1 | subroutine lwxb (ig0,kdlon,kflev |
---|
2 | . ,emis |
---|
3 | . ,aer_t,co2_u,co2_up) |
---|
4 | |
---|
5 | c---------------------------------------------------------------------- |
---|
6 | c LWXB computes transmission function and exchange coefficients |
---|
7 | c for boundaries |
---|
8 | c (co2 / aerosols) |
---|
9 | c (bands 1 and 2 of co2) |
---|
10 | c---------------------------------------------------------------------- |
---|
11 | c |
---|
12 | c |---|---|---|---|---|---|---|---| |
---|
13 | c kflev+1 |***|***|***|***|***|***|***| 0 | (space) |
---|
14 | c |---|---|---|---|---|---|---|---| |
---|
15 | c kflev |***| | | | | | 0 |***| |
---|
16 | c |---|---|---|---|---|---|---|---| |
---|
17 | c ... |***| | | | | 0 | |***| |
---|
18 | c |---|---|---|---|---|---|---|---| |
---|
19 | c 4 |***| | | | 0 | | |***| |
---|
20 | c |---|---|---|---|---|---|---|---| |
---|
21 | c 3 |***| | | 0 | | | |***| |
---|
22 | c |---|---|---|---|---|---|---|---| |
---|
23 | c 2 |***| | 0 | | | | |***| |
---|
24 | c |---|---|---|---|---|---|---|---| |
---|
25 | c 1 |***| 0 | | | | | |***| |
---|
26 | c |---|---|---|---|---|---|---|---| |
---|
27 | c 0 | 0 |***|***|***|***|***|***|***| (ground) |
---|
28 | c |---|---|---|---|---|---|---|---| |
---|
29 | c 0 1 2 3 4 ... k |k+1 |
---|
30 | c (ground) (space) |
---|
31 | c |
---|
32 | c (*) xi computed in this subroutine |
---|
33 | c---------------------------------------------------------------------- |
---|
34 | |
---|
35 | use dimradmars_mod, only: ndlo2, nuco2, ndlon, nflev |
---|
36 | use yomlw_h, only: xi, nlaylte |
---|
37 | implicit none |
---|
38 | |
---|
39 | c---------------------------------------------------------------------- |
---|
40 | c 0.1 arguments |
---|
41 | c --------- |
---|
42 | c inputs: |
---|
43 | c ------- |
---|
44 | integer kdlon ! part of ngrid |
---|
45 | integer kflev ! part of nalyer |
---|
46 | |
---|
47 | real emis (ndlo2) ! surface emissivity |
---|
48 | real aer_t (ndlo2,nuco2,kflev+1) ! transmission (aer) |
---|
49 | real co2_u (ndlo2,nuco2,kflev+1) ! absorber amounts (co2) |
---|
50 | real co2_up (ndlo2,nuco2,kflev+1) ! idem scaled by the pressure (co2) |
---|
51 | |
---|
52 | c---------------------------------------------------------------------- |
---|
53 | c 0.2 local arrays |
---|
54 | c ------------ |
---|
55 | |
---|
56 | integer ja,jl,jk,ig0 |
---|
57 | |
---|
58 | real zt_co2 (ndlon,nuco2) |
---|
59 | real zt_aer (ndlon,nuco2) |
---|
60 | real zu (ndlon,nuco2) |
---|
61 | real zup (ndlon,nuco2) |
---|
62 | c 2 for ground(1) and space(2) |
---|
63 | real trans (ndlon,nuco2,2,0:nflev+1) |
---|
64 | real ksi (ndlon,nuco2,2,0:nflev+1) |
---|
65 | c only for space |
---|
66 | real trans_emis (ndlon,nuco2,0:nflev+1) |
---|
67 | real ksi_emis (ndlon,nuco2,0:nflev+1) |
---|
68 | |
---|
69 | c************************************************************************* |
---|
70 | c 1.0 Transmissions |
---|
71 | c ------------- |
---|
72 | c---------------------------------------------------------------------- |
---|
73 | c 1.1 Direct Transmission |
---|
74 | c ------------------- |
---|
75 | |
---|
76 | c space |
---|
77 | c ----- |
---|
78 | do jk = 1 , nlaylte+1 |
---|
79 | |
---|
80 | do ja = 1 , nuco2 |
---|
81 | do jl = 1 , kdlon |
---|
82 | zu(jl,ja) = co2_u(jl,ja,jk) |
---|
83 | zup(jl,ja) = co2_up(jl,ja,jk) |
---|
84 | zt_aer(jl,ja) = aer_t(jl,ja,jk) |
---|
85 | enddo |
---|
86 | enddo |
---|
87 | |
---|
88 | call lwtt(kdlon,zu,zup,nuco2,zt_co2) |
---|
89 | |
---|
90 | do ja = 1 , nuco2 |
---|
91 | do jl = 1 , kdlon |
---|
92 | trans(jl,ja,2,jk)=zt_co2(jl,ja)*zt_aer(jl,ja) |
---|
93 | enddo |
---|
94 | enddo |
---|
95 | |
---|
96 | enddo |
---|
97 | c ground |
---|
98 | c ----- |
---|
99 | do jk = 1 , nlaylte+1 |
---|
100 | |
---|
101 | do ja = 1 , nuco2 |
---|
102 | do jl = 1 , kdlon |
---|
103 | zu(jl,ja) = co2_u(jl,ja,1) - co2_u(jl,ja,jk) |
---|
