[414] | 1 | SUBROUTINE nirco2abs(ngrid,nlayer,pplay,dist_sol,nq,pq, |
---|
[38] | 2 | $ mu0,fract,declin,pdtnirco2) |
---|
| 3 | |
---|
[1036] | 4 | use tracer_mod, only: igcm_co2, igcm_o |
---|
[1224] | 5 | use comgeomfi_h, only: sinlon, coslon, sinlat, coslat |
---|
[1524] | 6 | USE comcstfi_h, ONLY: pi |
---|
| 7 | USE time_phylmdz_mod, ONLY: daysec |
---|
[38] | 8 | IMPLICIT NONE |
---|
| 9 | c======================================================================= |
---|
| 10 | c subject: |
---|
| 11 | c -------- |
---|
| 12 | c Computing heating rate due to |
---|
| 13 | c absorption by CO2 in the near-infrared |
---|
| 14 | c This version includes NLTE effects |
---|
| 15 | c |
---|
| 16 | c (Scheme to be described in Forget et al., JGR, 2003) |
---|
| 17 | c (old Scheme described in Forget et al., JGR, 1999) |
---|
| 18 | c |
---|
| 19 | c This version updated with a new functional fit, |
---|
| 20 | c see NLTE correction-factor of Lopez-Valverde et al (1998) |
---|
| 21 | c Stephen Lewis 2000 |
---|
[414] | 22 | c |
---|
| 23 | c jul 2011 malv+fgg New corrections for NLTE implemented |
---|
[38] | 24 | c 08/2002 : correction for bug when running with diurnal=F |
---|
| 25 | c |
---|
| 26 | c author: Frederic Hourdin 1996 |
---|
| 27 | c ------ |
---|
| 28 | c Francois Forget 1999 |
---|
| 29 | c |
---|
| 30 | c input: |
---|
| 31 | c ----- |
---|
| 32 | c ngrid number of gridpoint of horizontal grid |
---|
| 33 | c nlayer Number of layer |
---|
| 34 | c dist_sol sun-Mars distance (AU) |
---|
[1047] | 35 | c mu0(ngrid) |
---|
| 36 | c fract(ngrid) day fraction of the time interval |
---|
[38] | 37 | c declin latitude of subslar point |
---|
| 38 | c |
---|
| 39 | c output: |
---|
| 40 | c ------- |
---|
| 41 | c |
---|
| 42 | c pdtnirco2(ngrid,nlayer) Heating rate (K/s) |
---|
| 43 | c |
---|
| 44 | c |
---|
| 45 | c======================================================================= |
---|
| 46 | c |
---|
| 47 | c 0. Declarations : |
---|
| 48 | c ------------------ |
---|
| 49 | c |
---|
| 50 | #include "callkeys.h" |
---|
[498] | 51 | #include "nirdata.h" |
---|
[38] | 52 | |
---|
| 53 | c----------------------------------------------------------------------- |
---|
| 54 | c Input/Output |
---|
| 55 | c ------------ |
---|
[552] | 56 | integer,intent(in) :: ngrid ! number of (horizontal) grid points |
---|
| 57 | integer,intent(in) :: nlayer ! number of atmospheric layers |
---|
| 58 | real,intent(in) :: pplay(ngrid,nlayer) ! Pressure |
---|
| 59 | real,intent(in) :: dist_sol ! Sun-Mars distance (in AU) |
---|
| 60 | integer,intent(in) :: nq ! number of tracers |
---|
| 61 | real,intent(in) :: pq(ngrid,nlayer,nq) ! tracers |
---|
[1047] | 62 | real,intent(in) :: mu0(ngrid) ! solar angle |
---|
| 63 | real,intent(in) :: fract(ngrid) ! day fraction of the time interval |
---|
[552] | 64 | real,intent(in) :: declin ! latitude of sub-solar point |
---|
| 65 | |
---|
| 66 | real,intent(out) :: pdtnirco2(ngrid,nlayer) ! heating rate (K/s) |
---|
[38] | 67 | c |
---|
| 68 | c Local variables : |
---|
| 69 | c ----------------- |
---|
[414] | 70 | INTEGER l,ig, n, nstep,i |
---|
[1047] | 71 | REAL co2heat0, zmu(ngrid) |
---|
[38] | 72 | |
---|
| 73 | c special diurnal=F |
---|
[1047] | 74 | real mu0_int(ngrid),fract_int(ngrid),zday_int |
---|
[38] | 75 | real ztim1,ztim2,ztim3,step |
---|
| 76 | |
---|
| 77 | c |
---|
| 78 | c local saved variables |
---|
| 79 | c --------------------- |
---|
[552] | 80 | logical,save :: firstcall=.true. |
---|
