| 1 | MODULE nonoro_gwd_ran_mod |
|---|
| 2 | |
|---|
| 3 | IMPLICIT NONE |
|---|
| 4 | |
|---|
| 5 | REAL,allocatable,save :: du_nonoro_gwd(:,:) ! Zonal wind tendency due to GWD |
|---|
| 6 | REAL,allocatable,save :: dv_nonoro_gwd(:,:) ! Meridional wind tendency due to GWD |
|---|
| 7 | REAL,ALLOCATABLE,SAVE :: east_gwstress(:,:) ! Profile of eastward stress |
|---|
| 8 | REAL,ALLOCATABLE,SAVE :: west_gwstress(:,:) ! Profile of westward stress |
|---|
| 9 | |
|---|
| 10 | !$OMP THREADPRIVATE(du_nonoro_gwd,dv_nonoro_gwd,east_gwstress,west_gwstress) |
|---|
| 11 | |
|---|
| 12 | CONTAINS |
|---|
| 13 | |
|---|
| 14 | SUBROUTINE NONORO_GWD_RAN(ngrid,nlayer,DTIME, cpnew, rnew, pp, & |
|---|
| 15 | zmax_therm, pt, pu, pv, pdt, pdu, pdv, & |
|---|
| 16 | zustr,zvstr,d_t, d_u, d_v) |
|---|
| 17 | |
|---|
| 18 | !-------------------------------------------------------------------------------- |
|---|
| 19 | ! Parametrization of the momentum flux deposition due to a discrete |
|---|
| 20 | ! number of gravity waves. |
|---|
| 21 | ! F. Lott |
|---|
| 22 | ! Version 14, Gaussian distribution of the source |
|---|
| 23 | ! LMDz model online version |
|---|
| 24 | ! ADAPTED FOR VENUS / F. LOTT + S. LEBONNOIS |
|---|
| 25 | ! Version adapted on 03/04/2013: |
|---|
| 26 | ! - input flux compensated in the deepest layers |
|---|
| 27 | ! |
|---|
| 28 | ! ADAPTED FOR MARS G.GILLI 02/2016 |
|---|
| 29 | ! Revision with F.Forget 06/2016 Variable EP-flux according to |
|---|
| 30 | ! PBL variation (max velocity thermals) |
|---|
| 31 | ! UPDATED D.BARDET 01/2020 - reproductibility of the |
|---|
| 32 | ! launching altitude calculation |
|---|
| 33 | ! - wave characteristic |
|---|
| 34 | ! calculation using MOD |
|---|
| 35 | ! - adding east_gwstress and |
|---|
| 36 | ! west_gwstress variables |
|---|
| 37 | ! UPDATED J.LIU 12/2021 The rho (density) at the specific |
|---|
| 38 | ! locations is introduced. The equation |
|---|
| 39 | ! of EP-flux is corrected by adding the |
|---|
| 40 | ! term of density at launch (source) |
|---|
| 41 | ! altitude. |
|---|
| 42 | ! |
|---|
| 43 | !--------------------------------------------------------------------------------- |
|---|
| 44 | |
|---|
| 45 | use comcstfi_h, only: g, pi, r |
|---|
| 46 | USE ioipsl_getin_p_mod, ONLY : getin_p |
|---|
| 47 | use vertical_layers_mod, only : presnivs |
|---|
| 48 | use geometry_mod, only: cell_area |
|---|
| 49 | #ifdef CPP_XIOS |
|---|
| 50 | use xios_output_mod, only: send_xios_field |
|---|
| 51 | #endif |
|---|
| 52 | implicit none |
|---|
| 53 | include "yoegwd.h" |
|---|
| 54 | include "callkeys.h" |
|---|
| 55 | |
|---|
| 56 | CHARACTER (LEN=20) :: modname='nonoro_gwd_ran' |
|---|
| 57 | CHARACTER (LEN=80) :: abort_message |
|---|
| 58 | |
|---|
| 59 | |
|---|
| 60 | ! 0. DECLARATIONS: |
|---|
| 61 | |
|---|
| 62 | ! 0.1 INPUTS |
|---|
| 63 | INTEGER, intent(in):: ngrid ! number of atmospheric columns |
|---|
| 64 | INTEGER, intent(in):: nlayer ! number of atmospheric layers |
|---|
| 65 | REAL, intent(in):: DTIME ! Time step of the Physics(s) |
|---|
| 66 | REAL, intent(in):: zmax_therm(ngrid) ! Altitude of max velocity thermals (m) |
|---|
| 67 | REAL,INTENT(IN) :: cpnew(ngrid,nlayer)! Cp of the atmosphere |
|---|
| 68 | REAL,INTENT(IN) :: rnew(ngrid,nlayer) ! R of the atmosphere |
|---|
| 69 | REAL, intent(in):: pp(ngrid,nlayer) ! Pressure at full levels(Pa) |
|---|
| 70 | REAL, intent(in):: pt(ngrid,nlayer) ! Temp at full levels(K) |
|---|
| 71 | REAL, intent(in):: pu(ngrid,nlayer) ! Zonal wind at full levels(m/s) |
|---|
| 72 | REAL, intent(in):: pv(ngrid,nlayer) ! Meridional winds at full levels(m/s) |
