| 1 | subroutine lwu (kdlon,kflev |
|---|
| 2 | & ,dp,plev,tlay,aerosol |
|---|
| 3 | & ,QIRsQREF3d,omegaIR3d,gIR3d |
|---|
| 4 | & ,aer_t,co2_u,co2_up |
|---|
| 5 | & ,tautotal,omegtotal,gtotal) |
|---|
| 6 | |
|---|
| 7 | c---------------------------------------------------------------------- |
|---|
| 8 | c LWU computes - co2: longwave effective absorber amounts including |
|---|
| 9 | c pressure and temperature effects |
|---|
| 10 | c - aerosols: amounts for every band |
|---|
| 11 | c transmission for bandes 1 and 2 of co2 |
|---|
| 12 | c---------------------------------------------------------------------- |
|---|
| 13 | |
|---|
| 14 | c----------------------------------------------------------------------- |
|---|
| 15 | c ATTENTION AUX UNITES: |
|---|
| 16 | c le facteur 10*g fait passer des kg m-2 aux g cm-2 |
|---|
| 17 | c----------------------------------------------------------------------- |
|---|
| 18 | c! modif diffusion |
|---|
| 19 | c! on ne change rien a la bande CO2 : les quantites d'absorbant CO2 |
|---|
| 20 | c! sont multipliees par 1.66 |
|---|
| 21 | c! pview= 1/cos(teta0)=1.66 |
|---|
| 22 | c |
|---|
| 23 | c Modif J.-B. Madeleine: Computing optical properties of dust and |
|---|
| 24 | c water-ice crystals in each gridbox. Optical parameters of |
|---|
| 25 | c water-ice clouds are convolved to crystal sizes predicted by |
|---|
| 26 | c the microphysical scheme. |
|---|
| 27 | c |
|---|
| 28 | c MODIF : FF : removing the monster bug on water ice clouds 11/2010 |
|---|
| 29 | c |
|---|
| 30 | c MODIF : TN : corrected bug if very big water ice clouds 04/2012 |
|---|
| 31 | c----------------------------------------------------------------------- |
|---|
| 32 | |
|---|
| 33 | use dimradmars_mod, only: ndlo2, nir, nuco2, ndlon, nflev |
|---|
| 34 | use dimradmars_mod, only: naerkind |
|---|
| 35 | use yomlw_h, only: nlaylte, tref, at, bt, cst_voigt |
|---|
| 36 | USE comcstfi_h |
|---|
| 37 | implicit none |
|---|
| 38 | |
|---|
| 39 | #include "callkeys.h" |
|---|
| 40 | |
|---|
| 41 | c---------------------------------------------------------------------- |
|---|
| 42 | c 0.1 arguments |
|---|
| 43 | c --------- |
|---|
| 44 | c inputs: |
|---|
| 45 | c ------- |
|---|
| 46 | integer kdlon ! part of ngrid |
|---|
| 47 | integer kflev ! part of nalyer |
|---|
| 48 | |
|---|
| 49 | real dp (ndlo2,kflev) ! layer pressure thickness (Pa) |
|---|
| 50 | real plev (ndlo2,kflev+1) ! level pressure (Pa) |
|---|
| 51 | real tlay (ndlo2,kflev) ! layer temperature (K) |
|---|
| 52 | real aerosol (ndlo2,kflev,naerkind) ! aerosol extinction optical depth |
|---|
| 53 | c at reference wavelength "longrefvis" set |
|---|
| 54 | c in dimradmars_mod , in each layer, for one of |
|---|
| 55 | c the "naerkind" kind of aerosol optical properties. |
|---|
| 56 | REAL QIRsQREF3d(ndlo2,kflev,nir,naerkind) ! 3d ext. coef. |
|---|
| 57 | REAL omegaIR3d(ndlo2,kflev,nir,naerkind) ! 3d ssa |
|---|
| 58 | REAL gIR3d(ndlo2,kflev,nir,naerkind) ! 3d assym. param. |
|---|
| 59 | |
|---|
| 60 | c outputs: |
|---|
| 61 | c -------- |
|---|
