1 | MODULE nonoro_gwd_ran_mod |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | REAL,allocatable,save :: du_nonoro_gwd(:,:) ! Zonal wind tendency due to GWD |
---|
6 | REAL,allocatable,save :: dv_nonoro_gwd(:,:) ! Meridional wind tendency due to GWD |
---|
7 | REAL,ALLOCATABLE,SAVE :: east_gwstress(:,:) ! Profile of eastward stress |
---|
8 | REAL,ALLOCATABLE,SAVE :: west_gwstress(:,:) ! Profile of westward stress |
---|
9 | |
---|
10 | CONTAINS |
---|
11 | |
---|
12 | SUBROUTINE NONORO_GWD_RAN(ngrid,nlayer,DTIME, pp, & |
---|
13 | zmax_therm, pt, pu, pv, pdt, pdu, pdv, & |
---|
14 | zustr,zvstr,d_t, d_u, d_v) |
---|
15 | |
---|
16 | !-------------------------------------------------------------------------------- |
---|
17 | ! Parametrization of the momentum flux deposition due to a discrete |
---|
18 | ! number of gravity waves. |
---|
19 | ! F. Lott |
---|
20 | ! Version 14, Gaussian distribution of the source |
---|
21 | ! LMDz model online version |
---|
22 | ! ADAPTED FOR VENUS / F. LOTT + S. LEBONNOIS |
---|
23 | ! Version adapted on 03/04/2013: |
---|
24 | ! - input flux compensated in the deepest layers |
---|
25 | ! |
---|
26 | ! ADAPTED FOR MARS G.GILLI 02/2016 |
---|
27 | ! Revision with F.Forget 06/2016 Variable EP-flux according to |
---|
28 | ! PBL variation (max velocity thermals) |
---|
29 | ! UPDATED D.BARDET 01/2020 - reproductibility of the |
---|
30 | ! launching altitude calculation |
---|
31 | ! - wave characteristic |
---|
32 | ! calculation using MOD |
---|
33 | ! - adding east_gwstress and |
---|
34 | ! west_gwstress variables |
---|
35 | !--------------------------------------------------------------------------------- |
---|
36 | |
---|
37 | use comcstfi_h, only: g, pi, cpp, r |
---|
38 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
39 | use assert_m, only : assert |
---|
40 | use vertical_layers_mod, only : presnivs |
---|
41 | implicit none |
---|
42 | |
---|
43 | include "dimensions.h" |
---|
44 | include "paramet.h" |
---|
45 | include "yoegwd.h" |
---|
46 | include "callkeys.h" |
---|
47 | |
---|
48 | CHARACTER (LEN=20) :: modname='flott_gwd_rando' |
---|
49 | CHARACTER (LEN=80) :: abort_message |
---|
50 | |
---|
51 | |
---|
52 | ! 0. DECLARATIONS: |
---|
53 | |
---|
54 | ! 0.1 INPUTS |
---|
55 | INTEGER, intent(in):: ngrid, nlayer |
---|
56 | REAL, intent(in):: DTIME ! Time step of the Physics |
---|
57 | REAL, intent(in):: zmax_therm(ngrid) ! altitude of max velocity thermals (m) |
---|
58 | REAL, intent(in):: pp(ngrid,nlayer) ! Pressure at full levels |
---|
59 | REAL, intent(in):: pt(ngrid,nlayer) ! Temp at full levels |
---|
60 | REAL, intent(in):: pu(ngrid,nlayer),pv(ngrid,nlayer) ! Hor winds at full levels |
---|
61 | REAL,INTENT(in) :: pdt(ngrid,nlayer) ! tendency on temperature |
---|
62 | REAL,INTENT(in) :: pdu(ngrid,nlayer) ! tendency on zonal wind |
---|
63 | REAL,INTENT(in) :: pdv(ngrid,nlayer) ! tendency on meridional wind |
---|
64 | |
---|
65 | ! 0.2 OUTPUTS |
---|
66 | REAL, intent(out):: zustr(ngrid), zvstr(ngrid) ! Surface Stresses |
---|
