[38] | 1 | subroutine lwflux (ig0,kdlon,kflev,dp |
---|
| 2 | . ,bsurf,btop,blev,blay,dbsublay |
---|
| 3 | . ,tlay, tlev, dt0 ! pour sortie dans g2d uniquement |
---|
| 4 | . ,emis |
---|
| 5 | . , tautotal,omegtotal,gtotal |
---|
| 6 | . ,coolrate,fluxground,fluxtop |
---|
| 7 | . ,netrad) |
---|
| 8 | |
---|
| 9 | c---------------------------------------------------------------------- |
---|
| 10 | c LWFLUX computes the fluxes |
---|
| 11 | c---------------------------------------------------------------------- |
---|
| 12 | |
---|
[1047] | 13 | use dimradmars_mod, only: ndlo2, nir, ndlon, nuco2, nflev |
---|
| 14 | use yomlw_h, only: nlaylte, xi, xi_ground, gcp |
---|
[38] | 15 | implicit none |
---|
| 16 | |
---|
[1917] | 17 | include "callkeys.h" |
---|
| 18 | include "comg1d.h" |
---|
[38] | 19 | |
---|
| 20 | c---------------------------------------------------------------------- |
---|
| 21 | c 0.1 arguments |
---|
| 22 | c --------- |
---|
| 23 | c inputs: |
---|
| 24 | c ------- |
---|
[1917] | 25 | integer,intent(in) :: ig0 |
---|
| 26 | integer,intent(in) :: kdlon ! part of ngrid |
---|
| 27 | integer,intent(in) :: kflev ! part of nlayer |
---|
[38] | 28 | |
---|
[1917] | 29 | real,intent(in) :: dp (ndlo2,kflev) ! layer pressure thickness (Pa) |
---|
[38] | 30 | |
---|
[1917] | 31 | real,intent(in) :: bsurf (ndlo2,nir) ! surface spectral planck function |
---|
| 32 | real,intent(in) :: blev (ndlo2,nir,kflev+1) ! level spectral planck function |
---|
| 33 | real,intent(in) :: blay (ndlo2,nir,kflev) ! layer spectral planck function |
---|
| 34 | real,intent(in) :: btop (ndlo2,nir) ! top spectral planck function |
---|
| 35 | real,intent(in) :: dbsublay (ndlo2,nir,2*kflev) ! layer gradient spectral planck |
---|
| 36 | ! function in sub layers |
---|
[38] | 37 | |
---|
[1917] | 38 | real,intent(in) :: dt0 (ndlo2) ! surface temperature discontinuity |
---|
| 39 | real,intent(in) :: tlay (ndlo2,kflev) ! layer temperature |
---|
| 40 | real,intent(in) :: tlev (ndlo2,kflev+1) ! level temperature |
---|
[38] | 41 | |
---|
[1917] | 42 | real,intent(in) :: emis (ndlo2) ! surface emissivity |
---|
[38] | 43 | |
---|
[1917] | 44 | real,intent(in) :: tautotal(ndlo2,kflev,nir) ! \ Total single scattering |
---|
| 45 | real,intent(in) :: omegtotal(ndlo2,kflev,nir) ! > properties (Addition of the |
---|
| 46 | real,intent(in) :: gtotal(ndlo2,kflev,nir) ! / NAERKIND aerosols prop.) |
---|
[38] | 47 | |
---|
| 48 | |
---|
| 49 | c outputs: |
---|
| 50 | c -------- |
---|
[1917] | 51 | real,intent(out) :: coolrate(ndlo2,kflev) ! radiative cooling rate (K/s) |
---|
| 52 | real,intent(out) :: netrad (ndlo2,kflev) ! radiative budget (W/m2) |
---|
| 53 | real,intent(out) :: fluxground(ndlo2) ! downward flux on the ground |
---|
| 54 | ! for surface radiative budget |
---|
| 55 | real,intent(out) :: fluxtop(ndlo2) ! upward flux on the top of atm ("OLR") |
