[38] | 1 | subroutine lwu (kdlon,kflev |
---|
| 2 | & ,dp,plev,tlay,aerosol |
---|
| 3 | & ,QIRsQREF3d,omegaIR3d,gIR3d |
---|
| 4 | & ,aer_t,co2_u,co2_up |
---|
| 5 | & ,tautotal,omegtotal,gtotal) |
---|
| 6 | |
---|
| 7 | c---------------------------------------------------------------------- |
---|
| 8 | c LWU computes - co2: longwave effective absorber amounts including |
---|
| 9 | c pressure and temperature effects |
---|
| 10 | c - aerosols: amounts for every band |
---|
| 11 | c transmission for bandes 1 and 2 of co2 |
---|
| 12 | c---------------------------------------------------------------------- |
---|
| 13 | |
---|
| 14 | c----------------------------------------------------------------------- |
---|
| 15 | c ATTENTION AUX UNITES: |
---|
| 16 | c le facteur 10*g fait passer des kg m-2 aux g cm-2 |
---|
| 17 | c----------------------------------------------------------------------- |
---|
| 18 | c! modif diffusion |
---|
| 19 | c! on ne change rien a la bande CO2 : les quantites d'absorbant CO2 |
---|
| 20 | c! sont multipliees par 1.66 |
---|
| 21 | c! pview= 1/cos(teta0)=1.66 |
---|
| 22 | c |
---|
| 23 | c Modif J.-B. Madeleine: Computing optical properties of dust and |
---|
| 24 | c water-ice crystals in each gridbox. Optical parameters of |
---|
| 25 | c water-ice clouds are convolved to crystal sizes predicted by |
---|
| 26 | c the microphysical scheme. |
---|
| 27 | c |
---|
| 28 | c MODIF : FF : removing the monster bug on water ice clouds 11/2010 |
---|
[626] | 29 | c |
---|
| 30 | c MODIF : TN : corrected bug if very big water ice clouds 04/2012 |
---|
[38] | 31 | c----------------------------------------------------------------------- |
---|
| 32 | |
---|
[1047] | 33 | use dimradmars_mod, only: ndlo2, nir, nuco2, ndlon, nflev |
---|
[1246] | 34 | use dimradmars_mod, only: naerkind |
---|
[1047] | 35 | use yomlw_h, only: nlaylte, tref, at, bt, cst_voigt |
---|
[1917] | 36 | use comcstfi_h, only: g |
---|
[38] | 37 | implicit none |
---|
| 38 | |
---|
[1917] | 39 | include "callkeys.h" |
---|
[38] | 40 | |
---|
| 41 | c---------------------------------------------------------------------- |
---|
| 42 | c 0.1 arguments |
---|
| 43 | c --------- |
---|
| 44 | c inputs: |
---|
| 45 | c ------- |
---|
[1917] | 46 | integer,intent(in) :: kdlon ! part of ngrid |
---|
| 47 | integer,intent(in) :: kflev ! part of nalyer |
---|
[38] | 48 | |
---|
[1917] | 49 | real,intent(in) :: dp(ndlo2,kflev) ! layer pressure thickness (Pa) |
---|
| 50 | real,intent(in) :: plev(ndlo2,kflev+1) ! level pressure (Pa) |
---|
| 51 | real,intent(in) :: tlay(ndlo2,kflev) ! layer temperature (K) |
---|
| 52 | real,intent(in) :: aerosol(ndlo2,kflev,naerkind) ! aerosol extinction optical depth |
---|
[38] | 53 | c at reference wavelength "longrefvis" set |
---|
[1047] | 54 | c in dimradmars_mod , in each layer, for one of |
---|
[38] | 55 | c the "naerkind" kind of aerosol optical properties. |
---|
[1917] | 56 | real,intent(in) :: QIRsQREF3d(ndlo2,kflev,nir,naerkind) ! 3d ext. coef. |
---|
| 57 | real,intent(in) :: omegaIR3d(ndlo2,kflev,nir,naerkind) ! 3d ssa |
---|