67 | REAL, intent(out):: d_t(ngrid, nlayer) ! Tendency on Temp. |
---|
68 | REAL, intent(out):: d_u(ngrid, nlayer), d_v(ngrid, nlayer) ! tendency on winds |
---|
69 | |
---|
70 | ! O.3 INTERNAL ARRAYS |
---|
71 | REAL :: TT(ngrid, nlayer) ! Temp at full levels |
---|
72 | REAL :: UU(ngrid, nlayer) , VV(ngrid, nlayer) ! Hor winds at full levels |
---|
73 | REAL :: BVLOW(ngrid) |
---|
74 | REAL :: DZ |
---|
75 | |
---|
76 | INTEGER II, JJ, LL |
---|
77 | |
---|
78 | ! 0.3.0 TIME SCALE OF THE LIFE CYCLE OF THE WAVES PARAMETERIZED |
---|
79 | |
---|
80 | REAL, parameter:: DELTAT = 24. * 3600. |
---|
81 | |
---|
82 | ! 0.3.1 GRAVITY-WAVES SPECIFICATIONS |
---|
83 | |
---|
84 | INTEGER, PARAMETER:: NK = 2 ! number of horizontal wavenumbers |
---|
85 | INTEGER, PARAMETER:: NP = 2 ! directions (eastward and westward) phase speed |
---|
86 | INTEGER, PARAMETER:: NO = 2 ! absolute values of phase speed |
---|
87 | INTEGER, PARAMETER:: NW = NK * NP * NO ! Total numbers of gravity waves |
---|
88 | INTEGER JK, JP, JO, JW |
---|
89 | INTEGER, PARAMETER:: NA = 5 ! number of realizations to get the phase speed |
---|
90 | REAL, parameter:: kmax = 7.e-4 ! Max horizontal wavenumber |
---|
91 | REAL, parameter:: kmin = 2.e-5 ! Min horizontal wavenumber |
---|
92 | REAL, parameter:: cmax = 30. ! Max horizontal absolute phase velocity |
---|
93 | REAL, parameter:: cmin = 1. ! Min horizontal absolute phase velocity |
---|
94 | REAL CPHA ! absolute PHASE VELOCITY frequency |
---|
95 | REAL ZK(NW, ngrid) ! Horizontal wavenumber amplitude |
---|
96 | REAL ZP(NW, ngrid) ! Horizontal wavenumber angle |
---|
97 | REAL ZO(NW, ngrid) ! Absolute frequency |
---|
98 | |
---|
99 | REAL intr_freq_m(nw, ngrid) ! Waves Intr. freq. at the 1/2 lev below the full level (previous name: ZOM) |
---|
100 | REAL intr_freq_p(nw, ngrid) ! Waves Intr. freq. at the 1/2 lev above the full level (previous name: ZOP) |
---|
101 | REAL wwm(nw, ngrid) ! Wave EP-fluxes at the 1/2 level below the full level |
---|
102 | REAL wwp(nw, ngrid) ! Wave EP-fluxes at the 1/2 level above the full level |
---|
103 | REAL u_epflux_p(nw, ngrid) ! Partial zonal flux (=for each wave) at the 1/2 level above the full level (previous name: RUWP) |
---|
104 | REAL v_epflux_p(nw, ngrid) ! Partial meridional flux (=for each wave) at the 1/2 level above the full level (previous name: RVWP) |
---|
105 | REAL u_epflux_tot(ngrid, nlayer + 1) ! Total zonal flux (=for all waves (nw)) at the 1/2 level above the full level (3D) (previous name: RUW) |
---|
106 | REAL v_epflux_tot(ngrid, nlayer + 1) ! Total meridional flux (=for all waves (nw)) at the 1/2 level above the full level (3D) (previous name: RVW) |
---|
107 | REAL epflux_0(nw, ngrid) ! Fluxes at launching level (previous name: RUW0) |
---|
108 | REAL, save :: epflux_max ! Max EP flux value at launching altitude (previous name: RUWMAX) |
---|
109 | INTEGER LAUNCH ! Launching altitude |
---|
110 | REAL, parameter:: xlaunch = 0.4 ! Control the launching altitude |
---|
111 | REAL, parameter:: zmaxth_top = 8000. ! Top of convective layer (approx.) |
---|
112 | |
---|
113 | |
---|
114 | REAL PREC(ngrid) |
