[38] | 1 | subroutine lwxd (ig0,kdlon,kflev,emis |
---|
| 2 | . ,aer_t,co2_u,co2_up) |
---|
| 3 | |
---|
| 4 | c---------------------------------------------------------------------- |
---|
| 5 | c LWXD computes transmission function and exchange coefficiants |
---|
| 6 | c for distant layers |
---|
| 7 | c (co2 / aerosols) |
---|
| 8 | c (bands 1 and 2 of co2) |
---|
| 9 | c---------------------------------------------------------------------- |
---|
| 10 | c |
---|
| 11 | c |---|---|---|---|---|---|---|---| |
---|
| 12 | c kflev+1 | | | | | | | | 0 | (space) |
---|
| 13 | c |---|---|---|---|---|---|---|---| |
---|
| 14 | c kflev | |***|***|***|***| | 0 | | |
---|
| 15 | c |---|---|---|---|---|---|---|---| |
---|
| 16 | c ... | |***|***|***| | 0 | | | |
---|
| 17 | c |---|---|---|---|---|---|---|---| |
---|
| 18 | c 4 | |***|***| | 0 | |***| | |
---|
| 19 | c |---|---|---|---|---|---|---|---| |
---|
| 20 | c 3 | |***| | 0 | |***|***| | |
---|
| 21 | c |---|---|---|---|---|---|---|---| |
---|
| 22 | c 2 | | | 0 | | |***|***| | |
---|
| 23 | c |---|---|---|---|---|---|---|---| |
---|
| 24 | c 1 | | 0 | | |***|***|***| | |
---|
| 25 | c |---|---|---|---|---|---|---|---| |
---|
| 26 | c 0 | 0 | | |***|***|***|***| | (ground) |
---|
| 27 | c |---|---|---|---|---|---|---|---| |
---|
| 28 | c 0 1 2 3 4 ... k |k+1 |
---|
| 29 | c (ground) (space) |
---|
| 30 | c |
---|
| 31 | c (*) xi computed in this subroutine |
---|
| 32 | c---------------------------------------------------------------------- |
---|
| 33 | |
---|
[1047] | 34 | use dimradmars_mod, only: ndlon, nuco2, nflev, ndlo2 |
---|
| 35 | use yomlw_h, only: nlaylte, xi, xi_emis |
---|
[38] | 36 | implicit none |
---|
| 37 | |
---|
| 38 | #include "callkeys.h" |
---|
| 39 | |
---|
| 40 | c---------------------------------------------------------------------- |
---|
| 41 | c 0.1 arguments |
---|
| 42 | c --------- |
---|
| 43 | c inputs: |
---|
| 44 | c ------- |
---|
| 45 | integer ig0 |
---|
| 46 | integer kdlon ! part of ngrid |
---|
| 47 | integer kflev ! part of nalyer |
---|
| 48 | |
---|
| 49 | real emis (ndlo2) ! surface emissivity |
---|
| 50 | real aer_t (ndlo2,nuco2,kflev+1) ! transmission (aer) |
---|
| 51 | real co2_u (ndlo2,nuco2,kflev+1) ! absorber amounts (co2) |
---|
| 52 | real co2_up (ndlo2,nuco2,kflev+1) ! idem scaled by the pressure (co2) |
---|
| 53 | |
---|
| 54 | c---------------------------------------------------------------------- |
---|
| 55 | c 0.2 local arrays |
