[3004] | 1 | module lwflux_mod |
---|
| 2 | |
---|
| 3 | implicit none |
---|
| 4 | |
---|
| 5 | contains |
---|
| 6 | |
---|
| 7 | subroutine lwflux (ig0,kdlon,kflev,dp |
---|
[38] | 8 | . ,bsurf,btop,blev,blay,dbsublay |
---|
| 9 | . ,tlay, tlev, dt0 ! pour sortie dans g2d uniquement |
---|
| 10 | . ,emis |
---|
| 11 | . , tautotal,omegtotal,gtotal |
---|
| 12 | . ,coolrate,fluxground,fluxtop |
---|
| 13 | . ,netrad) |
---|
| 14 | |
---|
| 15 | c---------------------------------------------------------------------- |
---|
| 16 | c LWFLUX computes the fluxes |
---|
| 17 | c---------------------------------------------------------------------- |
---|
| 18 | |
---|
[1047] | 19 | use dimradmars_mod, only: ndlo2, nir, ndlon, nuco2, nflev |
---|
| 20 | use yomlw_h, only: nlaylte, xi, xi_ground, gcp |
---|
[38] | 21 | implicit none |
---|
| 22 | |
---|
[1917] | 23 | include "callkeys.h" |
---|
[38] | 24 | |
---|
| 25 | c---------------------------------------------------------------------- |
---|
| 26 | c 0.1 arguments |
---|
| 27 | c --------- |
---|
| 28 | c inputs: |
---|
| 29 | c ------- |
---|
[1917] | 30 | integer,intent(in) :: ig0 |
---|
| 31 | integer,intent(in) :: kdlon ! part of ngrid |
---|
| 32 | integer,intent(in) :: kflev ! part of nlayer |
---|
[38] | 33 | |
---|
[1917] | 34 | real,intent(in) :: dp (ndlo2,kflev) ! layer pressure thickness (Pa) |
---|
[38] | 35 | |
---|
[1917] | 36 | real,intent(in) :: bsurf (ndlo2,nir) ! surface spectral planck function |
---|
| 37 | real,intent(in) :: blev (ndlo2,nir,kflev+1) ! level spectral planck function |
---|
| 38 | real,intent(in) :: blay (ndlo2,nir,kflev) ! layer spectral planck function |
---|
| 39 | real,intent(in) :: btop (ndlo2,nir) ! top spectral planck function |
---|
| 40 | real,intent(in) :: dbsublay (ndlo2,nir,2*kflev) ! layer gradient spectral planck |
---|
| 41 | ! function in sub layers |
---|
[38] | 42 | |
---|
[1917] | 43 | real,intent(in) :: dt0 (ndlo2) ! surface temperature discontinuity |
---|
| 44 | real,intent(in) :: tlay (ndlo2,kflev) ! layer temperature |
---|
| 45 | real,intent(in) :: tlev (ndlo2,kflev+1) ! level temperature |
---|
[38] | 46 | |
---|
[1917] | 47 | real,intent(in) :: emis (ndlo2) ! surface emissivity |
---|
[38] | 48 | |
---|
[1917] | 49 | real,intent(in) :: tautotal(ndlo2,kflev,nir) ! \ Total single scattering |
---|
| 50 | real,intent(in) :: omegtotal(ndlo2,kflev,nir) ! > properties (Addition of the |
---|
| 51 | real,intent(in) :: gtotal(ndlo2,kflev,nir) ! / NAERKIND aerosols prop.) |
---|
[38] | 52 | |
---|
| 53 | |
---|
| 54 | c outputs: |
---|
| 55 | c -------- |
---|
[1917] | 56 | real,intent(out) :: coolrate(ndlo2,kflev) ! radiative cooling rate (K/s) |
---|