---|
[38] | 56 | |
---|
| 57 | |
---|
| 58 | c---------------------------------------------------------------------- |
---|
| 59 | c 0.2 local arrays |
---|
| 60 | c ------------ |
---|
| 61 | |
---|
[1917] | 62 | integer ja,jl,j,i,ig1d,ig,l |
---|
[38] | 63 | real ksidb (ndlon,nuco2+1,0:nflev+1,0:nflev+1) ! net exchange rate (W/m2) |
---|
| 64 | |
---|
| 65 | real dpsgcp (0:nflev+1,0:nflev+1) ! dp/(g.cp) |
---|
| 66 | real temp (0:nflev+1,0:nflev+1) |
---|
| 67 | |
---|
| 68 | real fluxdiff(ndlon,2,nflev+1) ! diffusion flux: upward(1) downward(2) |
---|
| 69 | |
---|
| 70 | real*4 reel4 |
---|
| 71 | |
---|
| 72 | c To compute IR flux in the atmosphere (For diagnostic only !!) |
---|
| 73 | logical computeflux |
---|
[1047] | 74 | real coefd(kdlon,nuco2,nflev+1,nflev+1) |
---|
| 75 | real coefu(kdlon,nuco2,0:nflev,nflev+1) |
---|
| 76 | real flw_up(kdlon,nflev+1), flw_dn(kdlon,nflev+1) ! fluxes (W/m2) |
---|
[38] | 77 | |
---|
| 78 | |
---|
[1917] | 79 | ksidb(:,:,:,:)=0 |
---|
[38] | 80 | |
---|
| 81 | c---------------------------------------------------------------------- |
---|
| 82 | c 1.1 exchanges (layer i <--> all layers up to i) |
---|
| 83 | c ------------------------------------------- |
---|
| 84 | |
---|
| 85 | do i = 1,nlaylte |
---|
| 86 | do j = i+1,nlaylte |
---|
| 87 | do ja = 1,nuco2 |
---|
| 88 | do jl = 1,kdlon |
---|
| 89 | |
---|
| 90 | ksidb(jl,ja,i,j) = xi(ig0+jl,ja,i,j) |
---|
| 91 | . * (blay(jl,ja,j)-blay(jl,ja,i)) |
---|
| 92 | c ksidb reciprocity |
---|
| 93 | c ----------------- |
---|
| 94 | ksidb(jl,ja,j,i) = -ksidb(jl,ja,i,j) |
---|
| 95 | |
---|
| 96 | enddo |
---|
| 97 | enddo |
---|
| 98 | enddo |
---|
| 99 | enddo |
---|
| 100 | |
---|
| 101 | c---------------------------------------------------------------------- |
---|
| 102 | c 1.2 exchanges (ground <--> all layers) |
---|
| 103 | c ---------------------------------- |
---|
| 104 | |
---|
| 105 | do i = 1,nlaylte |
---|
| 106 | do ja = 1,nuco2 |
---|
| 107 | do jl = 1,kdlon |
---|
| 108 | |
---|
| 109 | ksidb(jl,ja,i,0) = xi(ig0+jl,ja,0,i) |
---|
| 110 | . * (bsurf(jl,ja)-blay(jl,ja,i)) |
---|
| 111 | c ksidb reciprocity |
---|
| 112 | c ----------------- |
---|
| 113 | ksidb(jl,ja,0,i) = -ksidb(jl,ja,i,0) |
---|
| 114 | |
---|
| 115 | enddo |
---|
| 116 | enddo |
---|
| 117 | enddo |
---|
| 118 | |
---|
| 119 | c-------------------------------------------------------- |
---|
| 120 | c Here we add the neighbour contribution |
---|
| 121 | c for exchanges between ground and first layer |
---|
| 122 | c-------------------------------------------------------- |
---|
| 123 | |
---|
| 124 | do ja = 1,nuco2 |
---|
| 125 | do jl = 1,kdlon |
---|
| 126 | |
---|
| 127 | ksidb(jl,ja,1,0) = ksidb(jl,ja,1,0) |
---|
| 128 | . - xi_ground(ig0+jl,ja) |
---|
| 129 | . * (blev(jl,ja,1)-blay(jl,ja,1)) |
---|
| 130 | |