---|
| 56 | c ------------ |
---|
| 57 | |
---|
| 58 | integer ja,jl,jk,jkk,ndim |
---|
[1047] | 59 | ! parameter(ndim = ndlon*nuco2*(nflev+2)*(nflev+2)) |
---|
[38] | 60 | |
---|
| 61 | |
---|
| 62 | real zu (ndlon,nuco2) |
---|
| 63 | real zup (ndlon,nuco2) |
---|
| 64 | real zt_co2 (ndlon,nuco2) |
---|
| 65 | real zt_aer (ndlon,nuco2) |
---|
| 66 | |
---|
| 67 | real ksi (ndlon,nuco2,0:nflev+1,0:nflev+1) |
---|
| 68 | real ksi_emis (ndlon,nuco2,0:nflev+1,0:nflev+1) |
---|
| 69 | real trans (ndlon,nuco2,0:nflev+1,0:nflev+1) |
---|
| 70 | real trans_emis (ndlon,nuco2,0:nflev+1,0:nflev+1) |
---|
| 71 | |
---|
| 72 | c---------------------------------------------------------------------- |
---|
[1047] | 73 | ndim = ndlon*nuco2*(nflev+2)*(nflev+2) |
---|
[38] | 74 | call zerophys(ndim,ksi_emis) |
---|
| 75 | c---------------------------------------------------------------------- |
---|
| 76 | c 1.0 Transmission functions |
---|
| 77 | c ---------------------- |
---|
| 78 | |
---|
| 79 | c---------------------------------------------------------------------- |
---|
| 80 | c 1.1 Direct transmission |
---|
| 81 | c ------------------- |
---|
| 82 | |
---|
| 83 | do jk = 1 , nlaylte+1 |
---|
| 84 | do jkk = jk , nlaylte+1 |
---|
| 85 | |
---|
| 86 | do ja = 1 , nuco2 |
---|
| 87 | do jl = 1 , kdlon |
---|
| 88 | c co2 |
---|
| 89 | c --- |
---|
| 90 | zu(jl,ja) = co2_u(jl,ja,jk) - co2_u(jl,ja,jkk) |
---|
| 91 | zup(jl,ja) = co2_up(jl,ja,jk) - co2_up(jl,ja,jkk) |
---|
| 92 | c aer |
---|
| 93 | c --- |
---|
| 94 | zt_aer(jl,ja)= aer_t(jl,ja,jk) |
---|
| 95 | . /aer_t(jl,ja,jkk) |
---|
| 96 | |
---|
| 97 | enddo |
---|
| 98 | enddo |
---|
| 99 | |
---|
| 100 | call lwtt(kdlon,zu,zup,nuco2,zt_co2) |
---|
| 101 | c co2 and aer |
---|
| 102 | c ----------- |
---|
| 103 | do ja = 1 , nuco2 |
---|
| 104 | do jl = 1 , kdlon |
---|
| 105 | trans(jl,ja,jk,jkk) = zt_co2(jl,ja) * zt_aer(jl,ja) |
---|
| 106 | enddo |
---|
| 107 | enddo |
---|
| 108 | c trans reciprocity |
---|
| 109 | c ----------------- |
---|
| 110 | do ja = 1 , nuco2 |
---|
| 111 | do jl = 1 , kdlon |
---|
| 112 | trans(jl,ja,jkk,jk) = trans(jl,ja,jk,jkk) |
---|
| 113 | c if (trans(jl,ja,jk,jkk) .LT. 0 ) then |
---|
| 114 | c print*,'trans bande',ja,jk,jkk,trans(jl,ja,jk,jkk) |
---|
| 115 | c endif |
---|
| 116 | c if (trans(jl,ja,jk,jkk) .GT. 1) then |
---|
| 117 | c print*,'trans bande',ja,jk,jkk,trans(jl,ja,jk,jkk) |
---|
| 118 | c trans(jl,ja,jk,jkk)=1 |
---|