| 58 | real,intent(in) :: gIR3d(ndlo2,kflev,nir,naerkind) ! 3d assym. param. |
---|
[38] | 59 | |
---|
| 60 | c outputs: |
---|
| 61 | c -------- |
---|
[1917] | 62 | real,intent(out) :: aer_t(ndlo2,nuco2,kflev+1) ! transmission (aer) |
---|
| 63 | real,intent(out) :: co2_u(ndlo2,nuco2,kflev+1) ! absorber amounts (co2) |
---|
| 64 | real,intent(out) :: co2_up(ndlo2,nuco2,kflev+1) ! idem scaled by the pressure (co2) |
---|
[38] | 65 | |
---|
[1917] | 66 | real,intent(out) :: tautotal(ndlo2,kflev,nir) ! \ Total single scattering |
---|
| 67 | real,intent(out) :: omegtotal(ndlo2,kflev,nir) ! > properties (Addition of the |
---|
| 68 | real,intent(out) :: gtotal(ndlo2,kflev,nir) ! / NAERKIND aerosols properties) |
---|
[38] | 69 | |
---|
| 70 | c---------------------------------------------------------------------- |
---|
| 71 | c 0.2 local arrays |
---|
| 72 | c ------------ |
---|
| 73 | |
---|
| 74 | integer jl,jk,jkl,ja,n |
---|
| 75 | |
---|
| 76 | real aer_a (ndlon,nir,nflev+1) ! absorber amounts (aer) ABSORPTION |
---|
| 77 | real co2c ! co2 concentration (pa/pa) |
---|
| 78 | real pview ! cosecant of viewing angle |
---|
| 79 | real pref ! reference pressure (1013 mb = 101325 Pa) |
---|
| 80 | real tx,tx2 |
---|
| 81 | real phi (ndlon,nuco2) |
---|
| 82 | real psi (ndlon,nuco2) |
---|
| 83 | real plev2 (ndlon,nflev+1) |
---|
| 84 | real zzz |
---|
| 85 | |
---|
| 86 | real ray,coefsize,coefsizew,coefsizeg |
---|
| 87 | |
---|
| 88 | c************************************************************************ |
---|
| 89 | c---------------------------------------------------------------------- |
---|
| 90 | c 0.3 Initialisation |
---|
| 91 | c ------------- |
---|
| 92 | |
---|
| 93 | pview = 1.66 |
---|
| 94 | co2c = 0.95 |
---|
| 95 | pref = 101325. |
---|
| 96 | |
---|
| 97 | do jk=1,nlaylte+1 |
---|
| 98 | do jl=1,kdlon |
---|
| 99 | plev2(jl,jk)=plev(jl,jk)*plev(jl,jk) |
---|
| 100 | enddo |
---|
| 101 | enddo |
---|
| 102 | |
---|
| 103 | c---------------------------------------------------------------------- |
---|
| 104 | c Computing TOTAL single scattering parameters by adding properties of |
---|
| 105 | c all the NAERKIND kind of aerosols in each IR band |
---|
| 106 | |
---|
[1917] | 107 | tautotal(:,:,:)=0 |
---|
| 108 | omegtotal(:,:,:)=0 |
---|
| 109 | gtotal(:,:,:)=0 |
---|
[38] | 110 | |
---|
| 111 | do n=1,naerkind |
---|
| 112 | do ja=1,nir |
---|
| 113 | do jk=1,nlaylte |
---|
| 114 | do jl = 1,kdlon |
---|
| 115 | tautotal(jl,jk,ja)=tautotal(jl,jk,ja) + |
---|
| 116 | & QIRsQREF3d(jl,jk,ja,n)*aerosol(jl,jk,n) |
---|
| 117 | omegtotal(jl,jk,ja) = omegtotal(jl,jk,ja) + |
---|
| 118 | & QIRsQREF3d(jl,jk,ja,n)*aerosol(jl,jk,n)* |
---|
| 119 | & omegaIR3d(jl,jk,ja,n) |
---|
| 120 | gtotal(jl,jk,ja) = gtotal(jl,jk,ja) + |
---|
| 121 | & QIRsQREF3d(jl,jk,ja,n)*aerosol(jl,jk,n)* |
---|
| 122 | & omegaIR3d(jl,jk,ja,n)*gIR3d(jl,jk,ja,n) |
---|
| 123 | enddo |
---|
| 124 | enddo |
---|
| 125 | enddo |
---|
| 126 | enddo |
---|
| 127 | do ja=1,nir |
---|
| 128 | do jk=1,nlaylte |
---|
| 129 | do jl = 1,kdlon |
---|
| 130 | gtotal(jl,jk,ja)=gtotal(jl,jk,ja)/omegtotal(jl,jk,ja) |
---|