---|
115 | REAL PRMAX ! Maximum value of PREC, and for which our linear formula |
---|
116 | |
---|
117 | |
---|
118 | ! 0.3.2 PARAMETERS OF WAVES DISSIPATIONS |
---|
119 | REAL, parameter:: sat = 1. ! saturation parameter |
---|
120 | REAL, parameter:: rdiss = 1. ! coefficient of dissipation |
---|
121 | REAL, parameter:: zoisec = 1.e-6 ! security for intrinsic freguency |
---|
122 | |
---|
123 | ! 0.3.3 Background flow at 1/2 levels and vertical coordinate |
---|
124 | REAL H0bis(ngrid, nlayer) ! Characteristic Height of the atmosphere |
---|
125 | REAL, save:: H0 ! Characteristic Height of the atmosphere |
---|
126 | REAL, parameter:: pr = 250 ! Reference pressure [Pa] |
---|
127 | REAL, parameter:: tr = 220. ! Reference temperature [K] |
---|
128 | REAL ZH(ngrid, nlayer + 1) ! Log-pressure altitude (constant H0) |
---|
129 | REAL ZHbis(ngrid, nlayer + 1) ! Log-pressure altitude (varying H) |
---|
130 | REAL UH(ngrid, nlayer + 1) ! zonal wind at 1/2 levels |
---|
131 | REAL VH(ngrid, nlayer + 1) ! meridional wind at 1/2 levels |
---|
132 | REAL PH(ngrid, nlayer + 1) ! Pressure at 1/2 levels |
---|
133 | REAL, parameter:: psec = 1.e-6 ! Security to avoid division by 0 pressure |
---|
134 | REAL BV(ngrid, nlayer + 1) ! Brunt Vaisala freq. (BVF) at 1/2 levels |
---|
135 | REAL, parameter:: bvsec = 1.e-5 ! Security to avoid negative BV |
---|
136 | REAL HREF(nlayer + 1) ! Reference altitude for launching alt. |
---|
137 | |
---|
138 | |
---|
139 | ! COSMETICS TO DIAGNOSE EACH WAVES CONTRIBUTION. |
---|
140 | logical,save :: output=.false. |
---|
141 | ! CAUTION ! IF output is .true. THEN change NO to 10 at least ! |
---|
142 | character*14 outform |
---|
143 | character*2 str2 |
---|
144 | integer ieq |
---|
145 | |
---|
146 | REAL RAN_NUM_1,RAN_NUM_2,RAN_NUM_3 |
---|
147 | |
---|
148 | |
---|
149 | LOGICAL,SAVE :: firstcall = .true. |
---|
150 | |
---|
151 | |
---|
152 | !----------------------------------------------------------------- |
---|
153 | ! 1. INITIALISATIONS |
---|
154 | |
---|
155 | IF (firstcall) THEN |
---|
156 | write(*,*) "nonoro_gwd_ran: FLott non-oro GW scheme is active!" |
---|
157 | epflux_max = 7.E-7 ! Mars' value !! |
---|
158 | call getin_p("nonoro_gwd_epflux_max", epflux_max) |
---|
159 | write(*,*) "nonoro_gwd_ran: epflux_max=", epflux_max |
---|
160 | ! Characteristic vertical scale height |
---|
161 | H0 = r * tr / g |
---|
162 | ! Control |
---|
163 | if (deltat .LT. dtime) THEN |
---|
164 | call abort_physic("nonoro_gwd_ran","gwd random: deltat lower than dtime!",1) |
---|
165 | endif |
---|
166 | if (nlayer .LT. nw) THEN |
---|
167 | call abort_physic("nonoro_gwd_ran","gwd random: nlayer lower than nw!",1) |
---|
168 | endif |
---|
169 | firstcall = .false. |
---|
170 | ENDIF |
---|
171 | |
---|
172 | gwd_convective_source=.false. |
---|
173 | |
---|
174 | ! Compute current values of temperature and winds |
---|
175 | tt(:,:)=pt(:,:)+dtime*pdt(:,:) |
---|
176 | uu(:,:)=pu(:,:)+dtime*pdu(:,:) |
---|
177 | vv(:,:)=pv(:,:)+dtime*pdv(:,:) |
---|
178 | |
---|
179 | |
---|
180 | |
---|
