1 | c*********************************************************************** |
---|
2 | |
---|
3 | subroutine mztf_correccion (coninf, con, ib, isot, icurt_pop) |
---|
4 | |
---|
5 | c including the dependence of the absort. coeff. on temp., vibr. temp., |
---|
6 | c function, etc.., when neccessary. imr is already corrected in his.for |
---|
7 | c we follow pg.39b-43a (l5): |
---|
8 | c tvt1 is the vibr temp of the upper level |
---|
9 | c tvt is the vibr temp of the transition itself |
---|
10 | c tvtbs is the vibr temp of the bending mode (used in qv) |
---|
11 | c for fundamental bands, they are not used at the moment. |
---|
12 | c for the 15 fh and sh bands, only tvt0 is used at the moment. |
---|
13 | c for the laser band, all of them are used following pg. 41a -l5- : |
---|
14 | c we need s(z) and we can read s(tk) from the histogram (also called |
---|
15 | c what we have to calculate now is the factor s(z)/s(tk) or following |
---|
16 | c l5 notebook notation, s_nlte/s_lte. |
---|
17 | c s_nlte/s_lte = xfactor = xlower * xqv * xes |
---|
18 | |
---|
19 | c icurt_pop = 30 -> Output of populations of the 0200,0220,1000 states |
---|
20 | c = otro -> no output of these populations |
---|
21 | |
---|
22 | c oct 92 malv |
---|
23 | c jan 98 malv version for mz1d |
---|
24 | c jul 2011 malv+fgg adapted to LMD-MGCM |
---|
25 | c*********************************************************************** |
---|
26 | |
---|
27 | implicit none |
---|
28 | |
---|
29 | include 'nltedefs.h' |
---|
30 | include 'nlte_atm.h' |
---|
31 | include 'nlte_data.h' |
---|
32 | include 'nlte_results.h' |
---|
33 | include 'nlte_curtis.h' |
---|
34 | |
---|
35 | c arguments |
---|
36 | integer ib, isot |
---|
37 | integer icurt_pop ! output of Fermi states population |
---|
38 | real*8 con(nzy), coninf |
---|
39 | |
---|
40 | ! local variables |
---|
41 | integer i |
---|
42 | real*8 tvt0(nzy),tvt1(nzy),tvtbs(nzy), zld(nl),zyd(nzy) |
---|
43 | real xalfa, xbeta, xtv1000, xtv0200, xtv0220, xfactor |
---|
44 | real xqv, xnu_trans, xtv_trans, xes, xlower |
---|
45 | c*********************************************************************** |
---|
46 | |
---|
47 | xfactor = 1.0 |
---|
48 | |
---|
49 | do i=1,nzy |
---|
50 | zyd(i) = dble(zy(i)) |
---|
51 | enddo |
---|
52 | do i=1,nl |
---|
53 | zld(i) = dble( zl(i) ) |
---|
54 | end do |
---|
55 | |
---|
56 | ! tvtbs is the bending mode of the molecule. used in xqv. |
---|
57 | if (isot.eq.1) call interdp (tvtbs,zyd,nzy, v626t1,zld,nl, 1 ) |
---|
58 | if (isot.eq.2) call interdp (tvtbs,zyd,nzy, v628t1,zld,nl, 1 ) |
---|
59 | if (isot.eq.3) call interdp (tvtbs,zyd,nzy, v636t1,zld,nl, 1 ) |
---|
60 | if (isot.eq.4) call interdp (tvtbs,zyd,nzy, v627t1,zld,nl, 1 ) |
---|