|---|
| 73 | REAL,INTENT(in) :: pdt(ngrid,nlayer) ! Tendency on temperature (K/s) |
|---|
| 74 | REAL,INTENT(in) :: pdu(ngrid,nlayer) ! Tendency on zonal wind (m/s/s) |
|---|
| 75 | REAL,INTENT(in) :: pdv(ngrid,nlayer) ! Tendency on meridional wind (m/s/s) |
|---|
| 76 | |
|---|
| 77 | ! 0.2 OUTPUTS |
|---|
| 78 | REAL, intent(out):: zustr(ngrid) ! Zonal surface stress |
|---|
| 79 | REAL, intent(out):: zvstr(ngrid) ! Meridional surface stress |
|---|
| 80 | REAL, intent(out):: d_t(ngrid, nlayer) ! Tendency on temperature (K/s) due to gravity waves (not used set to zero) |
|---|
| 81 | REAL, intent(out):: d_u(ngrid, nlayer) ! Tendency on zonal wind (m/s/s) due to gravity waves |
|---|
| 82 | REAL, intent(out):: d_v(ngrid, nlayer) ! Tendency on meridional wind (m/s/s) due to gravity waves |
|---|
| 83 | |
|---|
| 84 | ! 0.3 INTERNAL ARRAYS |
|---|
| 85 | REAL :: TT(ngrid, nlayer) ! Temperature at full levels |
|---|
| 86 | REAL :: RHO(ngrid, nlayer) ! Mass density at full levels |
|---|
| 87 | REAL :: UU(ngrid, nlayer) ! Zonal wind at full levels |
|---|
| 88 | REAL :: VV(ngrid, nlayer) ! Meridional winds at full levels |
|---|
| 89 | REAL :: BVLOW(ngrid) ! initial N at each grid (not used) |
|---|
| 90 | |
|---|
| 91 | INTEGER II, JJ, LL |
|---|
| 92 | |
|---|
| 93 | ! 0.3.0 TIME SCALE OF THE LIFE CYCLE OF THE WAVES PARAMETERIZED |
|---|
| 94 | REAL, parameter:: DELTAT = 24. * 3600. |
|---|
| 95 | |
|---|
| 96 | ! 0.3.1 GRAVITY-WAVES SPECIFICATIONS |
|---|
| 97 | INTEGER, PARAMETER:: NK = 2 ! number of horizontal wavenumbers |
|---|
| 98 | INTEGER, PARAMETER:: NP = 2 ! directions (eastward and westward) phase speed |
|---|
| 99 | INTEGER, PARAMETER:: NO = 2 ! absolute values of phase speed |
|---|
| 100 | INTEGER, PARAMETER:: NA = 5 ! number of realizations to get the phase speed |
|---|
| 101 | INTEGER, PARAMETER:: NW = NK * NP * NO ! Total numbers of gravity waves |
|---|
| 102 | INTEGER JK, JP, JO, JW ! Loop index for NK,NP,NO, and NW |
|---|
| 103 | |
|---|
| 104 | REAL, save :: kmax ! Max horizontal wavenumber (lambda min,lambda=2*pi/kmax),kmax=N/u, u(=30~50) zonal wind velocity at launch altitude |
|---|
| 105 | !$OMP THREADPRIVATE(kmax) |
|---|
| 106 | REAL, parameter:: kmin = 2.e-5 ! Min horizontal wavenumber (lambda max = 314 km,lambda=2*pi/kmin) |
|---|
| 107 | REAL kstar ! Min horizontal wavenumber constrained by horizontal resolution |
|---|
| 108 | REAL, save :: cmax ! Max horizontal absolute phase velocity (at the maginitide of zonal wind u at the launch altitude) |
|---|
| 109 | !$OMP THREADPRIVATE(cmax) |
|---|
| 110 | REAL, parameter:: cmin = 1. ! Min horizontal absolute phase velocity (not used) |
|---|
| 111 | REAL CPHA ! absolute PHASE VELOCITY frequency |
|---|
| 112 | REAL ZK(NW, ngrid) ! Horizontal wavenumber amplitude |
|---|
| 113 | REAL ZP(NW, ngrid) ! Horizontal wavenumber angle |
|---|
| 114 | REAL ZO(NW, ngrid) ! Absolute frequency |
|---|
| 115 | |
|---|
| 116 | REAL intr_freq_m(nw, ngrid) ! Waves Intr. freq. at the 1/2 lev below the full level (previous name: ZOM) |
|---|
| 117 | REAL intr_freq_p(nw, ngrid) ! Waves Intr. freq. at the 1/2 lev above the full level (previous name: ZOP) |
|---|
| 118 | REAL wwm(nw, ngrid) ! Wave EP-fluxes at the 1/2 level below the full level |
|---|
| 119 | REAL wwp(nw, ngrid) ! Wave EP-fluxes at the 1/2 level above the full level |
|---|
| 120 | REAL u_epflux_p(nw, ngrid) ! Partial zonal flux (=for each wave) at the 1/2 level above the full level (previous name: RUWP) |
|---|
| 121 | REAL v_epflux_p(nw, ngrid) ! Partial meridional flux (=for each wave) at the 1/2 level above the full level (previous name: RVWP) |