181 | ! 2. EVALUATION OF THE BACKGROUND FLOW AT SEMI-LEVELS |
---|
182 | !------------------------------------------------------------- |
---|
183 | |
---|
184 | !Online output |
---|
185 | if (output) OPEN(11,file="impact-gwno.dat") |
---|
186 | |
---|
187 | ! Pressure and Inv of pressure, Temperature / at 1/2 level |
---|
188 | DO LL = 2, nlayer |
---|
189 | PH(:, LL) = EXP((LOG(PP(:, LL)) + LOG(PP(:, LL - 1))) / 2.) |
---|
190 | end DO |
---|
191 | |
---|
192 | PH(:, nlayer + 1) = 0. |
---|
193 | PH(:, 1) = 2. * PP(:, 1) - PH(:, 2) |
---|
194 | |
---|
195 | ! Launching altitude |
---|
196 | |
---|
197 | !Pour revenir a la version non reproductible en changeant le nombre de |
---|
198 | !process |
---|
199 | ! Reprend la formule qui calcule PH en fonction de PP=play |
---|
200 | DO LL = 2, nlayer |
---|
201 | HREF(LL) = EXP((LOG(presnivs(LL))+ LOG(presnivs(LL - 1))) / 2.) |
---|
202 | end DO |
---|
203 | HREF(nlayer + 1) = 0. |
---|
204 | HREF(1) = 2. * presnivs(1) - HREF(2) |
---|
205 | |
---|
206 | LAUNCH=0 |
---|
207 | DO LL = 1, nlayer |
---|
208 | IF (HREF(LL) / HREF(1) > XLAUNCH) LAUNCH = LL |
---|
209 | ENDDO |
---|
210 | |
---|
211 | if (output) print*, " WE ARE IN FLOTT GW SCHEME " |
---|
212 | |
---|
213 | ! Log pressure vert. coordinate |
---|
214 | DO LL = 1, nlayer + 1 |
---|
215 | ZH(:, LL) = H0 * LOG(PR / (PH(:, LL) + PSEC)) |
---|
216 | end DO |
---|
217 | |
---|
218 | if (output) then |
---|
219 | ! altitude above surface |
---|
220 | ZHbis(:,1) = 0. |
---|
221 | DO LL = 2, nlayer + 1 |
---|
222 | H0bis(:, LL-1) = r * TT(:, LL-1) / g |
---|
223 | ZHbis(:, LL) = ZHbis(:, LL-1) & |
---|
224 | + H0bis(:, LL-1)*(PH(:, LL-1)-PH(:,LL))/PP(:, LL-1) |
---|
225 | end DO |
---|
226 | endif |
---|
227 | |
---|
228 | ! Winds and BV frequency |
---|
229 | DO LL = 2, nlayer |
---|
230 | UH(:, LL) = 0.5 * (UU(:, LL) + UU(:, LL - 1)) ! Zonal wind |
---|
231 | VH(:, LL) = 0.5 * (VV(:, LL) + VV(:, LL - 1)) ! Meridional wind |
---|
232 | ! GG test |
---|
233 | !print*, 'TT, UH, VH, ZH at launch', TT(ngrid/2,LAUNCH), UH(ngrid/2,LAUNCH),VH(ngrid/2, LAUNCH), ZH(ngrid/2,LAUNCH) |
---|
234 | ! BVSEC: BV Frequency |
---|
235 | BV(:, LL) = 0.5 * (TT(:, LL) + TT(:, LL - 1)) & |
---|
236 | * r**2 / cpp / H0**2 + (TT(:, LL) & |
---|
237 | - TT(:, LL - 1)) / (ZH(:, LL) - ZH(:, LL - 1)) * r / H0 |
---|
238 | BV(:,LL) =SQRT(MAX(BVSEC,BV(:,LL))) |
---|
239 | end DO |
---|
240 | !GG test |
---|
241 | !print*, 'BV freq in flott_gwnoro:',LAUNCH, BV(ngrid/2, LAUNCH) |
---|
242 | |
---|
243 | BV(:, 1) = BV(:, 2) |
---|
244 | UH(:, 1) = 0. |
---|
245 | VH(:, 1) = 0. |
---|
246 | BV(:, nlayer + 1) = BV(:, nlayer) |
---|
247 | UH(:, nlayer + 1) = UU(:, nlayer) |
---|
248 | VH(:, nlayer + 1) = VV(:, nlayer) |
---|
249 | |
---|
250 | |
---|
251 | ! 3. WAVES CHARACTERISTICS CHOSEN RANDOMLY |
---|
252 | !------------------------------------------- |
---|
253 | |
---|
254 | ! The mod function of here a weird arguments |
---|
255 | ! are used to produce the waves characteristics |
---|
256 | ! in a stochastic way |
---|
257 | |
---|
258 | DO JW = 1, NW |
---|
259 | ! Angle |