61 | if (isot.eq.5) call interdp (tvtbs,zyd,nzy, vcot1,zld,nl, 1 ) |
---|
62 | |
---|
63 | ! tvt0 is the lower level of the transition. used in xlower. |
---|
64 | if (ib.eq.2 .or. ib.eq.3 .or. ib.eq.4 .or. ib.eq.15) then |
---|
65 | if (isot.eq.1) call interdp (tvt0,zyd,nzy, v626t1,zld,nl, 1 ) |
---|
66 | if (isot.eq.2) call interdp (tvt0,zyd,nzy, v628t1,zld,nl, 1 ) |
---|
67 | if (isot.eq.3) call interdp (tvt0,zyd,nzy, v636t1,zld,nl, 1 ) |
---|
68 | if (isot.eq.4) call interdp (tvt0,zyd,nzy, v627t1,zld,nl, 1 ) |
---|
69 | elseif (ib.eq.6 .or. ib.eq.8 .or. ib.eq.10 |
---|
70 | @ .or. ib.eq.13 .or. ib.eq.14 |
---|
71 | @ .or. ib.eq.17 .or. ib.eq.19 .or. ib.eq.20) then |
---|
72 | if (isot.eq.1) call interdp ( tvt0,zyd,nzy, v626t2,zld,nl, 1 ) |
---|
73 | if (isot.eq.2) call interdp ( tvt0,zyd,nzy, v628t2,zld,nl, 1 ) |
---|
74 | if (isot.eq.3) call interdp ( tvt0,zyd,nzy, v636t2,zld,nl, 1 ) |
---|
75 | if (isot.eq.4) then |
---|
76 | call interdp ( tvt0,zyd,nzy, v627t2,zld,nl, 1 ) |
---|
77 | endif |
---|
78 | else |
---|
79 | do i=1,nzy |
---|
80 | tvt0(i) = dble( ty(i) ) |
---|
81 | end do |
---|
82 | end if |
---|
83 | |
---|
84 | c tvt is the vt of the transition. used in xes. |
---|
85 | c since xes=1.0 except for the laser bands, tvt is only needed for them |
---|
86 | c but it is actually calculated from the tv of the upper and lower level |
---|
87 | c of the transition. hence, only tvt1 remains to be read for the laser b |
---|
88 | c tvt1 is the upper level of the transition. |
---|
89 | if (ib.eq.13 .or. ib.eq.14) then |
---|
90 | if (isot.eq.1) call interdp ( tvt1,zyd,nzy, v626t4,zld,nl, 1 ) |
---|
91 | if (isot.eq.2) call interdp ( tvt1,zyd,nzy, v628t4,zld,nl, 1 ) |
---|
92 | if (isot.eq.3) call interdp ( tvt1,zyd,nzy, v636t4,zld,nl, 1 ) |
---|
93 | if (isot.eq.4) call interdp ( tvt1,zyd,nzy, v627t4,zld,nl, 1 ) |
---|
94 | end if |
---|
95 | |
---|
96 | c here we weight the absorber amount by a factor which compensate the l |
---|
97 | c value of the strength read from hitran. we use that factor in order t |
---|
98 | c correct the product s*m when we later multiply those two variables. |
---|
99 | |
---|
100 | ! if ( isot.eq.1 .and. icurt_pop.eq.30 ) then |
---|
101 | ! open (30, file='020populations.dat') |
---|
102 | ! write (30,*) ' z tv(020) tv0200 tv0220 tv1000 ' |
---|
103 | ! endif |
---|
104 | |
---|
105 | do i=1,nzy |
---|
106 | |
---|
107 | if (isot.eq.1) then |
---|
108 | |
---|
109 | !!! vt of the 3 levels in (020) (see pag. 36a-sn1 for this) |
---|
110 | xalfa = 1.d0/2.d0* exp( dble(-ee*(nu12_1000-nu(1,2))/ty(i)) ) |
---|
111 | xbeta = 1.d0/2.d0* exp( dble(-ee*(nu12_0200-nu(1,2))/ty(i)) ) |
---|
112 | xtv0200 = dble( - ee * nu12_0200 ) / |
---|
113 | @ ( log( xbeta/(1.d0+xalfa+xbeta) ) - |