|---|
| 122 | REAL u_epflux_tot(ngrid, nlayer + 1) ! Total zonal flux (=for all waves (nw)) at the 1/2 level above the full level (3D) (previous name: RUW) |
|---|
| 123 | REAL v_epflux_tot(ngrid, nlayer + 1) ! Total meridional flux (=for all waves (nw)) at the 1/2 level above the full level (3D) (previous name: RVW) |
|---|
| 124 | REAL epflux_0(nw, ngrid) ! Fluxes at launching level (previous name: RUW0) |
|---|
| 125 | REAL, save :: epflux_max ! Max EP flux value at launching altitude (previous name: RUWMAX, tunable) |
|---|
| 126 | !$OMP THREADPRIVATE(epflux_max) |
|---|
| 127 | INTEGER LAUNCH ! Launching altitude |
|---|
| 128 | REAL, parameter:: xlaunch = 0.4 ! Control the launching altitude by pressure |
|---|
| 129 | REAL, parameter:: zmaxth_top = 8000. ! Top of convective layer (approx. not used) |
|---|
| 130 | |
|---|
| 131 | |
|---|
| 132 | ! 0.3.2 PARAMETERS OF WAVES DISSIPATIONS |
|---|
| 133 | REAL, save :: sat ! saturation parameter(tunable) |
|---|
| 134 | !$OMP THREADPRIVATE(sat) |
|---|
| 135 | REAL, save :: rdiss ! dissipation coefficient (tunable) |
|---|
| 136 | !$OMP THREADPRIVATE(rdiss) |
|---|
| 137 | REAL, parameter:: zoisec = 1.e-10 ! security for intrinsic frequency |
|---|
| 138 | |
|---|
| 139 | ! 0.3.3 Background flow at 1/2 levels and vertical coordinate |
|---|
| 140 | REAL H0bis(ngrid, nlayer) ! Characteristic Height of the atmosphere (specific locations) |
|---|
| 141 | REAL, save:: H0 ! Characteristic Height of the atmosphere (constant) |
|---|
| 142 | !$OMP THREADPRIVATE(H0) |
|---|
| 143 | REAL, parameter:: pr = 250 ! Reference pressure [Pa] |
|---|
| 144 | REAL, parameter:: tr = 220. ! Reference temperature [K] |
|---|
| 145 | REAL ZH(ngrid, nlayer + 1) ! Log-pressure altitude (constant H0) |
|---|
| 146 | REAL ZHbis(ngrid, nlayer + 1) ! Log-pressure altitude (varying H0bis) |
|---|
| 147 | REAL UH(ngrid, nlayer + 1) ! zonal wind at 1/2 levels |
|---|
| 148 | REAL VH(ngrid, nlayer + 1) ! meridional wind at 1/2 levels |
|---|
| 149 | REAL PH(ngrid, nlayer + 1) ! Pressure at 1/2 levels |
|---|
| 150 | REAL, parameter:: psec = 1.e-20 ! Security to avoid division by 0 pressure(!!IMPORTANT: should be lower than the topmost layer's pressure) |
|---|
| 151 | REAL BV(ngrid, nlayer + 1) ! Brunt Vaisala freq. (N^2) at 1/2 levels |
|---|
| 152 | REAL, parameter:: bvsec = 1.e-5 ! Security to avoid negative BV |
|---|
| 153 | REAL HREF(nlayer + 1) ! Reference pressure for launching altitude |
|---|
| 154 | |
|---|
| 155 | |
|---|
| 156 | REAL RAN_NUM_1,RAN_NUM_2,RAN_NUM_3 |
|---|
| 157 | |
|---|
| 158 | |
|---|
| 159 | LOGICAL,SAVE :: firstcall = .true. |
|---|
| 160 | !$OMP THREADPRIVATE(firstcall) |
|---|
| 161 | |
|---|
| 162 | !----------------------------------------------------------------------------------------------------------------------- |
|---|
| 163 | ! 1. INITIALISATIONS |
|---|
| 164 | !----------------------------------------------------------------------------------------------------------------------- |
|---|
| 165 | IF (firstcall) THEN |
|---|
| 166 | write(*,*) "nonoro_gwd_ran: FLott non-oro GW scheme is active!" |
|---|
| 167 | epflux_max = 7.E-7 ! Mars' value !! |
|---|
| 168 | call getin_p("nonoro_gwd_epflux_max", epflux_max) |
|---|
| 169 | write(*,*) "nonoro_gwd_ran: epflux_max=", epflux_max |
|---|
| 170 | sat = 1. ! default gravity waves saturation value !! |
|---|
| 171 | call getin_p("nonoro_gwd_sat", sat) |
|---|
| 172 | write(*,*) "nonoro_gwd_ran: sat=", sat |
|---|
| 173 | cmax = 50. ! default gravity waves phase velocity value !! |
|---|