---|
260 | DO II = 1, ngrid |
---|
261 | ! Angle (0 or PI so far) |
---|
262 | RAN_NUM_1=MOD(TT(II, JW) * 10., 1.) |
---|
263 | RAN_NUM_2= MOD(TT(II, JW) * 100., 1.) |
---|
264 | ZP(JW, II) = (SIGN(1., 0.5 - RAN_NUM_1) + 1.) & |
---|
265 | * PI / 2. |
---|
266 | ! Horizontal wavenumber amplitude |
---|
267 | ZK(JW, II) = KMIN + (KMAX - KMIN) *RAN_NUM_2 |
---|
268 | ! Horizontal phase speed |
---|
269 | CPHA = 0. |
---|
270 | DO JJ = 1, NA |
---|
271 | RAN_NUM_3=MOD(TT(II, JW+3*JJ)**2, 1.) |
---|
272 | CPHA = CPHA + & |
---|
273 | CMAX*2.*(RAN_NUM_3 -0.5)*SQRT(3.)/SQRT(NA*1.) |
---|
274 | END DO |
---|
275 | IF (CPHA.LT.0.) THEN |
---|
276 | CPHA = -1.*CPHA |
---|
277 | ZP(JW,II) = ZP(JW,II) + PI |
---|
278 | ENDIF |
---|
279 | !Online output: linear |
---|
280 | if (output) CPHA = CMIN + (CMAX - CMIN) * (JO-1)/(NO-1) |
---|
281 | ! Intrinsic frequency |
---|
282 | ZO(JW, II) = CPHA * ZK(JW, II) |
---|
283 | ! Intrinsic frequency is imposed |
---|
284 | ZO(JW, II) = ZO(JW, II) & |
---|
285 | + ZK(JW, II) * COS(ZP(JW, II)) * UH(II, LAUNCH) & |
---|
286 | + ZK(JW, II) * SIN(ZP(JW, II)) * VH(II, LAUNCH) |
---|
287 | ! Momentum flux at launch lev |
---|
288 | ! epflux_0(JW, II) = epflux_max / REAL(NW) & |
---|
289 | epflux_0(JW, II) = epflux_max & |
---|
290 | * MOD(100. * (UU(II, JW)**2 + VV(II, JW)**2), 1.) |
---|
291 | !Online output: fixed to max |
---|
292 | if (output) epflux_0(JW, II) = epflux_max |
---|
293 | ENDDO |
---|
294 | end DO |
---|
295 | |
---|
296 | ! 4. COMPUTE THE FLUXES |
---|
297 | !-------------------------- |
---|
298 | |
---|
299 | ! 4.1 Vertical velocity at launching altitude to ensure |
---|
300 | ! the correct value to the imposed fluxes. |
---|
301 | ! |
---|
302 | DO JW = 1, NW |
---|
303 | ! Evaluate intrinsic frequency at launching altitude: |
---|
304 | intr_freq_p(JW, :) = ZO(JW, :) & |
---|
305 | - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LAUNCH) & |
---|
306 | - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LAUNCH) |
---|
307 | end DO |
---|
308 | |
---|
309 | IF (gwd_convective_source) THEN |
---|
310 | DO JW = 1, NW |
---|
311 | ! VERSION WITH CONVECTIVE SOURCE (designed for Earth) |
---|
312 | |
---|
313 | ! Vertical velocity at launch level, value to ensure the |
---|
314 | ! imposed mmt flux factor related to the convective forcing: |
---|
315 | ! precipitations. |
---|
316 | |
---|
317 | ! tanh limitation to values above prmax: |
---|
318 | ! WWP(JW, :) = epflux_0(JW, :) & |
---|
319 | ! * (r / cpp / H0 * RLVTT * PRMAX * TANH(PREC(:) / PRMAX))**2 |
---|
320 | ! Here, we neglected the kinetic energy providing of the thermodynamic |
---|
321 | ! phase change |
---|
322 | |
---|
323 | ! |
---|
324 | |
---|
325 | ! Factor related to the characteristics of the waves: |
---|
326 | WWP(JW, :) = WWP(JW, :) * ZK(JW, :)**3 / KMIN / BVLOW(:) & |
---|
327 | / MAX(ABS(intr_freq_p(JW, :)), ZOISEC)**3 |
---|
328 | |
---|
329 | ! Moderation by the depth of the source (dz here): |
---|
330 | WWP(JW, :) = WWP(JW, :) & |
---|
331 | * EXP(- BVLOW(:)**2 / MAX(ABS(intr_freq_p(JW, :)), ZOISEC)**2 & |
---|