---|
114 | @ dble(ee*nu(1,2))/tvt0(i) ) |
---|
115 | xtv0220 = dble( - ee * nu(1,2) ) / |
---|
116 | @ ( log( 1.d0/(1.d0+xalfa+xbeta) ) - |
---|
117 | @ dble(ee*nu(1,2))/tvt0(i) ) |
---|
118 | xtv1000 = dble( - ee * nu12_1000 ) / |
---|
119 | @ ( log( xalfa/(1.d0+xalfa+xbeta) ) - |
---|
120 | @ dble(ee*nu(1,2))/tvt0(i) ) |
---|
121 | !!! correccion 8-Nov-04 (see pag.9b-Marte4-) |
---|
122 | xtv0200 = dble( - ee * nu12_0200 / |
---|
123 | @ ( log(4.*xbeta/(1.d0+xalfa+xbeta)) - ee*nu(1,2)/tvt0(i) ) ) |
---|
124 | xtv0220 = dble( - ee * nu(1,2) / |
---|
125 | @ ( log(2./(1.d0+xalfa+xbeta)) - ee*nu(1,2)/tvt0(i) ) ) |
---|
126 | xtv1000 = dble( - ee * nu12_1000 / |
---|
127 | @ ( log(4.*xalfa/(1.d0+xalfa+xbeta)) - ee*nu(1,2)/tvt0(i) ) ) |
---|
128 | |
---|
129 | ! if ( icurt_pop.eq.30 ) then |
---|
130 | ! write (30,'( 1x,f7.2, 3x,f8.3, 2x,3(1x,f8.3) )') |
---|
131 | ! @ zx(i), tvt0(i), xtv0200, xtv0220, xtv1000 |
---|
132 | ! endif |
---|
133 | |
---|
134 | !!! xlower and xes for the band |
---|
135 | if (ib.eq.19) then |
---|
136 | xlower = exp( dble(ee*elow(isot,ib)) * |
---|
137 | @ ( 1.d0/dble(ty(i))-1.d0/xtv0200 ) ) |
---|
138 | xes = 1.0d0 |
---|
139 | elseif (ib.eq.17) then |
---|
140 | xlower = exp( dble(ee*elow(isot,ib)) * |
---|
141 | @ ( 1.d0/dble(ty(i))-1.d0/xtv1000 ) ) |
---|
142 | xes = 1.0d0 |
---|
143 | elseif (ib.eq.20) then |
---|
144 | xlower = exp( dble(ee*elow(isot,ib)) * |
---|
145 | @ ( 1.d0/dble(ty(i))-1.d0/xtv0220 ) ) |
---|
146 | xes = 1.0d0 |
---|
147 | elseif (ib.eq.14) then |
---|
148 | xlower = exp( dble(ee*nu12_1000) * |
---|
149 | @ ( 1.d0/dble(ty(i))-1.d0/xtv1000 ) ) |
---|
150 | xnu_trans = dble( nu(1,4)-nu12_1000 ) |
---|
151 | xtv_trans = xnu_trans / dble(nu(1,4)/tvt1(i)- |
---|
152 | @ nu12_1000/xtv1000) |
---|
153 | xes = (1.d0-exp( dble(-ee*xnu_trans/xtv_trans) )) / |
---|
154 | @ (1.d0-exp( dble(-ee*xnu_trans/ty(i)) )) |
---|
155 | elseif (ib.eq.13) then |
---|
156 | xlower = exp( dble(ee*nu12_0200) * |
---|
157 | @ ( 1.d0/dble(ty(i))-1.d0/xtv0200 ) ) |
---|
158 | xnu_trans = dble(nu(1,4)-nu12_0200) |
---|
159 | xtv_trans = xnu_trans / dble(nu(1,4)/tvt1(i)- |
---|
160 | @ nu12_0200/xtv0200) |
---|
161 | xes = (1.d0-exp( dble(-ee*xnu_trans/xtv_trans) )) / |
---|
162 | @ (1.d0-exp( dble(-ee*xnu_trans/ty(i)) )) |
---|
163 | else |
---|
164 | xlower = exp( dble(ee*elow(isot,ib)) * |
---|
165 | @ ( 1.d0/dble(ty(i))-1.d0/tvt0(i) ) ) |
---|
166 | xes = 1.0d0 |
---|
167 | end if |
---|
168 | xqv = (1.d0-exp( dble(-ee*667.3801/tvtbs(i)) )) / |
---|
169 | @ (1.d0-exp( dble(-ee*667.3801/ty(i)) )) |
---|
170 | xfactor = xlower * xqv**2.d0 * xes |
---|
171 | |
---|
172 | elseif (isot.eq.2) then |
---|
173 | |
---|
174 | xalfa = 1.d0/2.d0* exp( dble(-ee*(nu22_1000-nu(2,2))/ |
---|