| 119 | c print*,'trans bande',ja,jk,jkk,trans(jl,ja,jk,jkk) |
---|
| 120 | c endif |
---|
| 121 | |
---|
| 122 | enddo |
---|
| 123 | enddo |
---|
| 124 | |
---|
| 125 | enddo |
---|
| 126 | enddo |
---|
| 127 | |
---|
| 128 | c---------------------------------------------------------------------- |
---|
| 129 | c 1.2 Transmission with reflexion |
---|
| 130 | c --------------------------- |
---|
| 131 | |
---|
| 132 | do jk = 1 , nlaylte+1 |
---|
| 133 | do jkk = jk , nlaylte+1 |
---|
| 134 | |
---|
| 135 | if (callemis) then |
---|
| 136 | do ja = 1 , nuco2 |
---|
| 137 | do jl = 1 , kdlon |
---|
| 138 | c co2 |
---|
| 139 | c --- |
---|
| 140 | zu(jl,ja) = 2 * co2_u(jl,ja,1) - co2_u(jl,ja,jk) |
---|
| 141 | . - co2_u(jl,ja,jkk) |
---|
| 142 | zup(jl,ja) = 2 * co2_up(jl,ja,1) - co2_up(jl,ja,jk) |
---|
| 143 | . - co2_up(jl,ja,jkk) |
---|
| 144 | c aer |
---|
| 145 | c --- |
---|
| 146 | zt_aer(jl,ja) = aer_t(jl,ja,1) |
---|
| 147 | . * aer_t(jl,ja,1) |
---|
| 148 | . / aer_t(jl,ja,jk) |
---|
| 149 | . / aer_t(jl,ja,jkk) |
---|
| 150 | enddo |
---|
| 151 | enddo |
---|
| 152 | |
---|
| 153 | call lwtt(kdlon,zu,zup,nuco2,zt_co2) |
---|
| 154 | c co2 and aer |
---|
| 155 | c ----------- |
---|
| 156 | do ja = 1 , nuco2 |
---|
| 157 | do jl = 1 , kdlon |
---|
| 158 | trans_emis(jl,ja,jk,jkk) = zt_co2(jl,ja) |
---|
| 159 | . * zt_aer(jl,ja) |
---|
| 160 | enddo |
---|
| 161 | enddo |
---|
| 162 | |
---|
| 163 | else |
---|
| 164 | |
---|
| 165 | do ja = 1 , nuco2 |
---|
| 166 | do jl = 1 , kdlon |
---|
| 167 | trans_emis(jl,ja,jk,jkk) = 1. |
---|
| 168 | enddo |
---|
| 169 | enddo |
---|
| 170 | |
---|
| 171 | endif |
---|
| 172 | c trans reciprocity |
---|
| 173 | c ----------------- |
---|
| 174 | do ja = 1 , nuco2 |
---|
| 175 | do jl = 1 , kdlon |
---|
| 176 | trans_emis(jl,ja,jkk,jk) = trans_emis(jl,ja,jk,jkk) |
---|
| 177 | c if (trans_emis(jl,ja,jk,jkk) .LT. 0 |
---|
| 178 | c . .OR. trans_emis(jl,ja,jk,jkk) .GT. 1) then |
---|
| 179 | c print*,'trans_emis bande',ja,jk,jkk,trans_emis(jl,ja,jk,jkk) |
---|
| 180 | c endif |
---|
| 181 | enddo |
---|
| 182 | enddo |
---|
| 183 | |
---|
| 184 | enddo |
---|
| 185 | enddo |
---|
| 186 | |
---|
| 187 | c---------------------------------------------------------------------- |
---|
| 188 | c 2.0 Exchange Coefficiants |
---|
| 189 | c --------------------- |
---|
| 190 | |
---|
| 191 | do jk = 1 , nlaylte-2 |
---|
| 192 | do jkk = jk+2 , nlaylte |
---|
| 193 | do ja = 1 , nuco2 |
---|