---|
| 131 | cc ksidb reciprocity |
---|
| 132 | cc ----------------- |
---|
| 133 | ksidb(jl,ja,0,1) = - ksidb(jl,ja,1,0) |
---|
| 134 | |
---|
| 135 | enddo |
---|
| 136 | enddo |
---|
| 137 | |
---|
| 138 | c---------------------------------------------------------------------- |
---|
| 139 | c 1.3 exchanges (layer i <--> space) |
---|
| 140 | c ------------------------------ |
---|
| 141 | |
---|
| 142 | do i = 1,nlaylte |
---|
| 143 | do ja = 1,nuco2 |
---|
| 144 | do jl = 1,kdlon |
---|
| 145 | |
---|
| 146 | ksidb(jl,ja,i,nlaylte+1) = xi(ig0+jl,ja,i,nlaylte+1) |
---|
| 147 | . * (-blay(jl,ja,i)) |
---|
| 148 | c ksidb reciprocity |
---|
| 149 | c ----------------- |
---|
| 150 | ksidb(jl,ja,nlaylte+1,i) = - ksidb(jl,ja,i,nlaylte+1) |
---|
| 151 | |
---|
| 152 | enddo |
---|
| 153 | enddo |
---|
| 154 | enddo |
---|
| 155 | |
---|
| 156 | c---------------------------------------------------------------------- |
---|
| 157 | c 1.4 exchanges (ground <--> space) |
---|
| 158 | c ----------------------------- |
---|
| 159 | |
---|
| 160 | do ja = 1,nuco2 |
---|
| 161 | do jl = 1,kdlon |
---|
| 162 | |
---|
| 163 | ksidb(jl,ja,0,nlaylte+1) = xi(ig0+jl,ja,0,nlaylte+1) |
---|
| 164 | . * (-bsurf(jl,ja)) |
---|
| 165 | |
---|
| 166 | c ksidb reciprocity |
---|
| 167 | c ----------------- |
---|
| 168 | ksidb(jl,ja,nlaylte+1,0) = - ksidb(jl,ja,0,nlaylte+1) |
---|
| 169 | |
---|
| 170 | enddo |
---|
| 171 | enddo |
---|
| 172 | |
---|
| 173 | c---------------------------------------------------------------------- |
---|
| 174 | c 2.0 sum of band 1 and 2 of co2 contribution |
---|
| 175 | c --------------------------------------- |
---|
| 176 | |
---|
| 177 | do i = 0,nlaylte+1 |
---|
| 178 | do j = 0,nlaylte+1 |
---|
| 179 | do jl = 1,kdlon |
---|
| 180 | |
---|
| 181 | ksidb(jl,3,i,j)= ksidb(jl,1,i,j) + ksidb(jl,2,i,j) |
---|
| 182 | |
---|
| 183 | enddo |
---|
| 184 | enddo |
---|
| 185 | enddo |
---|
| 186 | |
---|
| 187 | c---------------------------------------------------------------------- |
---|
| 188 | c 3.0 Diffusion |
---|
| 189 | c --------- |
---|
| 190 | |
---|
| 191 | i = nlaylte+1 |
---|
| 192 | do jl = 1,kdlon |
---|
| 193 | fluxdiff(jl,1,i) = 0. |
---|
| 194 | fluxdiff(jl,2,i) = 0. |
---|
| 195 | enddo |
---|
| 196 | |
---|
| 197 | call lwdiff (kdlon,kflev |
---|
| 198 | . ,bsurf,btop,dbsublay |
---|
| 199 | . ,tautotal,omegtotal,gtotal |
---|
| 200 | . ,emis,fluxdiff) |
---|
| 201 | |
---|
| 202 | c---------------------------------------------------------------------- |
---|
| 203 | c 4.0 Radiative Budget for each layer i |
---|
| 204 | c --------------------------------- |
---|
| 205 | |
---|
| 206 | do i = 1,nlaylte |
---|
| 207 | do jl = 1,kdlon |
---|
| 208 | netrad(jl,i) = 0. |
---|
| 209 | enddo |
---|
| 210 | enddo |
---|
| 211 | |
---|
| 212 | do i = 1,nlaylte |
---|
| 213 | do j = 0,nlaylte+1 |