175 | @ ty(i)) ) |
---|
176 | xbeta = 1.d0/2.d0* exp( dble(-ee*(nu22_0200-nu(2,2))/ |
---|
177 | @ ty(i)) ) |
---|
178 | xtv0200 = dble( - ee * nu22_0200 ) / |
---|
179 | @ ( log( xbeta/(1.d0+xalfa+xbeta) ) - dble(ee*nu(2,2))/ |
---|
180 | @ tvt0(i) ) |
---|
181 | xtv1000 = dble( - ee * nu22_1000 ) / |
---|
182 | @ ( log( xalfa/(1.d0+xalfa+xbeta) ) - dble(ee*nu(2,2))/ |
---|
183 | @ tvt0(i) ) |
---|
184 | |
---|
185 | if (ib.eq.14) then |
---|
186 | xlower = exp( dble(ee*nu22_1000) * |
---|
187 | @ ( 1.d0/dble(ty(i))-1.d0/xtv1000 ) ) |
---|
188 | xnu_trans = dble(nu(2,4)-nu22_1000) |
---|
189 | xtv_trans = xnu_trans / dble(nu(2,4)/tvt1(i)-nu22_1000/ |
---|
190 | @ xtv1000) |
---|
191 | xes = (1.d0-exp( dble(-ee*xnu_trans/xtv_trans) )) / |
---|
192 | @ (1.d0-exp( dble(-ee*xnu_trans/ty(i)) )) |
---|
193 | elseif (ib.eq.13) then |
---|
194 | xlower = exp( dble(ee*nu22_0200) * |
---|
195 | @ ( 1.d0/dble(ty(i))-1.d0/xtv0200 ) ) |
---|
196 | xnu_trans = dble( nu(2,4)-nu22_0200 ) |
---|
197 | xtv_trans = xnu_trans / dble(nu(2,4)/tvt1(i)-nu22_0200/ |
---|
198 | @ xtv0200) |
---|
199 | xes = (1.d0-exp( dble(-ee*xnu_trans/xtv_trans) )) / |
---|
200 | @ (1.d0-exp( dble(-ee*xnu_trans/ty(i)) )) |
---|
201 | else |
---|
202 | xlower = exp( dble(ee*elow(isot,ib)) * |
---|
203 | @ ( 1.d0/dble(ty(i))-1.d0/tvt0(i) ) ) |
---|
204 | xes = 1.0d0 |
---|
205 | end if |
---|
206 | xqv = (1.d0-exp( dble(-ee*662.3734/tvtbs(i)) )) / |
---|
207 | @ (1.d0-exp( dble(-ee*662.3734/ty(i)) )) |
---|
208 | xfactor = xlower * xqv**2.d0 * xes |
---|
209 | |
---|
210 | elseif (isot.eq.3) then |
---|
211 | |
---|
212 | xalfa = 1.d0/2.d0* exp( dble(-ee*(nu32_1000-nu(3,2))/ |
---|
213 | @ ty(i)) ) |
---|
214 | xbeta = 1.d0/2.d0* exp( dble(-ee*(nu32_0200-nu(3,2))/ |
---|
215 | @ ty(i)) ) |
---|
216 | xtv0200 = dble( - ee * nu32_0200 ) / |
---|
217 | @ ( log( xbeta/(1.d0+xalfa+xbeta) ) - dble(ee*nu(3,2))/ |
---|
218 | @ tvt0(i) ) |
---|
219 | xtv1000 = dble( - ee * nu32_1000 ) / |
---|
220 | @ ( log( xalfa/(1.d0+xalfa+xbeta) ) - dble(ee*nu(3,2))/ |
---|
221 | @ tvt0(i) ) |
---|
222 | |
---|
223 | if (ib.eq.14) then |
---|
224 | xlower = exp( dble(ee*nu32_1000) * |
---|
225 | @ ( 1.d0/dble(ty(i))-1.d0/xtv1000 ) ) |
---|
226 | xnu_trans = dble( nu(3,4)-nu32_1000 ) |
---|
227 | xtv_trans = xnu_trans / dble(nu(3,4)/tvt1(i)-nu32_1000/ |
---|
228 | @ xtv1000) |
---|
229 | xes = (1.d0-exp( dble(-ee*xnu_trans/xtv_trans) )) / |
---|
230 | @ (1.d0-exp( dble(-ee*xnu_trans/ty(i)) )) |
---|
231 | elseif (ib.eq.13) then |
---|
232 | xlower = exp( dble(ee*nu32_0200) * |
---|
233 | @ ( 1.d0/dble(ty(i))-1.d0/xtv0200 ) ) |
---|
234 | xnu_trans = dble( nu(3,4)-nu32_0200 ) |
---|
235 | xtv_trans = xnu_trans / dble(nu(3,4)/tvt1(i)-nu32_0200/ |
---|
236 | @ xtv0200) |