| 57 | real,intent(out) :: netrad (ndlo2,kflev) ! radiative budget (W/m2) |
---|
| 58 | real,intent(out) :: fluxground(ndlo2) ! downward flux on the ground |
---|
| 59 | ! for surface radiative budget |
---|
| 60 | real,intent(out) :: fluxtop(ndlo2) ! upward flux on the top of atm ("OLR") |
---|
[38] | 61 | |
---|
| 62 | |
---|
| 63 | c---------------------------------------------------------------------- |
---|
| 64 | c 0.2 local arrays |
---|
| 65 | c ------------ |
---|
| 66 | |
---|
[1917] | 67 | integer ja,jl,j,i,ig1d,ig,l |
---|
[38] | 68 | real ksidb (ndlon,nuco2+1,0:nflev+1,0:nflev+1) ! net exchange rate (W/m2) |
---|
| 69 | |
---|
| 70 | real dpsgcp (0:nflev+1,0:nflev+1) ! dp/(g.cp) |
---|
| 71 | real temp (0:nflev+1,0:nflev+1) |
---|
| 72 | |
---|
| 73 | real fluxdiff(ndlon,2,nflev+1) ! diffusion flux: upward(1) downward(2) |
---|
| 74 | |
---|
| 75 | real*4 reel4 |
---|
| 76 | |
---|
| 77 | c To compute IR flux in the atmosphere (For diagnostic only !!) |
---|
| 78 | logical computeflux |
---|
[1047] | 79 | real coefd(kdlon,nuco2,nflev+1,nflev+1) |
---|
| 80 | real coefu(kdlon,nuco2,0:nflev,nflev+1) |
---|
| 81 | real flw_up(kdlon,nflev+1), flw_dn(kdlon,nflev+1) ! fluxes (W/m2) |
---|
[38] | 82 | |
---|
| 83 | |
---|
[1917] | 84 | ksidb(:,:,:,:)=0 |
---|
[38] | 85 | |
---|
| 86 | c---------------------------------------------------------------------- |
---|
| 87 | c 1.1 exchanges (layer i <--> all layers up to i) |
---|
| 88 | c ------------------------------------------- |
---|
| 89 | |
---|
| 90 | do i = 1,nlaylte |
---|
| 91 | do j = i+1,nlaylte |
---|
| 92 | do ja = 1,nuco2 |
---|
| 93 | do jl = 1,kdlon |
---|
| 94 | |
---|
| 95 | ksidb(jl,ja,i,j) = xi(ig0+jl,ja,i,j) |
---|
| 96 | . * (blay(jl,ja,j)-blay(jl,ja,i)) |
---|
| 97 | c ksidb reciprocity |
---|
| 98 | c ----------------- |
---|
| 99 | ksidb(jl,ja,j,i) = -ksidb(jl,ja,i,j) |
---|
| 100 | |
---|
| 101 | enddo |
---|
| 102 | enddo |
---|
| 103 | enddo |
---|
| 104 | enddo |
---|
| 105 | |
---|
| 106 | c---------------------------------------------------------------------- |
---|
| 107 | c 1.2 exchanges (ground <--> all layers) |
---|
| 108 | c ---------------------------------- |
---|
| 109 | |
---|
| 110 | do i = 1,nlaylte |
---|
| 111 | do ja = 1,nuco2 |
---|
| 112 | do jl = 1,kdlon |
---|
| 113 | |
---|
| 114 | ksidb(jl,ja,i,0) = xi(ig0+jl,ja,0,i) |
---|
| 115 | . * (bsurf(jl,ja)-blay(jl,ja,i)) |
---|
| 116 | c ksidb reciprocity |
---|
| 117 | c ----------------- |
---|
| 118 | ksidb(jl,ja,0,i) = -ksidb(jl,ja,i,0) |
---|
| 119 | |
---|
| 120 | enddo |
---|
| 121 | enddo |
---|
| 122 | enddo |
---|
| 123 | |
---|
| 124 | c-------------------------------------------------------- |
---|
| 125 | c Here we add the neighbour contribution |