[575] | 81 | integer,save :: ico2=0 ! index of "co2" tracer |
---|
| 82 | integer,save :: io=0 ! index of "o" tracer |
---|
[38] | 83 | c p0noonlte is a pressure below which non LTE effects are significant. |
---|
| 84 | c REAL p0nonlte |
---|
| 85 | c DATA p0nonlte/7.5e-3/ |
---|
| 86 | c SAVE p0nonlte |
---|
| 87 | |
---|
| 88 | c parameters for CO2 heating fit |
---|
| 89 | real n_a, n_p0, n_b |
---|
| 90 | parameter (n_a=1.1956475) |
---|
| 91 | parameter (n_b=1.9628251) |
---|
| 92 | parameter (n_p0=0.0015888279) |
---|
| 93 | |
---|
[414] | 94 | c Variables added to implement NLTE correction factor (feb 2011) |
---|
| 95 | real pyy(nlayer) |
---|
| 96 | real cor1(nlayer),oldoco2(nlayer),alfa2(nlayer) |
---|
| 97 | real p2011,cociente1,merge |
---|
| 98 | real cor0,oco2gcm |
---|
| 99 | |
---|
[38] | 100 | c---------------------------------------------------------------------- |
---|
| 101 | |
---|
| 102 | c Initialisation |
---|
| 103 | c -------------- |
---|
[1779] | 104 | ! AS: OK firstcall absolute |
---|
[552] | 105 | if (firstcall) then |
---|
| 106 | if (nircorr.eq.1) then |
---|
| 107 | ! we will need co2 and o tracers |
---|
| 108 | ico2=igcm_co2 |
---|
| 109 | if (ico2==0) then |
---|
| 110 | write(*,*) "nirco2abs error: I need a CO2 tracer" |
---|
| 111 | write(*,*) " when running with nircorr==1" |
---|
| 112 | stop |
---|
| 113 | endif |
---|
| 114 | io=igcm_o |
---|
| 115 | if (io==0) then |
---|
| 116 | write(*,*) "nirco2abs error: I need an O tracer" |
---|
| 117 | write(*,*) " when running with nircorr==1" |
---|
| 118 | stop |
---|
| 119 | endif |
---|
| 120 | endif |
---|
| 121 | firstcall=.false. |
---|
| 122 | endif |
---|
| 123 | |
---|
| 124 | |
---|
[38] | 125 | c co2heat is the heating by CO2 at 700Pa for a zero zenithal angle. |
---|
| 126 | co2heat0=n_a*(1.52/dist_sol)**2/daysec |
---|
| 127 | |
---|
| 128 | c Simple calcul for a given sun incident angle (if diurnal=T) |
---|
| 129 | c -------------------------------------------- |
---|
| 130 | |
---|
| 131 | IF (diurnal) THEN |
---|
| 132 | do ig=1,ngrid |
---|
| 133 | zmu(ig)=sqrt(1224.*mu0(ig)*mu0(ig)+1.)/35. |
---|
[414] | 134 | |
---|
| 135 | if(nircorr.eq.1) then |
---|
| 136 | do l=1,nlayer |
---|
| 137 | pyy(l)=pplay(ig,l) |
---|
| 138 | enddo |
---|
| 139 | |
---|
| 140 | call interpnir(cor1,pyy,nlayer,corgcm,pres1d,npres) |
---|
| 141 | call interpnir(oldoco2,pyy,nlayer,oco21d,pres1d,npres) |
---|
| 142 | call interpnir(alfa2,pyy,nlayer,alfa,pres1d,npres) |
---|
| 143 | endif |
---|
| 144 | |
---|
| 145 | do l=1,nlayer |
---|
| 146 | ! Calculations for the O/CO2 correction |
---|
| 147 | if(nircorr.eq.1) then |
---|
| 148 | cor0=1./(1.+n_p0/pplay(ig,l))**n_b |
---|
[552] | 149 | if(pq(ig,l,ico2).gt.1.e-6) then |
---|
| 150 | oco2gcm=pq(ig,l,io)/pq(ig,l,ico2) |
---|
[414] | 151 | else |
---|
| 152 | oco2gcm=1.e6 |
---|
| 153 | endif |
---|
| 154 | cociente1=oco2gcm/oldoco2(l) |
---|
| 155 | merge=alog10(cociente1)*alfa2(l)+alog10(cor0)* |
---|
| 156 | $ (1.-alfa2(l)) |
---|
| 157 | merge=10**merge |
---|
| 158 | p2011=sqrt(merge)*cor0 |
---|
| 159 | else if (nircorr.eq.0) then |
---|
| 160 | p2011=1. |
---|
| 161 | cor1(l)=1. |
---|
| 162 | endif |
---|
| 163 | |
---|
| 164 | if(fract(ig).gt.0.) pdtnirco2(ig,l)= |
---|
[38] | 165 | & co2heat0*sqrt((700.*zmu(ig))/pplay(ig,l)) |
---|
| 166 | & /(1.+n_p0/pplay(ig,l))**n_b |
---|
[414] | 167 | ! Corrections from tabulation |
---|
| 168 | $ * cor1(l) * p2011 |
---|
[38] | 169 | c OLD SCHEME (forget et al. 1999) |