| 174 | call getin_p("nonoro_gwd_cmax", cmax) |
|---|
| 175 | write(*,*) "nonoro_gwd_ran: cmax=", cmax |
|---|
| 176 | rdiss=0.01 ! default coefficient of dissipation !! |
|---|
| 177 | call getin_p("nonoro_gwd_rdiss", rdiss) |
|---|
| 178 | write(*,*) "nonoro_gwd_ran: rdiss=", rdiss |
|---|
| 179 | kmax=7.E-4 ! default Max horizontal wavenumber !! |
|---|
| 180 | call getin_p("nonoro_gwd_kmax", kmax) |
|---|
| 181 | write(*,*) "nonoro_gwd_ran: kmax=", kmax |
|---|
| 182 | |
|---|
| 183 | ! Characteristic vertical scale height |
|---|
| 184 | H0 = r * tr / g |
|---|
| 185 | ! Control |
|---|
| 186 | if (deltat .LT. dtime) THEN |
|---|
| 187 | call abort_physic("nonoro_gwd_ran","gwd random: deltat lower than dtime!",1) |
|---|
| 188 | endif |
|---|
| 189 | if (nlayer .LT. nw) THEN |
|---|
| 190 | call abort_physic("nonoro_gwd_ran","gwd random: nlayer lower than nw!",1) |
|---|
| 191 | endif |
|---|
| 192 | firstcall = .false. |
|---|
| 193 | ENDIF |
|---|
| 194 | |
|---|
| 195 | ! Compute current values of temperature and winds |
|---|
| 196 | tt(:,:)=pt(:,:)+dtime*pdt(:,:) |
|---|
| 197 | uu(:,:)=pu(:,:)+dtime*pdu(:,:) |
|---|
| 198 | vv(:,:)=pv(:,:)+dtime*pdv(:,:) |
|---|
| 199 | ! Compute the real mass density by rho=p/R(T)T |
|---|
| 200 | DO ll=1,nlayer |
|---|
| 201 | DO ii=1,ngrid |
|---|
| 202 | rho(ii,ll) = pp(ii,ll)/(rnew(ii,ll)*tt(ii,ll)) |
|---|
| 203 | ENDDO |
|---|
| 204 | ENDDO |
|---|
| 205 | ! print*,'epflux_max just after firstcall:', epflux_max |
|---|
| 206 | |
|---|
| 207 | !----------------------------------------------------------------------------------------------------------------------- |
|---|
| 208 | ! 2. EVALUATION OF THE BACKGROUND FLOW AT SEMI-LEVELS |
|---|
| 209 | !----------------------------------------------------------------------------------------------------------------------- |
|---|
| 210 | ! Pressure and inverse of pressure at 1/2 level |
|---|
| 211 | DO LL = 2, nlayer |
|---|
| 212 | PH(:, LL) = EXP((LOG(PP(:, LL)) + LOG(PP(:, LL - 1))) / 2.) |
|---|
| 213 | end DO |
|---|
| 214 | PH(:, nlayer + 1) = 0. |
|---|
| 215 | PH(:, 1) = 2. * PP(:, 1) - PH(:, 2) |
|---|
| 216 | |
|---|
| 217 | call writediagfi(ngrid,'nonoro_pp','nonoro_pp', 'm',3,PP(:,1:nlayer)) |
|---|
| 218 | call writediagfi(ngrid,'nonoro_ph','nonoro_ph', 'm',3,PH(:,1:nlayer)) |
|---|
| 219 | |
|---|
| 220 | ! Launching level for reproductible case |
|---|
| 221 | !Pour revenir a la version non reproductible en changeant le nombre de |
|---|
| 222 | !process |
|---|
| 223 | ! Reprend la formule qui calcule PH en fonction de PP=play |
|---|
| 224 | DO LL = 2, nlayer |
|---|
| 225 | HREF(LL) = EXP((LOG(presnivs(LL))+ LOG(presnivs(LL - 1))) / 2.) |
|---|
| 226 | end DO |
|---|
| 227 | HREF(nlayer + 1) = 0. |
|---|
| 228 | HREF(1) = 2. * presnivs(1) - HREF(2) |
|---|
| 229 | |
|---|
| 230 | LAUNCH=0 |
|---|
| 231 | DO LL = 1, nlayer |
|---|
| 232 | IF (HREF(LL) / HREF(1) > XLAUNCH) LAUNCH = LL |
|---|
| 233 | ENDDO |
|---|
| 234 | |
|---|
| 235 | ! Log pressure vert. coordinate |
|---|
| 236 | ZH(:,1) = 0. |
|---|
| 237 | DO LL = 2, nlayer + 1 |
|---|
| 238 | !ZH(:, LL) = H0 * LOG(PR / (PH(:, LL) + PSEC)) |
|---|
| 239 | H0bis(:, LL-1) = r * TT(:, LL-1) / g |
|---|
| 240 | ZH(:, LL) = ZH(:, LL-1) & |
|---|
| 241 | + H0bis(:, LL-1)*(PH(:, LL-1)-PH(:,LL))/PP(:, LL-1) |
|---|
| 242 | end DO |
|---|
| 243 | ZH(:, 1) = H0 * LOG(PR / (PH(:, 1) + PSEC)) |
|---|
| 244 | |
|---|
| 245 | call writediagfi(ngrid,'nonoro_zh','nonoro_zh', 'm',3,ZH(:,2:nlayer+1)) |
|---|
| 246 | |
|---|
| 247 | ! Winds and Brunt Vaisala frequency |
|---|
| 248 | DO LL = 2, nlayer |
|---|