---|
| 126 | c for exchanges between ground and first layer |
---|
| 127 | c-------------------------------------------------------- |
---|
| 128 | |
---|
| 129 | do ja = 1,nuco2 |
---|
| 130 | do jl = 1,kdlon |
---|
| 131 | |
---|
| 132 | ksidb(jl,ja,1,0) = ksidb(jl,ja,1,0) |
---|
| 133 | . - xi_ground(ig0+jl,ja) |
---|
| 134 | . * (blev(jl,ja,1)-blay(jl,ja,1)) |
---|
| 135 | |
---|
| 136 | cc ksidb reciprocity |
---|
| 137 | cc ----------------- |
---|
| 138 | ksidb(jl,ja,0,1) = - ksidb(jl,ja,1,0) |
---|
| 139 | |
---|
| 140 | enddo |
---|
| 141 | enddo |
---|
| 142 | |
---|
| 143 | c---------------------------------------------------------------------- |
---|
| 144 | c 1.3 exchanges (layer i <--> space) |
---|
| 145 | c ------------------------------ |
---|
| 146 | |
---|
| 147 | do i = 1,nlaylte |
---|
| 148 | do ja = 1,nuco2 |
---|
| 149 | do jl = 1,kdlon |
---|
| 150 | |
---|
| 151 | ksidb(jl,ja,i,nlaylte+1) = xi(ig0+jl,ja,i,nlaylte+1) |
---|
| 152 | . * (-blay(jl,ja,i)) |
---|
| 153 | c ksidb reciprocity |
---|
| 154 | c ----------------- |
---|
| 155 | ksidb(jl,ja,nlaylte+1,i) = - ksidb(jl,ja,i,nlaylte+1) |
---|
| 156 | |
---|
| 157 | enddo |
---|
| 158 | enddo |
---|
| 159 | enddo |
---|
| 160 | |
---|
| 161 | c---------------------------------------------------------------------- |
---|
| 162 | c 1.4 exchanges (ground <--> space) |
---|
| 163 | c ----------------------------- |
---|
| 164 | |
---|
| 165 | do ja = 1,nuco2 |
---|
| 166 | do jl = 1,kdlon |
---|
| 167 | |
---|
| 168 | ksidb(jl,ja,0,nlaylte+1) = xi(ig0+jl,ja,0,nlaylte+1) |
---|
| 169 | . * (-bsurf(jl,ja)) |
---|
| 170 | |
---|
| 171 | c ksidb reciprocity |
---|
| 172 | c ----------------- |
---|
| 173 | ksidb(jl,ja,nlaylte+1,0) = - ksidb(jl,ja,0,nlaylte+1) |
---|
| 174 | |
---|
| 175 | enddo |
---|
| 176 | enddo |
---|
| 177 | |
---|
| 178 | c---------------------------------------------------------------------- |
---|
| 179 | c 2.0 sum of band 1 and 2 of co2 contribution |
---|
| 180 | c --------------------------------------- |
---|
| 181 | |
---|
| 182 | do i = 0,nlaylte+1 |
---|
| 183 | do j = 0,nlaylte+1 |
---|
| 184 | do jl = 1,kdlon |
---|
| 185 | |
---|
| 186 | ksidb(jl,3,i,j)= ksidb(jl,1,i,j) + ksidb(jl,2,i,j) |
---|
| 187 | |
---|
| 188 | enddo |
---|
| 189 | enddo |
---|
| 190 | enddo |
---|
| 191 | |
---|
| 192 | c---------------------------------------------------------------------- |
---|
| 193 | c 3.0 Diffusion |
---|
| 194 | c --------- |
---|
| 195 | |
---|
| 196 | i = nlaylte+1 |
---|
| 197 | do jl = 1,kdlon |
---|
| 198 | fluxdiff(jl,1,i) = 0. |
---|
| 199 | fluxdiff(jl,2,i) = 0. |
---|
| 200 | enddo |
---|
| 201 | |
---|
| 202 | call lwdiff (kdlon,kflev |
---|