332 | * ZK(JW, :)**2 * DZ**2) |
---|
333 | |
---|
334 | ! Put the stress in the right direction: |
---|
335 | u_epflux_p(JW, :) = intr_freq_p(JW, :) / MAX(ABS(intr_freq_p(JW, :)), ZOISEC)**2 & |
---|
336 | * BV(:, LAUNCH) * COS(ZP(JW, :)) * WWP(JW, :)**2 |
---|
337 | v_epflux_p(JW, :) = intr_freq_p(JW, :) / MAX(ABS(intr_freq_p(JW, :)), ZOISEC)**2 & |
---|
338 | * BV(:, LAUNCH) * SIN(ZP(JW, :)) * WWP(JW, :)**2 |
---|
339 | end DO |
---|
340 | ELSE ! VERSION WITHOUT CONVECTIVE SOURCE |
---|
341 | ! Vertical velocity at launch level, value to ensure the imposed |
---|
342 | ! mom flux: |
---|
343 | DO JW = 1, NW |
---|
344 | ! WW is directly a flux, here, not vertical velocity anymore |
---|
345 | WWP(JW, :) = epflux_0(JW,:) |
---|
346 | u_epflux_p(JW, :) = COS(ZP(JW, :)) * SIGN(1., intr_freq_p(JW, :)) * epflux_0(JW, :) |
---|
347 | v_epflux_p(JW, :) = SIN(ZP(JW, :)) * SIGN(1., intr_freq_p(JW, :)) * epflux_0(JW, :) |
---|
348 | |
---|
349 | end DO |
---|
350 | ENDIF |
---|
351 | ! 4.2 Initial flux at launching altitude |
---|
352 | |
---|
353 | u_epflux_tot(:, LAUNCH) = 0 |
---|
354 | v_epflux_tot(:, LAUNCH) = 0 |
---|
355 | DO JW = 1, NW |
---|
356 | u_epflux_tot(:, LAUNCH) = u_epflux_tot(:, LAUNCH) + u_epflux_p(JW, :) |
---|
357 | v_epflux_tot(:, LAUNCH) = v_epflux_tot(:, LAUNCH) + v_epflux_p(JW, :) |
---|
358 | end DO |
---|
359 | |
---|
360 | ! 4.3 Loop over altitudes, with passage from one level to the |
---|
361 | ! next done by i) conserving the EP flux, ii) dissipating |
---|
362 | ! a little, iii) testing critical levels, and vi) testing |
---|
363 | ! the breaking. |
---|
364 | |
---|
365 | !Online output |
---|
366 | if (output) then |
---|
367 | ieq=ngrid/2+1 |
---|
368 | write(str2,'(i2)') NW+2 |
---|
369 | outform="("//str2//"(E12.4,1X))" |
---|
370 | WRITE(11,outform) ZH(IEQ, 1) / 1000., ZHbis(IEQ, 1) / 1000., & |
---|
371 | (ZO(JW, IEQ)/ZK(JW, IEQ)*COS(ZP(JW, IEQ)), JW = 1, NW) |
---|
372 | endif |
---|
373 | |
---|
374 | DO LL = LAUNCH, nlayer - 1 |
---|
375 | |
---|
376 | |
---|
377 | ! W(KB)ARNING: ALL THE PHYSICS IS HERE (PASSAGE FROM ONE LEVEL |
---|
378 | ! TO THE NEXT) |
---|
379 | DO JW = 1, NW |
---|
380 | intr_freq_m(JW, :) = intr_freq_p(JW, :) |
---|
381 | WWM(JW, :) = WWP(JW, :) |
---|
382 | ! Intrinsic Frequency |
---|
383 | intr_freq_p(JW, :) = ZO(JW, :) - ZK(JW, :) * COS(ZP(JW,:)) * UH(:, LL + 1) & |
---|
384 | - ZK(JW, :) * SIN(ZP(JW,:)) * VH(:, LL + 1) |
---|
385 | |
---|
386 | WWP(JW, :) = MIN( & |
---|
387 | ! No breaking (Eq.6) |
---|
388 | WWM(JW, :) & |
---|
389 | ! Dissipation (Eq. 8): |
---|
390 | * EXP(- RDISS * PR / (PH(:, LL + 1) + PH(:, LL)) & |
---|
391 | * ((BV(:, LL + 1) + BV(:, LL)) / 2.)**3 & |
---|
392 | / MAX(ABS(intr_freq_p(JW, :) + intr_freq_m(JW, :)) / 2., ZOISEC)**4 & |
---|
393 | * ZK(JW, :)**3 * (ZH(:, LL + 1) - ZH(:, LL))), & |
---|
394 | ! Critical levels (forced to zero if intrinsic frequency changes sign) |
---|
395 | MAX(0., SIGN(1., intr_freq_p(JW, :) * intr_freq_m(JW, :))) & |
---|
396 | ! Saturation (Eq. 12) |
---|
397 | * ABS(intr_freq_p(JW, :))**3 /BV(:, LL+1) & |
---|