| 249 | UH(:, LL) = 0.5 * (UU(:, LL) + UU(:, LL - 1)) ! Zonal wind |
|---|
| 250 | VH(:, LL) = 0.5 * (VV(:, LL) + VV(:, LL - 1)) ! Meridional wind |
|---|
| 251 | ! Brunt Vaisala frequency (=g/T*[dT/dz + g/cp] ) |
|---|
| 252 | BV(:, LL)= G/(0.5 * (TT(:, LL) + TT(:, LL - 1))) & |
|---|
| 253 | *((TT(:, LL) - TT(:, LL - 1)) / (ZH(:, LL) - ZH(:, LL - 1))+ & |
|---|
| 254 | G / cpnew(:,LL)) |
|---|
| 255 | |
|---|
| 256 | BV(:,LL) =MAX(1.E-12,BV(:,LL)) ! to ensure that BV is positive |
|---|
| 257 | BV(:,LL) = MAX(BVSEC,SQRT(BV(:,LL))) ! make sure it is not too small |
|---|
| 258 | end DO |
|---|
| 259 | BV(:, 1) = BV(:, 2) |
|---|
| 260 | UH(:, 1) = 0. |
|---|
| 261 | VH(:, 1) = 0. |
|---|
| 262 | BV(:, nlayer + 1) = BV(:, nlayer) |
|---|
| 263 | UH(:, nlayer + 1) = UU(:, nlayer) |
|---|
| 264 | VH(:, nlayer + 1) = VV(:, nlayer) |
|---|
| 265 | |
|---|
| 266 | call writediagfi(ngrid,'nonoro_bv','nonoro_bv', 'm',3,BV(:,2:nlayer+1)) |
|---|
| 267 | |
|---|
| 268 | !----------------------------------------------------------------------------------------------------------------------- |
|---|
| 269 | ! 3. WAVES CHARACTERISTICS CHOSEN RANDOMLY |
|---|
| 270 | !----------------------------------------------------------------------------------------------------------------------- |
|---|
| 271 | ! The mod function of here a weird arguments are used to produce the waves characteristics in a stochastic way |
|---|
| 272 | DO JW = 1, NW |
|---|
| 273 | ! Angle |
|---|
| 274 | DO II = 1, ngrid |
|---|
| 275 | ! Angle (0 or PI so far) |
|---|
| 276 | RAN_NUM_1=MOD(TT(II, JW) * 10., 1.) |
|---|
| 277 | RAN_NUM_2= MOD(TT(II, JW) * 100., 1.) |
|---|
| 278 | ZP(JW, II) = (SIGN(1., 0.5 - RAN_NUM_1) + 1.)* PI / 2. |
|---|
| 279 | |
|---|
| 280 | ! Horizontal wavenumber amplitude |
|---|
| 281 | ! From Venus model: TN+GG April/June 2020 (rev2381) |
|---|
| 282 | ! "Individual waves are not supposed to occupy the entire domain, but only a fraction of it" (Lott+2012) |
|---|
| 283 | ! ZK(JW, II) = KMIN + (KMAX - KMIN) *RAN_NUM_2 |
|---|
| 284 | KSTAR = PI/SQRT(cell_area(II)) |
|---|
| 285 | ZK(JW, II) = MAX(KMIN,KSTAR) + (KMAX - MAX(KMIN,KSTAR)) *RAN_NUM_2 |
|---|
| 286 | |
|---|
| 287 | ! Horizontal phase speed |
|---|
| 288 | ! this computation allows to get a gaussian distribution centered on 0 (right ?) |
|---|
| 289 | ! then cmin is not useful, and it favors small values. |
|---|
| 290 | CPHA = 0. |
|---|
| 291 | DO JJ = 1, NA |
|---|
| 292 | RAN_NUM_3=MOD(TT(II, JW+3*JJ)**2, 1.) |
|---|
| 293 | CPHA = CPHA + 2.*CMAX* & |
|---|
| 294 | (RAN_NUM_3 -0.5)* & |
|---|
| 295 | SQRT(3.)/SQRT(NA*1.) |
|---|
| 296 | END DO |
|---|
| 297 | IF (CPHA.LT.0.) THEN |
|---|
| 298 | CPHA = -1.*CPHA |
|---|
| 299 | ZP(JW,II) = ZP(JW,II) + PI |
|---|
| 300 | ENDIF |
|---|
| 301 | ! otherwise, with the computation below, we get a uniform distribution between cmin and cmax. |
|---|
| 302 | ! ran_num_3 = mod(tt(ii, jw)**2, 1.) |
|---|
| 303 | ! cpha = cmin + (cmax - cmin) * ran_num_3 |
|---|
| 304 | |
|---|
| 305 | ! Intrinsic frequency |
|---|
| 306 | ZO(JW, II) = CPHA * ZK(JW, II) |
|---|
| 307 | ! Intrinsic frequency is imposed |
|---|
| 308 | ZO(JW, II) = ZO(JW, II) & |
|---|
| 309 | + ZK(JW, II) * COS(ZP(JW, II)) * UH(II, LAUNCH) & |
|---|
| 310 | + ZK(JW, II) * SIN(ZP(JW, II)) * VH(II, LAUNCH) |
|---|
| 311 | |
|---|
| 312 | ! Momentum flux at launch level |
|---|
| 313 | epflux_0(JW, II) = epflux_max & |
|---|
| 314 | * MOD(100. * (UU(II, JW)**2 + VV(II, JW)**2), 1.) |
|---|
| 315 | ENDDO |
|---|
| 316 | end DO |
|---|
| 317 | ! print*,'epflux_0 just after waves charac. ramdon:', epflux_0 |
|---|
| 318 | |
|---|