| 203 | . ,bsurf,btop,dbsublay |
---|
| 204 | . ,tautotal,omegtotal,gtotal |
---|
| 205 | . ,emis,fluxdiff) |
---|
| 206 | |
---|
| 207 | c---------------------------------------------------------------------- |
---|
| 208 | c 4.0 Radiative Budget for each layer i |
---|
| 209 | c --------------------------------- |
---|
| 210 | |
---|
| 211 | do i = 1,nlaylte |
---|
| 212 | do jl = 1,kdlon |
---|
| 213 | netrad(jl,i) = 0. |
---|
| 214 | enddo |
---|
| 215 | enddo |
---|
| 216 | |
---|
| 217 | do i = 1,nlaylte |
---|
| 218 | do j = 0,nlaylte+1 |
---|
| 219 | do jl = 1,kdlon |
---|
| 220 | |
---|
| 221 | netrad(jl,i) = netrad(jl,i) + ksidb(jl,3,i,j) |
---|
| 222 | |
---|
| 223 | enddo |
---|
| 224 | enddo |
---|
| 225 | enddo |
---|
| 226 | c diffusion contribution |
---|
| 227 | c ---------------------- |
---|
| 228 | do i = 1,nlaylte |
---|
| 229 | do jl = 1,kdlon |
---|
| 230 | |
---|
| 231 | netrad(jl,i) = netrad(jl,i) |
---|
| 232 | . - fluxdiff(jl,1,i+1) - fluxdiff(jl,2,i+1) |
---|
| 233 | . + fluxdiff(jl,1,i) + fluxdiff(jl,2,i) |
---|
| 234 | |
---|
| 235 | enddo |
---|
| 236 | enddo |
---|
| 237 | |
---|
| 238 | c---------------------------------------------------------------------- |
---|
| 239 | c 4.0 cooling rate for each layer i |
---|
| 240 | c ----------------------------- |
---|
| 241 | |
---|
| 242 | do i = 1,nlaylte |
---|
| 243 | do jl = 1,kdlon |
---|
| 244 | |
---|
| 245 | coolrate(jl,i) = gcp * netrad(jl,i) / dp(jl,i) |
---|
| 246 | |
---|
| 247 | enddo |
---|
| 248 | enddo |
---|
| 249 | |
---|
| 250 | c---------------------------------------------------------------------- |
---|
| 251 | c 5.0 downward flux (all layers --> ground): "fluxground" |
---|
| 252 | c --------------------------------------------------- |
---|
| 253 | |
---|
| 254 | do jl = 1,kdlon |
---|
| 255 | fluxground(jl) = 0. |
---|
| 256 | enddo |
---|
| 257 | |
---|
| 258 | do i = 1,nlaylte |
---|
| 259 | do ja = 1,nuco2 |
---|
| 260 | do jl = 1,kdlon |
---|
| 261 | |
---|
| 262 | fluxground(jl) = fluxground(jl) |
---|
| 263 | . + xi(ig0+jl,ja,0,i) * (blay(jl,ja,i)) |
---|
| 264 | |
---|
| 265 | enddo |
---|
| 266 | enddo |
---|
| 267 | enddo |
---|
| 268 | |
---|
| 269 | do jl = 1,kdlon |
---|
| 270 | fluxground(jl) = fluxground(jl) - fluxdiff(jl,2,1) |
---|
| 271 | enddo |
---|
| 272 | |
---|
| 273 | c---------------------------------------------------------------------- |
---|
| 274 | c 6.0 outgoing flux (all layers --> space): "fluxtop" |
---|
| 275 | c --------------------------------------------------- |
---|
| 276 | |
---|
| 277 | do jl = 1,kdlon |
---|
| 278 | fluxtop(jl) = 0. |
---|
| 279 | enddo |
---|
| 280 | |
---|
| 281 | do i = 0,nlaylte |
---|
| 282 | do jl = 1,kdlon |