| 62 | real aer_t (ndlo2,nuco2,kflev+1) ! transmission (aer) |
|---|
| 63 | real co2_u (ndlo2,nuco2,kflev+1) ! absorber amounts (co2) |
|---|
| 64 | real co2_up (ndlo2,nuco2,kflev+1) ! idem scaled by the pressure (co2) |
|---|
| 65 | |
|---|
| 66 | real tautotal(ndlo2,kflev,nir) ! \ Total single scattering |
|---|
| 67 | real omegtotal(ndlo2,kflev,nir) ! > properties (Addition of the |
|---|
| 68 | real gtotal(ndlo2,kflev,nir) ! / NAERKIND aerosols properties) |
|---|
| 69 | |
|---|
| 70 | c---------------------------------------------------------------------- |
|---|
| 71 | c 0.2 local arrays |
|---|
| 72 | c ------------ |
|---|
| 73 | |
|---|
| 74 | integer jl,jk,jkl,ja,n |
|---|
| 75 | |
|---|
| 76 | real aer_a (ndlon,nir,nflev+1) ! absorber amounts (aer) ABSORPTION |
|---|
| 77 | real co2c ! co2 concentration (pa/pa) |
|---|
| 78 | real pview ! cosecant of viewing angle |
|---|
| 79 | real pref ! reference pressure (1013 mb = 101325 Pa) |
|---|
| 80 | real tx,tx2 |
|---|
| 81 | real phi (ndlon,nuco2) |
|---|
| 82 | real psi (ndlon,nuco2) |
|---|
| 83 | real plev2 (ndlon,nflev+1) |
|---|
| 84 | real zzz |
|---|
| 85 | |
|---|
| 86 | real ray,coefsize,coefsizew,coefsizeg |
|---|
| 87 | |
|---|
| 88 | c************************************************************************ |
|---|
| 89 | c---------------------------------------------------------------------- |
|---|
| 90 | c 0.3 Initialisation |
|---|
| 91 | c ------------- |
|---|
| 92 | |
|---|
| 93 | pview = 1.66 |
|---|
| 94 | co2c = 0.95 |
|---|
| 95 | pref = 101325. |
|---|
| 96 | |
|---|
| 97 | do jk=1,nlaylte+1 |
|---|
| 98 | do jl=1,kdlon |
|---|
| 99 | plev2(jl,jk)=plev(jl,jk)*plev(jl,jk) |
|---|
| 100 | enddo |
|---|
| 101 | enddo |
|---|
| 102 | |
|---|
| 103 | c---------------------------------------------------------------------- |
|---|
| 104 | c Computing TOTAL single scattering parameters by adding properties of |
|---|
| 105 | c all the NAERKIND kind of aerosols in each IR band |
|---|
| 106 | |
|---|
| 107 | call zerophys(ndlon*kflev*nir,tautotal) |
|---|
| 108 | call zerophys(ndlon*kflev*nir,omegtotal) |
|---|
| 109 | call zerophys(ndlon*kflev*nir,gtotal) |
|---|
| 110 | |
|---|
| 111 | do n=1,naerkind |
|---|
| 112 | do ja=1,nir |
|---|
| 113 | do jk=1,nlaylte |
|---|
| 114 | do jl = 1,kdlon |
|---|
| 115 | tautotal(jl,jk,ja)=tautotal(jl,jk,ja) + |
|---|
| 116 | & QIRsQREF3d(jl,jk,ja,n)*aerosol(jl,jk,n) |
|---|
| 117 | omegtotal(jl,jk,ja) = omegtotal(jl,jk,ja) + |
|---|
| 118 | & QIRsQREF3d(jl,jk,ja,n)*aerosol(jl,jk,n)* |
|---|
| 119 | & omegaIR3d(jl,jk,ja,n) |
|---|
| 120 | gtotal(jl,jk,ja) = gtotal(jl,jk,ja) + |
|---|
| 121 | & QIRsQREF3d(jl,jk,ja,n)*aerosol(jl,jk,n)* |
|---|
| 122 | & omegaIR3d(jl,jk,ja,n)*gIR3d(jl,jk,ja,n) |
|---|
| 123 | enddo |
|---|
| 124 | enddo |
|---|
| 125 | enddo |
|---|
| 126 | enddo |
|---|
| 127 | do ja=1,nir |
|---|
| 128 | do jk=1,nlaylte |
|---|
| 129 | do jl = 1,kdlon |
|---|
| 130 | gtotal(jl,jk,ja)=gtotal(jl,jk,ja)/omegtotal(jl,jk,ja) |
|---|
| 131 | omegtotal(jl,jk,ja)=omegtotal(jl,jk,ja)/tautotal(jl,jk,ja) |
|---|
| 132 | enddo |
|---|
| 133 | enddo |
|---|