104 | zup(jl,ja) = co2_up(jl,ja,1) - co2_up(jl,ja,jk) |
---|
105 | zt_aer(jl,ja) = aer_t(jl,ja,1) /aer_t(jl,ja,jk) |
---|
106 | enddo |
---|
107 | enddo |
---|
108 | |
---|
109 | call lwtt(kdlon,zu,zup,nuco2,zt_co2) |
---|
110 | |
---|
111 | do ja = 1 , nuco2 |
---|
112 | do jl = 1 , kdlon |
---|
113 | trans(jl,ja,1,jk)=zt_co2(jl,ja)*zt_aer(jl,ja) |
---|
114 | enddo |
---|
115 | enddo |
---|
116 | |
---|
117 | enddo |
---|
118 | |
---|
119 | c---------------------------------------------------------------------- |
---|
120 | c 1.2 Transmission with reflexion |
---|
121 | c --------------------------- |
---|
122 | |
---|
123 | c space |
---|
124 | c ----- |
---|
125 | do jk = 1 , nlaylte+1 |
---|
126 | |
---|
127 | do ja = 1 , nuco2 |
---|
128 | do jl = 1 , kdlon |
---|
129 | |
---|
130 | zu(jl,ja) = 2 * co2_u(jl,ja,1) - co2_u(jl,ja,jk) |
---|
131 | zup(jl,ja) = 2 * co2_up(jl,ja,1) - co2_up(jl,ja,jk) |
---|
132 | zt_aer(jl,ja) = aer_t(jl,ja,1) |
---|
133 | . * aer_t(jl,ja,1) |
---|
134 | . / aer_t(jl,ja,jk) |
---|
135 | |
---|
136 | enddo |
---|
137 | enddo |
---|
138 | |
---|
139 | call lwtt(kdlon,zu,zup,nuco2,zt_co2) |
---|
140 | |
---|
141 | do ja = 1 , nuco2 |
---|
142 | do jl = 1 , kdlon |
---|
143 | trans_emis(jl,ja,jk)=zt_co2(jl,ja)*zt_aer(jl,ja) |
---|
144 | enddo |
---|
145 | enddo |
---|
146 | |
---|
147 | enddo |
---|
148 | |
---|
149 | c************************************************************************* |
---|
150 | c 2.0 Exchange Coefficiants |
---|
151 | c --------------------- |
---|
152 | |
---|
153 | do jk = 1 , nlaylte |
---|
154 | do ja = 1 , nuco2 |
---|
155 | do jl = 1 , kdlon |
---|
156 | |
---|
157 | c------------------------------------------------------------------------- |
---|
158 | c 2.1 colling to space (from layer 1,nlaylte toward "layer" nlaylte+1) |
---|
159 | c ---------------- |
---|
160 | |
---|
161 | |
---|
162 | ksi(jl,ja,2,jk) = trans(jl,ja,2,jk+1) |
---|
163 | . - trans(jl,ja,2,jk) |
---|
164 | |
---|
165 | ksi_emis(jl,ja,jk) = trans_emis(jl,ja,jk) |
---|
166 | . - trans_emis(jl,ja,jk+1) |
---|
167 | |
---|
168 | xi(ig0+jl,ja,jk,nlaylte+1)= ksi(jl,ja,2,jk) |
---|
169 | . + ksi_emis(jl,ja,jk)* (1 - emis(jl)) |
---|
170 | |
---|
171 | c ksi Reciprocity |
---|
172 | c --------------- |
---|
173 | xi(ig0+jl,ja,nlaylte+1,jk) = xi(ig0+jl,ja,jk,nlaylte+1) |
---|
174 | |
---|
175 | c------------------------------------------------------------------------- |
---|
176 | c 2.2 echange with ground (from "layer" 0 toward layers 1,nlaylte) |
---|
177 | c ------------------- |
---|
178 | |
---|
179 | |
---|
180 | ksi(jl,ja,1,jk) = trans(jl,ja,1,jk) |
---|
181 | . - trans(jl,ja,1,jk+1) |
---|
182 | |
---|
183 | xi(ig0+jl,ja,0,jk) = ksi(jl,ja,1,jk) * emis(jl) |
---|
184 | |
---|
185 | c ksi Reciprocity |
---|
186 | c --------------- |
---|
187 | xi(ig0+jl,ja,jk,0) = xi(ig0+jl,ja,0,jk) |
---|
188 | |
---|
189 | c------------------------------------------------------------------------- |
---|
190 | enddo |
---|
191 | enddo |
---|
192 | enddo |
---|
193 | |
---|
194 | c------------------------------------------------------------------------- |
---|
195 | c 2.3 echange ground-space (from "layer" 0 toward "layer" nlaylte+1) |
---|
196 | c ---------------------- |
---|
197 | |
---|
198 | c Is not used because we use sigma T4 for the ground budget in physiq.F |
---|
199 | |
---|
200 | do ja = 1 , nuco2 |
---|
201 | do jl = 1 , kdlon |
---|
202 | |
---|
203 | ksi(jl,ja,1,nlaylte+1) = trans(jl,ja,1,nlaylte+1) |
---|
204 | xi(ig0+jl,ja,0,nlaylte+1) = ksi(jl,ja,1,nlaylte+1) * emis(jl) |
---|
205 | |
---|
206 | c ksi Reciprocity |
---|
207 | c --------------- |
---|
208 | xi(ig0+jl,ja,nlaylte+1,0) = xi(ig0+jl,ja,0,nlaylte+1) |
---|
209 | |
---|
210 | enddo |
---|
211 | enddo |
---|
212 | |
---|
213 | c------------------------------------------------------------------------- |
---|
214 | return |
---|
215 | end |
---|