| 319 | !----------------------------------------------------------------------------------------------------------------------- |
|---|
| 320 | ! 4. COMPUTE THE FLUXES |
|---|
| 321 | !----------------------------------------------------------------------------------------------------------------------- |
|---|
| 322 | ! 4.1 Vertical velocity at launching altitude to ensure the correct value to the imposed fluxes. |
|---|
| 323 | !------------------------------------------------------ |
|---|
| 324 | DO JW = 1, NW |
|---|
| 325 | ! Evaluate intrinsic frequency at launching altitude: |
|---|
| 326 | intr_freq_p(JW, :) = ZO(JW, :) & |
|---|
| 327 | - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LAUNCH) & |
|---|
| 328 | - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LAUNCH) |
|---|
| 329 | end DO |
|---|
| 330 | |
|---|
| 331 | ! VERSION WITHOUT CONVECTIVE SOURCE |
|---|
| 332 | ! Vertical velocity at launch level, value to ensure the imposed |
|---|
| 333 | ! mom flux: |
|---|
| 334 | DO JW = 1, NW |
|---|
| 335 | ! WW is directly a flux, here, not vertical velocity anymore |
|---|
| 336 | WWP(JW, :) = epflux_0(JW,:) |
|---|
| 337 | u_epflux_p(JW, :) = COS(ZP(JW, :)) * SIGN(1., intr_freq_p(JW, :)) * epflux_0(JW, :) |
|---|
| 338 | v_epflux_p(JW, :) = SIN(ZP(JW, :)) * SIGN(1., intr_freq_p(JW, :)) * epflux_0(JW, :) |
|---|
| 339 | end DO |
|---|
| 340 | |
|---|
| 341 | ! 4.2 Initial flux at launching altitude |
|---|
| 342 | !------------------------------------------------------ |
|---|
| 343 | u_epflux_tot(:, LAUNCH) = 0 |
|---|
| 344 | v_epflux_tot(:, LAUNCH) = 0 |
|---|
| 345 | DO JW = 1, NW |
|---|
| 346 | u_epflux_tot(:, LAUNCH) = u_epflux_tot(:, LAUNCH) + u_epflux_p(JW, :) |
|---|
| 347 | v_epflux_tot(:, LAUNCH) = v_epflux_tot(:, LAUNCH) + v_epflux_p(JW, :) |
|---|
| 348 | end DO |
|---|
| 349 | |
|---|
| 350 | ! 4.3 Loop over altitudes, with passage from one level to the next done by: |
|---|
| 351 | !---------------------------------------------------------------------------- |
|---|
| 352 | ! i) conserving the EP flux, |
|---|
| 353 | ! ii) dissipating a little, |
|---|
| 354 | ! iii) testing critical levels, |
|---|
| 355 | ! iv) testing the breaking. |
|---|
| 356 | !---------------------------------------------------------------------------- |
|---|
| 357 | DO LL = LAUNCH, nlayer - 1 |
|---|
| 358 | ! W(KB)ARNING: ALL THE PHYSICS IS HERE (PASSAGE FROM ONE LEVEL TO THE NEXT) |
|---|
| 359 | DO JW = 1, NW |
|---|
| 360 | intr_freq_m(JW, :) = intr_freq_p(JW, :) |
|---|
| 361 | WWM(JW, :) = WWP(JW, :) |
|---|
| 362 | ! Intrinsic Frequency |
|---|
| 363 | intr_freq_p(JW, :) = ZO(JW, :) - ZK(JW, :) * COS(ZP(JW,:)) * UH(:, LL + 1) & |
|---|
| 364 | - ZK(JW, :) * SIN(ZP(JW,:)) * VH(:, LL + 1) |
|---|
| 365 | ! Vertical velocity in flux formulation |
|---|
| 366 | WWP(JW, :) = MIN( & |
|---|
| 367 | ! No breaking (Eq.6) |
|---|
| 368 | WWM(JW, :) & |
|---|
| 369 | ! Dissipation (Eq. 8)(real rho used here rather than pressure |
|---|
| 370 | ! parametration because the original code has a bug if the density of |
|---|
| 371 | ! the planet at the launch altitude not approximate 1): ! |
|---|
| 372 | * EXP(- RDISS*2./rho(:, LL + 1) & |
|---|
| 373 | * ((BV(:, LL + 1) + BV(:, LL)) / 2.)**3 & |
|---|
| 374 | / MAX(ABS(intr_freq_p(JW, :) + intr_freq_m(JW, :)) / 2., ZOISEC)**4 & |
|---|
| 375 | * ZK(JW, :)**3 * (ZH(:, LL + 1) - ZH(:, LL))), & |
|---|
| 376 | ! Critical levels (forced to zero if intrinsic frequency |
|---|
| 377 | ! changes sign) |
|---|
| 378 | MAX(0., SIGN(1., intr_freq_p(JW, :) * intr_freq_m(JW, :))) & |
|---|