| 134 | enddo |
|---|
| 135 | |
|---|
| 136 | c---------------------------------------------------------------------- |
|---|
| 137 | c 1.0 cumulative (aerosol) amounts (for every band) |
|---|
| 138 | c ---------------------------- |
|---|
| 139 | |
|---|
| 140 | jk=nlaylte+1 |
|---|
| 141 | do ja=1,nir |
|---|
| 142 | do jl = 1 , kdlon |
|---|
| 143 | aer_a(jl,ja,jk)=0. |
|---|
| 144 | enddo |
|---|
| 145 | enddo |
|---|
| 146 | |
|---|
| 147 | do jk=1,nlaylte |
|---|
| 148 | jkl=nlaylte+1-jk |
|---|
| 149 | do ja=1,nir |
|---|
| 150 | do jl=1,kdlon |
|---|
| 151 | aer_a(jl,ja,jkl)=aer_a(jl,ja,jkl+1)+ |
|---|
| 152 | & tautotal(jl,jkl,ja)*(1.-omegtotal(jl,jkl,ja)) |
|---|
| 153 | enddo |
|---|
| 154 | enddo |
|---|
| 155 | enddo |
|---|
| 156 | |
|---|
| 157 | c---------------------------------------------------------------------- |
|---|
| 158 | c 1.0 bands 1 and 2 of co2 |
|---|
| 159 | c -------------------- |
|---|
| 160 | |
|---|
| 161 | jk=nlaylte+1 |
|---|
| 162 | do ja=1,nuco2 |
|---|
| 163 | do jl = 1 , kdlon |
|---|
| 164 | co2_u(jl,ja,jk)=0. |
|---|
| 165 | co2_up(jl,ja,jk)=0. |
|---|
| 166 | aer_t(jl,ja,jk)=1. |
|---|
| 167 | enddo |
|---|
| 168 | enddo |
|---|
| 169 | |
|---|
| 170 | do jk=1,nlaylte |
|---|
| 171 | jkl=nlaylte+1-jk |
|---|
| 172 | do ja=1,nuco2 |
|---|
| 173 | do jl=1,kdlon |
|---|
| 174 | |
|---|
| 175 | c introduces temperature effects on absorber(co2) amounts |
|---|
| 176 | c ------------------------------------------------------- |
|---|
| 177 | tx = sign(min(abs(tlay(jl,jkl)-tref),70.) |
|---|
| 178 | . ,tlay(jl,jkl)-tref) |
|---|
| 179 | tx2=tx*tx |
|---|
| 180 | phi(jl,ja)=at(1,ja)*tx+bt(1,ja)*tx2 |
|---|
| 181 | psi(jl,ja)=at(2,ja)*tx+bt(2,ja)*tx2 |
|---|
| 182 | phi(jl,ja)=exp(phi(jl,ja)/cst_voigt(2,ja)) |
|---|
| 183 | psi(jl,ja)=exp(2.*psi(jl,ja)) |
|---|
| 184 | |
|---|
| 185 | c cumulative absorber(co2) amounts |
|---|
| 186 | c -------------------------------- |
|---|
| 187 | co2_u(jl,ja,jkl)=co2_u(jl,ja,jkl+1) |
|---|
| 188 | . + pview/(10*g)*phi(jl,ja)*dp(jl,jkl)*co2c |
|---|
| 189 | |
|---|
| 190 | co2_up(jl,ja,jkl)=co2_up(jl,ja,jkl+1) |
|---|
| 191 | . + pview/(10*g*2*pref)*psi(jl,ja) |
|---|
| 192 | . * (plev2(jl,jkl)-plev2(jl,jkl+1))*co2c |
|---|
| 193 | |
|---|
| 194 | |
|---|
| 195 | c (aerosol) transmission |
|---|
| 196 | c ---------------------- |
|---|
| 197 | c on calcule directement les transmissions pour les aerosols. |
|---|
| 198 | c on multiplie le Qext par 1-omega dans la bande du CO2. |
|---|
| 199 | c et pourquoi pas d'abord? hourdin@lmd.ens.fr |
|---|
| 200 | |
|---|
| 201 | c TN 04/12 : if very big water ice clouds, aer_t is strictly rounded |
|---|
| 202 | c to zero in lower levels, which is a source of NaN |
|---|
| 203 | !aer_t(jl,ja,jkl)=exp(-pview*aer_a(jl,ja,jkl)) |
|---|
| 204 | aer_t(jl,ja,jkl)=max(exp(-pview*aer_a(jl,ja,jkl)),1e-30) |
|---|
| 205 | |
|---|
| 206 | |
|---|
| 207 | enddo |
|---|
| 208 | enddo |
|---|
| 209 | enddo |
|---|
| 210 | |
|---|
| 211 | c---------------------------------------------------------------------- |
|---|
| 212 | return |
|---|
| 213 | end |
|---|