| 131 | omegtotal(jl,jk,ja)=omegtotal(jl,jk,ja)/tautotal(jl,jk,ja) |
---|
| 132 | enddo |
---|
| 133 | enddo |
---|
| 134 | enddo |
---|
| 135 | |
---|
| 136 | c---------------------------------------------------------------------- |
---|
| 137 | c 1.0 cumulative (aerosol) amounts (for every band) |
---|
| 138 | c ---------------------------- |
---|
| 139 | |
---|
| 140 | jk=nlaylte+1 |
---|
| 141 | do ja=1,nir |
---|
| 142 | do jl = 1 , kdlon |
---|
| 143 | aer_a(jl,ja,jk)=0. |
---|
| 144 | enddo |
---|
| 145 | enddo |
---|
| 146 | |
---|
| 147 | do jk=1,nlaylte |
---|
| 148 | jkl=nlaylte+1-jk |
---|
| 149 | do ja=1,nir |
---|
| 150 | do jl=1,kdlon |
---|
| 151 | aer_a(jl,ja,jkl)=aer_a(jl,ja,jkl+1)+ |
---|
| 152 | & tautotal(jl,jkl,ja)*(1.-omegtotal(jl,jkl,ja)) |
---|
| 153 | enddo |
---|
| 154 | enddo |
---|
| 155 | enddo |
---|
| 156 | |
---|
| 157 | c---------------------------------------------------------------------- |
---|
| 158 | c 1.0 bands 1 and 2 of co2 |
---|
| 159 | c -------------------- |
---|
| 160 | |
---|
| 161 | jk=nlaylte+1 |
---|
| 162 | do ja=1,nuco2 |
---|
| 163 | do jl = 1 , kdlon |
---|
| 164 | co2_u(jl,ja,jk)=0. |
---|
| 165 | co2_up(jl,ja,jk)=0. |
---|
| 166 | aer_t(jl,ja,jk)=1. |
---|
| 167 | enddo |
---|
| 168 | enddo |
---|
| 169 | |
---|
| 170 | do jk=1,nlaylte |
---|
| 171 | jkl=nlaylte+1-jk |
---|
| 172 | do ja=1,nuco2 |
---|
| 173 | do jl=1,kdlon |
---|
| 174 | |
---|
| 175 | c introduces temperature effects on absorber(co2) amounts |
---|
| 176 | c ------------------------------------------------------- |
---|
| 177 | tx = sign(min(abs(tlay(jl,jkl)-tref),70.) |
---|
| 178 | . ,tlay(jl,jkl)-tref) |
---|
| 179 | tx2=tx*tx |
---|
| 180 | phi(jl,ja)=at(1,ja)*tx+bt(1,ja)*tx2 |
---|
| 181 | psi(jl,ja)=at(2,ja)*tx+bt(2,ja)*tx2 |
---|
| 182 | phi(jl,ja)=exp(phi(jl,ja)/cst_voigt(2,ja)) |
---|
| 183 | psi(jl,ja)=exp(2.*psi(jl,ja)) |
---|
| 184 | |
---|
| 185 | c cumulative absorber(co2) amounts |
---|
| 186 | c -------------------------------- |
---|
| 187 | co2_u(jl,ja,jkl)=co2_u(jl,ja,jkl+1) |
---|
| 188 | . + pview/(10*g)*phi(jl,ja)*dp(jl,jkl)*co2c |
---|
| 189 | |
---|
| 190 | co2_up(jl,ja,jkl)=co2_up(jl,ja,jkl+1) |
---|
| 191 | . + pview/(10*g*2*pref)*psi(jl,ja) |
---|
| 192 | . * (plev2(jl,jkl)-plev2(jl,jkl+1))*co2c |
---|
| 193 | |
---|
| 194 | |
---|
| 195 | c (aerosol) transmission |
---|
| 196 | c ---------------------- |
---|
| 197 | c on calcule directement les transmissions pour les aerosols. |
---|
| 198 | c on multiplie le Qext par 1-omega dans la bande du CO2. |
---|
| 199 | c et pourquoi pas d'abord? hourdin@lmd.ens.fr |
---|
| 200 | |
---|
[626] | 201 | c TN 04/12 : if very big water ice clouds, aer_t is strictly rounded |
---|
| 202 | c to zero in lower levels, which is a source of NaN |
---|
| 203 | !aer_t(jl,ja,jkl)=exp(-pview*aer_a(jl,ja,jkl)) |
---|
| 204 | aer_t(jl,ja,jkl)=max(exp(-pview*aer_a(jl,ja,jkl)),1e-30) |
---|
| 205 | |
---|
[38] | 206 | |
---|
| 207 | enddo |
---|
| 208 | enddo |
---|
[626] | 209 | enddo |
---|
| 210 | |
---|
[38] | 211 | c---------------------------------------------------------------------- |
---|
| 212 | end |
---|