398 | * EXP(-ZH(:, LL + 1)/H0) * SAT**2*KMIN**2/ZK(JW, :)**4) |
---|
399 | end DO |
---|
400 | |
---|
401 | ! END OF W(KB)ARNING |
---|
402 | ! Evaluate EP-flux from Eq. 7 and |
---|
403 | ! Give the right orientation to the stress |
---|
404 | DO JW = 1, NW |
---|
405 | u_epflux_p(JW, :) = SIGN(1.,intr_freq_p(JW, :)) * COS(ZP(JW, :)) * WWP(JW, :) |
---|
406 | v_epflux_p(JW, :) = SIGN(1.,intr_freq_p(JW, :)) * SIN(ZP(JW, :)) * WWP(JW, :) |
---|
407 | end DO |
---|
408 | |
---|
409 | u_epflux_tot(:, LL + 1) = 0. |
---|
410 | v_epflux_tot(:, LL + 1) = 0. |
---|
411 | |
---|
412 | DO JW = 1, NW |
---|
413 | u_epflux_tot(:, LL + 1) = u_epflux_tot(:, LL + 1) + u_epflux_p(JW, :) |
---|
414 | v_epflux_tot(:, LL + 1) = v_epflux_tot(:, LL + 1) + v_epflux_p(JW, :) |
---|
415 | EAST_GWSTRESS(:, LL)=EAST_GWSTRESS(:, LL)+MAX(0.,u_epflux_p(JW,:))/FLOAT(NW) |
---|
416 | WEST_GWSTRESS(:, LL)=WEST_GWSTRESS(:, LL)+MIN(0.,u_epflux_p(JW,:))/FLOAT(NW) |
---|
417 | end DO |
---|
418 | !Online output |
---|
419 | if (output) then |
---|
420 | do JW=1,NW |
---|
421 | if(u_epflux_p(JW, IEQ).gt.0.) then |
---|
422 | u_epflux_p(JW, IEQ) = max(u_epflux_p(JW, IEQ), 1.e-99) |
---|
423 | else |
---|
424 | u_epflux_p(JW, IEQ) = min(u_epflux_p(JW, IEQ), -1.e-99) |
---|
425 | endif |
---|
426 | enddo |
---|
427 | WRITE(11,outform) ZH(IEQ, LL+1) / 1000., & |
---|
428 | ZHbis(IEQ, LL+1) / 1000., & |
---|
429 | (u_epflux_p(JW, IEQ), JW = 1, NW) |
---|
430 | endif |
---|
431 | |
---|
432 | end DO |
---|
433 | |
---|
434 | ! 5 CALCUL DES TENDANCES: |
---|
435 | !------------------------ |
---|
436 | |
---|
437 | ! 5.1 Rectification des flux au sommet et dans les basses couches: |
---|
438 | |
---|
439 | ! Attention, ici c'est le total sur toutes les ondes... |
---|
440 | |
---|
441 | u_epflux_tot(:, nlayer + 1) = 0. |
---|
442 | v_epflux_tot(:, nlayer + 1) = 0. |
---|
443 | |
---|
444 | ! Here, big change compared to FLott version: |
---|
445 | ! We compensate (u_epflux_tot(:, LAUNCH), ie total emitted upward flux |
---|
446 | ! over the layers max(1,LAUNCH-3) to LAUNCH-1 |
---|
447 | DO LL = 1, max(1,LAUNCH-3) |
---|
448 | u_epflux_tot(:, LL) = 0. |
---|
449 | v_epflux_tot(:, LL) = 0. |
---|
450 | end DO |
---|
451 | DO LL = max(2,LAUNCH-2), LAUNCH-1 |
---|
452 | u_epflux_tot(:, LL) = u_epflux_tot(:, LL - 1) + u_epflux_tot(:, LAUNCH) * & |
---|
453 | (PH(:,LL)-PH(:,LL-1)) / (PH(:,LAUNCH)-PH(:,max(1,LAUNCH-3))) |
---|
454 | v_epflux_tot(:, LL) = v_epflux_tot(:, LL - 1) + v_epflux_tot(:, LAUNCH) * & |
---|
455 | (PH(:,LL)-PH(:,LL-1)) / (PH(:,LAUNCH)-PH(:,max(1,LAUNCH-3))) |
---|
456 | EAST_GWSTRESS(:,LL) = EAST_GWSTRESS(:, LL - 1) + & |
---|
457 | EAST_GWSTRESS(:, LAUNCH) * (PH(:,LL)-PH(:,LL-1))/ & |
---|
458 | (PH(:,LAUNCH)-PH(:,max(1,LAUNCH-3))) |
---|
459 | WEST_GWSTRESS(:,LL) = WEST_GWSTRESS(:, LL - 1) + & |
---|
460 | WEST_GWSTRESS(:, LAUNCH) * (PH(:,LL)-PH(:,LL-1))/ & |
---|
461 | (PH(:,LAUNCH)-PH(:,max(1,LAUNCH-3))) |
---|
462 | end DO |
---|
463 | ! This way, the total flux from GW is zero, but there is a net transport |
---|
464 | ! (upward) that should be compensated by circulation |