---|
237 | xes = (1.d0-exp( dble(-ee*xnu_trans/xtv_trans) )) / |
---|
238 | @ (1.d0-exp( dble(-ee*xnu_trans/ty(i)) )) |
---|
239 | else |
---|
240 | xlower = exp( dble(ee*elow(isot,ib)) * |
---|
241 | @ ( 1.d0/dble(ty(i))-1.d0/tvt0(i) ) ) |
---|
242 | xes = 1.0d0 |
---|
243 | end if |
---|
244 | xqv = (1.d0-exp( dble(-ee*648.4784/tvtbs(i)) )) / |
---|
245 | @ (1.d0-exp( dble(-ee*648.4784/ty(i)) )) |
---|
246 | xfactor = xlower * xqv**2.d0 * xes |
---|
247 | |
---|
248 | elseif (isot.eq.4) then |
---|
249 | |
---|
250 | xalfa = 1.d0/2.d0* exp( dble(-ee*(nu42_1000-nu(4,2))/ |
---|
251 | @ ty(i)) ) |
---|
252 | xbeta = 1.d0/2.d0* exp( dble(-ee*(nu42_0200-nu(4,2))/ |
---|
253 | @ ty(i)) ) |
---|
254 | xtv0200 = dble( - ee * nu42_0200 ) / |
---|
255 | @ ( log( xbeta/(1.d0+xalfa+xbeta) ) - dble(ee*nu(4,2))/ |
---|
256 | @ tvt0(i) ) |
---|
257 | xtv1000 = dble( - ee * nu42_1000 ) / |
---|
258 | @ ( log( xalfa/(1.d0+xalfa+xbeta) ) - dble(ee*nu(4,2))/ |
---|
259 | @ tvt0(i) ) |
---|
260 | |
---|
261 | if (ib.eq.14) then |
---|
262 | xlower = exp( dble(ee*nu42_1000) * |
---|
263 | @ ( 1.d0/dble(ty(i))-1.d0/xtv1000 ) ) |
---|
264 | xnu_trans = dble( nu(4,4)-nu42_1000 ) |
---|
265 | xtv_trans = xnu_trans / dble(nu(4,4)/tvt1(i)-nu42_1000/ |
---|
266 | @ xtv1000) |
---|
267 | xes = (1.d0-exp( dble(-ee*xnu_trans/xtv_trans) )) / |
---|
268 | @ (1.d0-exp( dble(-ee*xnu_trans/ty(i)) )) |
---|
269 | elseif (ib.eq.13) then |
---|
270 | xlower = exp( dble(ee*nu42_0200) * |
---|
271 | $ ( 1.d0/dble(ty(i))-1.d0/xtv0200 ) ) |
---|
272 | xnu_trans = dble( nu(4,4)-nu42_0200 ) |
---|
273 | xtv_trans = xnu_trans / dble(nu(4,4)/tvt1(i)-nu42_0200/ |
---|
274 | @ xtv0200) |
---|
275 | xes = (1.d0-exp( dble(-ee*xnu_trans/xtv_trans) )) / |
---|
276 | @ (1.d0-exp( dble(-ee*xnu_trans/ty(i)) )) |
---|
277 | else |
---|
278 | xlower = exp( dble(ee*elow(isot,ib)) * |
---|
279 | @ ( 1.d0/dble(ty(i))-1.d0/tvt0(i) ) ) |
---|
280 | xes = 1.0d0 |
---|
281 | end if |
---|
282 | xqv = (1.d0-exp( dble(-ee*664.7289/tvtbs(i)) )) / |
---|
283 | @ (1.d0-exp( dble(-ee*664.7289/ty(i)) )) |
---|
284 | xfactor = xlower * xqv**2.d0 * xes |
---|
285 | |
---|
286 | elseif (isot.eq.5 .and. ib.eq.1) then |
---|
287 | |
---|
288 | xlower = 1.d0 |
---|
289 | xes = 1.0d0 |
---|
290 | xqv = (1.d0-exp( dble(-ee*nuco_10/tvtbs(i)) )) / |
---|
291 | @ (1.d0-exp( dble(-ee*nuco_10/ty(i)) )) |
---|
292 | xfactor = xlower * xqv * xes |
---|
293 | |
---|
294 | end if |
---|
295 | |
---|
296 | con(i) = con(i) * xfactor |
---|
297 | if (i.eq.nzy) coninf = coninf * xfactor |
---|
298 | |
---|
299 | end do |
---|
300 | |
---|
301 | ! if ( isot.eq.1 .and. icurt_pop.eq.30 ) then |
---|
302 | ! close (30) |
---|
303 | ! endif |
---|
304 | |
---|
305 | return |
---|
306 | end |
---|