| 379 | ! Saturation (Eq. 12) (rho at launch altitude is imposed by J.Liu. |
|---|
| 380 | ! Same reason with Eq. 8) |
|---|
| 381 | * ABS(intr_freq_p(JW, :))**3 / (2.*BV(:, LL+1)) & |
|---|
| 382 | * rho(:,launch)*exp(-zh(:, ll + 1) / H0) & |
|---|
| 383 | * SAT**2 *KMIN**2 / ZK(JW, :)**4) |
|---|
| 384 | end DO |
|---|
| 385 | ! END OF W(KB)ARNING |
|---|
| 386 | |
|---|
| 387 | ! Evaluate EP-flux from Eq. 7 and give the right orientation to the stress |
|---|
| 388 | DO JW = 1, NW |
|---|
| 389 | u_epflux_p(JW, :) = SIGN(1.,intr_freq_p(JW, :)) * COS(ZP(JW, :)) * WWP(JW, :) |
|---|
| 390 | v_epflux_p(JW, :) = SIGN(1.,intr_freq_p(JW, :)) * SIN(ZP(JW, :)) * WWP(JW, :) |
|---|
| 391 | end DO |
|---|
| 392 | |
|---|
| 393 | u_epflux_tot(:, LL + 1) = 0. |
|---|
| 394 | v_epflux_tot(:, LL + 1) = 0. |
|---|
| 395 | DO JW = 1, NW |
|---|
| 396 | u_epflux_tot(:, LL + 1) = u_epflux_tot(:, LL + 1) + u_epflux_p(JW, :) |
|---|
| 397 | v_epflux_tot(:, LL + 1) = v_epflux_tot(:, LL + 1) + v_epflux_p(JW, :) |
|---|
| 398 | EAST_GWSTRESS(:, LL)=EAST_GWSTRESS(:, LL)+MAX(0.,u_epflux_p(JW,:))/FLOAT(NW) |
|---|
| 399 | WEST_GWSTRESS(:, LL)=WEST_GWSTRESS(:, LL)+MIN(0.,u_epflux_p(JW,:))/FLOAT(NW) |
|---|
| 400 | end DO |
|---|
| 401 | end DO ! DO LL = LAUNCH, nlayer - 1 |
|---|
| 402 | |
|---|
| 403 | !----------------------------------------------------------------------------------------------------------------------- |
|---|
| 404 | ! 5. TENDENCY CALCULATIONS |
|---|
| 405 | !----------------------------------------------------------------------------------------------------------------------- |
|---|
| 406 | |
|---|
| 407 | ! 5.1 Flow rectification at the top and in the low layers |
|---|
| 408 | ! -------------------------------------------------------- |
|---|
| 409 | ! Warning, this is the total on all GW |
|---|
| 410 | u_epflux_tot(:, nlayer + 1) = 0. |
|---|
| 411 | v_epflux_tot(:, nlayer + 1) = 0. |
|---|
| 412 | |
|---|
| 413 | ! Here, big change compared to FLott version: |
|---|
| 414 | ! We compensate (u_epflux_tot(:, LAUNCH), ie total emitted upward flux |
|---|
| 415 | ! over the layers max(1,LAUNCH-3) to LAUNCH-1 |
|---|
| 416 | DO LL = 1, max(1,LAUNCH-3) |
|---|
| 417 | u_epflux_tot(:, LL) = 0. |
|---|
| 418 | v_epflux_tot(:, LL) = 0. |
|---|
| 419 | end DO |
|---|
| 420 | DO LL = max(2,LAUNCH-2), LAUNCH-1 |
|---|
| 421 | u_epflux_tot(:, LL) = u_epflux_tot(:, LL - 1) + u_epflux_tot(:, LAUNCH) * & |
|---|
| 422 | (PH(:,LL)-PH(:,LL-1)) / (PH(:,LAUNCH)-PH(:,max(1,LAUNCH-3))) |
|---|
| 423 | v_epflux_tot(:, LL) = v_epflux_tot(:, LL - 1) + v_epflux_tot(:, LAUNCH) * & |
|---|
| 424 | (PH(:,LL)-PH(:,LL-1)) / (PH(:,LAUNCH)-PH(:,max(1,LAUNCH-3))) |
|---|
| 425 | EAST_GWSTRESS(:,LL) = EAST_GWSTRESS(:, LL - 1) + & |
|---|
| 426 | EAST_GWSTRESS(:, LAUNCH) * (PH(:,LL)-PH(:,LL-1))/ & |
|---|
| 427 | (PH(:,LAUNCH)-PH(:,max(1,LAUNCH-3))) |
|---|
| 428 | WEST_GWSTRESS(:,LL) = WEST_GWSTRESS(:, LL - 1) + & |
|---|
| 429 | WEST_GWSTRESS(:, LAUNCH) * (PH(:,LL)-PH(:,LL-1))/ & |
|---|
| 430 | (PH(:,LAUNCH)-PH(:,max(1,LAUNCH-3))) |
|---|
| 431 | end DO |
|---|
| 432 | ! This way, the total flux from GW is zero, but there is a net transport |
|---|
| 433 | ! (upward) that should be compensated by circulation |
|---|
| 434 | ! and induce additional friction at the surface |
|---|
| 435 | call writediagfi(ngrid,'nonoro_u_epflux_tot','nonoro_u_epflux_tot', '',3,u_epflux_tot(:,2:nlayer+1)) |
|---|
| 436 | call writediagfi(ngrid,'nonoro_v_epflux_tot','nonoro_v_epflux_tot', '',3,v_epflux_tot(:,2:nlayer+1)) |
|---|
| 437 | |
|---|
| 438 | ! 5.2 AR-1 RECURSIVE FORMULA (13) IN VERSION 4 |
|---|
