---|
| 144 | nucrate(i) = 0. |
---|
| 145 | enddo |
---|
| 146 | |
---|
| 147 | endif |
---|
| 148 | |
---|
| 149 | return |
---|
| 150 | end |
---|
| 151 | |
---|
| 152 | ********************************************************* |
---|
| 153 | double precision function fshape(cost,rap) |
---|
| 154 | implicit none |
---|
| 155 | * function computing the f(m,x) factor * |
---|
| 156 | * related to energy required to form a critical embryo * |
---|
| 157 | ********************************************************* |
---|
| 158 | |
---|
| 159 | double precision cost,rap |
---|
[530] | 160 | double precision yeah |
---|
[358] | 161 | |
---|
[530] | 162 | !! PHI |
---|
| 163 | yeah = sqrt( 1. - 2.*cost*rap + rap*rap ) |
---|
| 164 | !! FSHAPE = TERM A |
---|
| 165 | fshape = (1.-cost*rap) / yeah |
---|
| 166 | fshape = fshape * fshape * fshape |
---|
| 167 | fshape = 1. + fshape |
---|
| 168 | !! ... + TERM B |
---|
| 169 | yeah = (rap-cost)/yeah |
---|
[695] | 170 | fshape = fshape + |
---|
| 171 | & rap*rap*rap*(2.-3.*yeah+yeah*yeah*yeah) |
---|
[530] | 172 | !! ... + TERM C |
---|
| 173 | fshape = fshape + 3. * cost * rap * rap * (yeah-1.) |
---|
| 174 | !! FACTOR 1/2 |
---|
| 175 | fshape = 0.5*fshape |
---|
[358] | 176 | |
---|
[530] | 177 | return |
---|
[358] | 178 | end |
---|