| 194 | do jl = 1 , kdlon |
---|
| 195 | |
---|
| 196 | ksi(jl,ja,jk,jkk) = |
---|
| 197 | . trans(jl,ja,jk+1,jkk) - trans(jl,ja,jk,jkk) |
---|
| 198 | . - trans(jl,ja,jk+1,jkk+1) + trans(jl,ja,jk,jkk+1) |
---|
| 199 | |
---|
| 200 | ksi_emis(jl,ja,jk,jkk) = |
---|
| 201 | . trans_emis(jl,ja,jk,jkk) - trans_emis(jl,ja,jk+1,jkk) |
---|
| 202 | . - trans_emis(jl,ja,jk,jkk+1) + trans_emis(jl,ja,jk+1,jkk+1) |
---|
| 203 | |
---|
| 204 | c if (ksi(jl,ja,jk,jkk) .LT. 0 ) then |
---|
| 205 | c print*,'ksi bande',ja,jk,jkk,ksi(jl,ja,jk,jkk) |
---|
| 206 | c ksi(jl,ja,jk,jkk)=0 |
---|
| 207 | c print*,'ksi bande',ja,jk,jkk,ksi(jl,ja,jk,jkk) |
---|
| 208 | c endif |
---|
| 209 | c if (ksi(jl,ja,jk,jkk) .GT. 1) then |
---|
| 210 | c print*,'ksi bande',ja,jk,jkk,ksi(jl,ja,jk,jkk) |
---|
| 211 | c ksi(jl,ja,jk,jkk)=1 |
---|
| 212 | c print*,'ksi bande',ja,jk,jkk,ksi(jl,ja,jk,jkk) |
---|
| 213 | c endif |
---|
| 214 | |
---|
| 215 | c if (ksi_emis(jl,ja,jk,jkk) .LT. 0 |
---|
| 216 | c . .OR. ksi_emis(jl,ja,jk,jkk) .GT. 1) then |
---|
| 217 | c print*,'ksi_emis bande',ja,jk,jkk,ksi_emis(jl,ja,jk,jkk) |
---|
| 218 | c endif |
---|
| 219 | |
---|
| 220 | xi(ig0+jl,ja,jk,jkk) = ksi(jl,ja,jk,jkk) |
---|
| 221 | . + ksi_emis(jl,ja,jk,jkk) * (1 - emis(jl)) |
---|
| 222 | |
---|
| 223 | c ksi reciprocity |
---|
| 224 | c --------------- |
---|
| 225 | ksi(jl,ja,jkk,jk) = ksi(jl,ja,jk,jkk) |
---|
| 226 | ksi_emis(jl,ja,jkk,jk) = ksi_emis(jl,ja,jk,jkk) |
---|
| 227 | xi(ig0+jl,ja,jkk,jk) = xi(ig0+jl,ja,jk,jkk) |
---|
| 228 | |
---|
| 229 | enddo |
---|
| 230 | enddo |
---|
| 231 | enddo |
---|
| 232 | enddo |
---|
| 233 | |
---|
| 234 | c---------------------------------------------------------------------- |
---|
| 235 | c 2.1 Save xi_emis for neighbours (lwxn.F) |
---|
| 236 | c ----------------------------------- |
---|
| 237 | |
---|
| 238 | do jk = 1 , nlaylte-1 |
---|
| 239 | do ja = 1 , nuco2 |
---|
| 240 | do jl = 1 , kdlon |
---|
| 241 | |
---|
| 242 | c ksi_emis(jl,ja,jk,jk+1) = |
---|
| 243 | c . trans_emis(jl,ja,jk,jk+1) - trans_emis(jl,ja,jk+1,jk+1) |
---|
| 244 | c . - trans_emis(jl,ja,jk,jk+2) + trans_emis(jl,ja,jk+1,jk+2) |
---|
| 245 | |
---|
| 246 | xi_emis(ig0+jl,ja,jk) = |
---|
| 247 | . ksi_emis(jl,ja,jk,jk+1) * (1-emis(jl)) |
---|
| 248 | |
---|
| 249 | enddo |
---|
| 250 | enddo |
---|
| 251 | enddo |
---|
| 252 | |
---|
| 253 | c---------------------------------------------------------------------- |
---|
| 254 | return |
---|
| 255 | end |
---|