---|
| 170 | c s co2heat0*sqrt((700.*zmu(ig))/pplay(ig,l)) |
---|
| 171 | c s / (1+p0nonlte/pplay(ig,l)) |
---|
| 172 | enddo |
---|
| 173 | enddo |
---|
[414] | 174 | |
---|
[38] | 175 | |
---|
| 176 | c Averaging over diurnal cycle (if diurnal=F) |
---|
| 177 | c ------------------------------------------- |
---|
| 178 | c NIR CO2 abs is slightly non linear. To remove the diurnal |
---|
| 179 | c cycle, it is better to average the heating rate over 1 day rather |
---|
| 180 | c than using the mean mu0 computed by mucorr in physiq.F (FF, 1998) |
---|
| 181 | |
---|
| 182 | ELSE ! if (.not.diurnal) then |
---|
| 183 | |
---|
| 184 | nstep = 20 ! number of integration step /sol |
---|
| 185 | do n=1,nstep |
---|
| 186 | zday_int = (n-1)/float(nstep) |
---|
| 187 | ztim2=COS(declin)*COS(2.*pi*(zday_int-.5)) |
---|
| 188 | ztim3=-COS(declin)*SIN(2.*pi*(zday_int-.5)) |
---|
| 189 | CALL solang(ngrid,sinlon,coslon,sinlat,coslat, |
---|
| 190 | s ztim1,ztim2,ztim3, |
---|
| 191 | s mu0_int,fract_int) |
---|
| 192 | do ig=1,ngrid |
---|
| 193 | zmu(ig)=sqrt(1224.*mu0_int(ig)*mu0_int(ig)+1.)/35. |
---|
[414] | 194 | |
---|
| 195 | if(nircorr.eq.1) then |
---|
| 196 | do l=1,nlayer |
---|
| 197 | pyy(l)=pplay(ig,l) |
---|
| 198 | enddo |
---|
[690] | 199 | call interpnir(cor1,pyy,nlayer,corgcm,pres1d,npres) |
---|
| 200 | call interpnir(oldoco2,pyy,nlayer,oco21d,pres1d,npres) |
---|
| 201 | call interpnir(alfa2,pyy,nlayer,alfa,pres1d,npres) |
---|
[414] | 202 | endif |
---|
| 203 | |
---|
| 204 | do l=1,nlayer |
---|
| 205 | if(nircorr.eq.1) then |
---|
| 206 | cor0=1./(1.+n_p0/pplay(ig,l))**n_b |
---|
[552] | 207 | oco2gcm=pq(ig,l,io)/pq(ig,l,ico2) |
---|
[414] | 208 | cociente1=oco2gcm/oldoco2(l) |
---|
| 209 | merge=alog10(cociente1)*alfa2(l)+alog10(cor0)* |
---|
| 210 | $ (1.-alfa2(l)) |
---|
| 211 | merge=10**merge |
---|
| 212 | p2011=sqrt(merge)*cor0 |
---|
| 213 | else if (nircorr.eq.0) then |
---|
| 214 | p2011=1. |
---|
| 215 | cor1(l)=1. |
---|
| 216 | endif |
---|
| 217 | |
---|
[38] | 218 | if(fract_int(ig).gt.0.) pdtnirco2(ig,l)= |
---|
| 219 | & pdtnirco2(ig,l) + (1/float(nstep))* |
---|
| 220 | & co2heat0*sqrt((700.*zmu(ig))/pplay(ig,l)) |
---|
| 221 | & /(1.+n_p0/pplay(ig,l))**n_b |
---|
[414] | 222 | ! Corrections from tabulation |
---|
| 223 | $ * cor1(l) * p2011 |
---|
[38] | 224 | enddo |
---|
| 225 | enddo |
---|
| 226 | end do |
---|
| 227 | END IF |
---|
| 228 | |
---|
| 229 | return |
---|
| 230 | end |
---|
| 231 | |
---|
[414] | 232 | |
---|
| 233 | |
---|
| 234 | subroutine interpnir(escout,p,nlayer,escin,pin,nl) |
---|
| 235 | C |
---|
| 236 | C subroutine to perform linear interpolation in pressure from 1D profile |
---|
| 237 | C escin(nl) sampled on pressure grid pin(nl) to profile |
---|
| 238 | C escout(nlayer) on pressure grid p(nlayer). |
---|
| 239 | C |
---|
| 240 | real escout(nlayer),p(nlayer) |
---|
| 241 | real escin(nl),pin(nl),wm,wp |
---|
| 242 | integer nl,nlayer,n1,n,nm,np |
---|
| 243 | do n1=1,nlayer |
---|
| 244 | if(p(n1) .gt. 1500. .or. p(n1) .lt. 1.0e-13) then |
---|
| 245 | escout(n1) = 0.0 |
---|
| 246 | else |
---|
| 247 | do n = 1,nl-1 |
---|
| 248 | if (p(n1).le.pin(n).and.p(n1).ge.pin(n+1)) then |
---|
| 249 | nm=n |
---|
| 250 | np=n+1 |
---|
| 251 | wm=abs(pin(np)-p(n1))/(pin(nm)-pin(np)) |
---|
| 252 | wp=1.0 - wm |
---|
| 253 | endif |
---|
| 254 | enddo |
---|
| 255 | escout(n1) = escin(nm)*wm + escin(np)*wp |
---|
| 256 | endif |
---|
| 257 | enddo |
---|
| 258 | return |
---|
| 259 | end |
---|