---|
| 283 | fluxtop(jl) = fluxtop(jl)- ksidb(jl,3,i,nlaylte+1) |
---|
| 284 | enddo |
---|
| 285 | enddo |
---|
| 286 | |
---|
| 287 | do jl = 1,kdlon |
---|
| 288 | fluxtop(jl) = fluxtop(jl) + fluxdiff(jl,1,nlaylte+1) |
---|
| 289 | enddo |
---|
| 290 | |
---|
| 291 | c---------------------------------------------------------------------- |
---|
| 292 | c 6.5 ONLY FOR DIAGNOSTIC : Compute IR flux in the atmosphere |
---|
| 293 | c ------------------- |
---|
| 294 | c The broadband fluxes (W.m-2) at every level from surface level (l=1) |
---|
| 295 | c up the top of the upper layer (here: l=nlaylte+1) are: |
---|
| 296 | c upward : flw_up(ig1d,l) ; downward : flw_dn(ig1d,j) |
---|
| 297 | c |
---|
| 298 | computeflux = .false. |
---|
| 299 | |
---|
| 300 | IF (computeflux) THEN ! not used by the GCM only for diagnostic ! |
---|
| 301 | c upward flux |
---|
| 302 | c ~~~~~~~~~~~ |
---|
| 303 | do i = 0,nlaylte |
---|
| 304 | do j = 1,nlaylte+1 |
---|
| 305 | do ja = 1,nuco2 |
---|
| 306 | do jl = 1,kdlon |
---|
| 307 | coefu(jl,ja,i,j) =0. |
---|
| 308 | do l=j,nlaylte+1 |
---|
| 309 | coefu(jl,ja,i,j)=coefu(jl,ja,i,j)+xi(ig0+jl,ja,l,i) |
---|
| 310 | end do |
---|
| 311 | |
---|
| 312 | enddo |
---|
| 313 | enddo |
---|
| 314 | enddo |
---|
| 315 | enddo |
---|
| 316 | do j = 1,nlaylte+1 |
---|
| 317 | do jl = 1,kdlon |
---|
| 318 | flw_up(jl,j) = 0. |
---|
| 319 | do ja = 1,nuco2 |
---|
| 320 | flw_up(jl,j)=flw_up(jl,j)+bsurf(jl,ja)*coefu(jl,ja,0,j) |
---|
| 321 | do i=1,j-1 |
---|
| 322 | flw_up(jl,j)=flw_up(jl,j)+blay(jl,ja,i)*coefu(jl,ja,i,j) |
---|
| 323 | end do |
---|
| 324 | end do |
---|
| 325 | flw_up(jl,j)=flw_up(jl,j) + fluxdiff(jl,1,j) |
---|
| 326 | end do |
---|
| 327 | end do |
---|
| 328 | |
---|
| 329 | c downward flux |
---|
| 330 | c ~~~~~~~~~~~~~ |
---|
| 331 | do i = 1,nlaylte+1 |
---|
| 332 | do j = 1,nlaylte+1 |
---|
| 333 | do ja = 1,nuco2 |
---|
| 334 | do jl = 1,kdlon |
---|
| 335 | coefd(jl,ja,i,j) =0. |
---|
| 336 | do l=0,j-1 |
---|
| 337 | coefd(jl,ja,i,j)=coefd(jl,ja,i,j)+xi(ig0+jl,ja,l,i) |
---|
| 338 | end do |
---|
| 339 | enddo |
---|
| 340 | enddo |
---|
| 341 | enddo |
---|
| 342 | enddo |
---|
| 343 | do j = 1,nlaylte+1 |
---|
| 344 | do jl = 1,kdlon |
---|
| 345 | flw_dn(jl,j) = 0. |
---|
| 346 | do ja = 1,nuco2 |
---|
| 347 | do i=j,nlaylte |
---|
| 348 | flw_dn(jl,j)=flw_dn(jl,j)+blay(jl,ja,i)*coefd(jl,ja,i,j) |
---|
| 349 | end do |
---|
| 350 | end do |
---|
| 351 | flw_dn(jl,j)=flw_dn(jl,j) - fluxdiff(jl,2,j) |
---|
| 352 | end do |
---|
| 353 | end do |
---|
[3004] | 354 | END IF ! of IF (computeflux) |
---|
[38] | 355 | |
---|
[3004] | 356 | end subroutine lwflux |
---|
| 357 | |
---|
| 358 | end module lwflux_mod |
---|