---|
465 | ! and induce additional friction at the surface |
---|
466 | |
---|
467 | !Online output |
---|
468 | if (output) then |
---|
469 | DO LL = 1, nlayer - 1 |
---|
470 | WRITE(11,*) ZHbis(IEQ, LL)/1000.,u_epflux_tot(IEQ,LL) |
---|
471 | end DO |
---|
472 | CLOSE(11) |
---|
473 | stop |
---|
474 | endif |
---|
475 | |
---|
476 | |
---|
477 | ! 5.2 AR-1 RECURSIVE FORMULA (13) IN VERSION 4 |
---|
478 | !--------------------------------------------- |
---|
479 | DO LL = 1, nlayer |
---|
480 | d_u(:, LL) = G * (u_epflux_tot(:, LL + 1) - u_epflux_tot(:, LL)) & |
---|
481 | / (PH(:, LL + 1) - PH(:, LL)) * DTIME |
---|
482 | d_v(:, LL) = G * (v_epflux_tot(:, LL + 1) - v_epflux_tot(:, LL)) & |
---|
483 | / (PH(:, LL + 1) - PH(:, LL)) * DTIME |
---|
484 | ENDDO |
---|
485 | d_t(:,:) = 0. |
---|
486 | |
---|
487 | ! 5.3 Update tendency of wind with the previous (and saved) values |
---|
488 | !----------------------------------------------------------------- |
---|
489 | d_u(:,:) = DTIME/DELTAT/REAL(NW) * d_u(:,:) & |
---|
490 | + (1.-DTIME/DELTAT) * du_nonoro_gwd(:,:) |
---|
491 | d_v(:,:) = DTIME/DELTAT/REAL(NW) * d_v(:,:) & |
---|
492 | + (1.-DTIME/DELTAT) * dv_nonoro_gwd(:,:) |
---|
493 | du_nonoro_gwd(:,:) = d_u(:,:) |
---|
494 | dv_nonoro_gwd(:,:) = d_v(:,:) |
---|
495 | |
---|
496 | ! Cosmetic: evaluation of the cumulated stress |
---|
497 | |
---|
498 | ZUSTR(:) = 0. |
---|
499 | ZVSTR(:) = 0. |
---|
500 | DO LL = 1, nlayer |
---|
501 | ZUSTR(:) = ZUSTR(:) + D_U(:, LL) / g * (PH(:, LL + 1) - PH(:, LL)) |
---|
502 | ZVSTR(:) = ZVSTR(:) + D_V(:, LL) / g * (PH(:, LL + 1) - PH(:, LL)) |
---|
503 | ENDDO |
---|
504 | |
---|
505 | END SUBROUTINE NONORO_GWD_RAN |
---|
506 | |
---|
507 | ! ======================================================== |
---|
508 | ! Subroutines used to allocate/deallocate module variables |
---|
509 | ! ======================================================== |
---|
510 | |
---|
511 | SUBROUTINE ini_nonoro_gwd_ran(ngrid,nlayer) |
---|
512 | |
---|
513 | IMPLICIT NONE |
---|
514 | |
---|
515 | INTEGER, INTENT (in) :: ngrid ! number of atmospheric columns |
---|
516 | INTEGER, INTENT (in) :: nlayer ! number of atmospheric layers |
---|
517 | |
---|
518 | allocate(du_nonoro_gwd(ngrid,nlayer)) |
---|
519 | allocate(dv_nonoro_gwd(ngrid,nlayer)) |
---|
520 | allocate(east_gwstress(ngrid,nlayer)) |
---|
521 | east_gwstress(:,:)=0 |
---|
522 | allocate(west_gwstress(ngrid,nlayer)) |
---|
523 | west_gwstress(:,:)=0 |
---|
524 | |
---|
525 | END SUBROUTINE ini_nonoro_gwd_ran |
---|
526 | ! ---------------------------------- |
---|
527 | SUBROUTINE end_nonoro_gwd_ran |
---|
528 | |
---|
529 | IMPLICIT NONE |
---|
530 | |
---|
531 | if (allocated(du_nonoro_gwd)) deallocate(du_nonoro_gwd) |
---|
532 | if (allocated(dv_nonoro_gwd)) deallocate(dv_nonoro_gwd) |
---|
533 | if (allocated(east_gwstress)) deallocate(east_gwstress) |
---|
534 | if (allocated(west_gwstress)) deallocate(west_gwstress) |
---|
535 | |
---|
536 | END SUBROUTINE end_nonoro_gwd_ran |
---|
537 | |
---|
538 | END MODULE nonoro_gwd_ran_mod |
---|