| 439 | !--------------------------------------------- |
|---|
| 440 | DO LL = 1, nlayer |
|---|
| 441 | !Notice here the d_u and d_v are tendency (For Mars) but not increment(Venus). |
|---|
| 442 | d_u(:, LL) = G * (u_epflux_tot(:, LL + 1) - u_epflux_tot(:, LL)) & |
|---|
| 443 | / (PH(:, LL + 1) - PH(:, LL)) |
|---|
| 444 | d_v(:, LL) = G * (v_epflux_tot(:, LL + 1) - v_epflux_tot(:, LL)) & |
|---|
| 445 | / (PH(:, LL + 1) - PH(:, LL)) |
|---|
| 446 | ENDDO |
|---|
| 447 | d_t(:,:) = 0. |
|---|
| 448 | call writediagfi(ngrid,'nonoro_d_u','nonoro_d_u', '',3,d_u) |
|---|
| 449 | call writediagfi(ngrid,'nonoro_d_v','nonoro_d_v', '',3,d_v) |
|---|
| 450 | |
|---|
| 451 | ! 5.3 Update tendency of wind with the previous (and saved) values |
|---|
| 452 | !----------------------------------------------------------------- |
|---|
| 453 | d_u(:,:) = DTIME/DELTAT/REAL(NW) * d_u(:,:) & |
|---|
| 454 | + (1.-DTIME/DELTAT) * du_nonoro_gwd(:,:) |
|---|
| 455 | d_v(:,:) = DTIME/DELTAT/REAL(NW) * d_v(:,:) & |
|---|
| 456 | + (1.-DTIME/DELTAT) * dv_nonoro_gwd(:,:) |
|---|
| 457 | du_nonoro_gwd(:,:) = d_u(:,:) |
|---|
| 458 | dv_nonoro_gwd(:,:) = d_v(:,:) |
|---|
| 459 | |
|---|
| 460 | call writediagfi(ngrid,'du_nonoro_gwd','du_nonoro_gwd', '',3,du_nonoro_gwd) |
|---|
| 461 | call writediagfi(ngrid,'dv_nonoro_gwd','dv_nonoro_gwd', '',3,dv_nonoro_gwd) |
|---|
| 462 | |
|---|
| 463 | ! Cosmetic: evaluation of the cumulated stress |
|---|
| 464 | ZUSTR(:) = 0. |
|---|
| 465 | ZVSTR(:) = 0. |
|---|
| 466 | DO LL = 1, nlayer |
|---|
| 467 | ZUSTR(:) = ZUSTR(:) + D_U(:, LL) *rho(:, LL) * (ZH(:, LL + 1) - ZH(:, LL))*DTIME |
|---|
| 468 | ZVSTR(:) = ZVSTR(:) + D_V(:, LL) *rho(:, LL) * (ZH(:, LL + 1) - ZH(:, LL))*DTIME |
|---|
| 469 | ENDDO |
|---|
| 470 | |
|---|
| 471 | !#ifdef CPP_XIOS |
|---|
| 472 | ! call send_xios_field("du_nonoro", d_u) |
|---|
| 473 | ! call send_xios_field("dv_nonoro", d_v) |
|---|
| 474 | ! call send_xios_field("east_gwstress", east_gwstress) |
|---|
| 475 | ! call send_xios_field("west_gwstress", west_gwstress) |
|---|
| 476 | !#endif |
|---|
| 477 | |
|---|
| 478 | END SUBROUTINE NONORO_GWD_RAN |
|---|
| 479 | |
|---|
| 480 | |
|---|
| 481 | |
|---|
| 482 | ! ======================================================== |
|---|
| 483 | ! Subroutines used to allocate/deallocate module variables |
|---|
| 484 | ! ======================================================== |
|---|
| 485 | SUBROUTINE ini_nonoro_gwd_ran(ngrid,nlayer) |
|---|
| 486 | |
|---|
| 487 | IMPLICIT NONE |
|---|
| 488 | |
|---|
| 489 | INTEGER, INTENT (in) :: ngrid ! number of atmospheric columns |
|---|
| 490 | INTEGER, INTENT (in) :: nlayer ! number of atmospheric layers |
|---|
| 491 | |
|---|
| 492 | allocate(du_nonoro_gwd(ngrid,nlayer)) |
|---|
| 493 | allocate(dv_nonoro_gwd(ngrid,nlayer)) |
|---|
| 494 | allocate(east_gwstress(ngrid,nlayer)) |
|---|
| 495 | east_gwstress(:,:)=0 |
|---|
| 496 | allocate(west_gwstress(ngrid,nlayer)) |
|---|
| 497 | west_gwstress(:,:)=0 |
|---|
| 498 | |
|---|
| 499 | END SUBROUTINE ini_nonoro_gwd_ran |
|---|
| 500 | ! ---------------------------------- |
|---|
| 501 | SUBROUTINE end_nonoro_gwd_ran |
|---|
| 502 | |
|---|
| 503 | IMPLICIT NONE |
|---|
| 504 | |
|---|
| 505 | if (allocated(du_nonoro_gwd)) deallocate(du_nonoro_gwd) |
|---|
| 506 | if (allocated(dv_nonoro_gwd)) deallocate(dv_nonoro_gwd) |
|---|
| 507 | if (allocated(east_gwstress)) deallocate(east_gwstress) |
|---|
| 508 | if (allocated(west_gwstress)) deallocate(west_gwstress) |
|---|
| 509 | |
|---|
| 510 | END SUBROUTINE end_nonoro_gwd_ran |
|---|
| 511 | |
|---|
| 512 | END MODULE nonoro_gwd_ran_mod |
|---|