---|
| 214 | do jl = 1,kdlon |
---|
| 215 | |
---|
| 216 | netrad(jl,i) = netrad(jl,i) + ksidb(jl,3,i,j) |
---|
| 217 | |
---|
| 218 | enddo |
---|
| 219 | enddo |
---|
| 220 | enddo |
---|
| 221 | c diffusion contribution |
---|
| 222 | c ---------------------- |
---|
| 223 | do i = 1,nlaylte |
---|
| 224 | do jl = 1,kdlon |
---|
| 225 | |
---|
| 226 | netrad(jl,i) = netrad(jl,i) |
---|
| 227 | . - fluxdiff(jl,1,i+1) - fluxdiff(jl,2,i+1) |
---|
| 228 | . + fluxdiff(jl,1,i) + fluxdiff(jl,2,i) |
---|
| 229 | |
---|
| 230 | enddo |
---|
| 231 | enddo |
---|
| 232 | |
---|
| 233 | c---------------------------------------------------------------------- |
---|
| 234 | c 4.0 cooling rate for each layer i |
---|
| 235 | c ----------------------------- |
---|
| 236 | |
---|
| 237 | do i = 1,nlaylte |
---|
| 238 | do jl = 1,kdlon |
---|
| 239 | |
---|
| 240 | coolrate(jl,i) = gcp * netrad(jl,i) / dp(jl,i) |
---|
| 241 | |
---|
| 242 | enddo |
---|
| 243 | enddo |
---|
| 244 | |
---|
| 245 | c---------------------------------------------------------------------- |
---|
| 246 | c 5.0 downward flux (all layers --> ground): "fluxground" |
---|
| 247 | c --------------------------------------------------- |
---|
| 248 | |
---|
| 249 | do jl = 1,kdlon |
---|
| 250 | fluxground(jl) = 0. |
---|
| 251 | enddo |
---|
| 252 | |
---|
| 253 | do i = 1,nlaylte |
---|
| 254 | do ja = 1,nuco2 |
---|
| 255 | do jl = 1,kdlon |
---|
| 256 | |
---|
| 257 | fluxground(jl) = fluxground(jl) |
---|
| 258 | . + xi(ig0+jl,ja,0,i) * (blay(jl,ja,i)) |
---|
| 259 | |
---|
| 260 | enddo |
---|
| 261 | enddo |
---|
| 262 | enddo |
---|
| 263 | |
---|
| 264 | do jl = 1,kdlon |
---|
| 265 | fluxground(jl) = fluxground(jl) - fluxdiff(jl,2,1) |
---|
| 266 | enddo |
---|
| 267 | |
---|
| 268 | c---------------------------------------------------------------------- |
---|
| 269 | c 6.0 outgoing flux (all layers --> space): "fluxtop" |
---|
| 270 | c --------------------------------------------------- |
---|
| 271 | |
---|
| 272 | do jl = 1,kdlon |
---|
| 273 | fluxtop(jl) = 0. |
---|
| 274 | enddo |
---|
| 275 | |
---|
| 276 | do i = 0,nlaylte |
---|
| 277 | do jl = 1,kdlon |
---|
| 278 | fluxtop(jl) = fluxtop(jl)- ksidb(jl,3,i,nlaylte+1) |
---|
| 279 | enddo |
---|
| 280 | enddo |
---|
| 281 | |
---|
| 282 | do jl = 1,kdlon |
---|
| 283 | fluxtop(jl) = fluxtop(jl) + fluxdiff(jl,1,nlaylte+1) |
---|
| 284 | enddo |
---|
| 285 | |
---|
| 286 | c---------------------------------------------------------------------- |
---|
| 287 | c 6.5 ONLY FOR DIAGNOSTIC : Compute IR flux in the atmosphere |
---|
| 288 | c ------------------- |
---|
| 289 | c The broadband fluxes (W.m-2) at every level from surface level (l=1) |
---|
| 290 | c up the top of the upper layer (here: l=nlaylte+1) are: |
---|
| 291 | c upward : flw_up(ig1d,l) ; downward : flw_dn(ig1d,j) |
---|
| 292 | c |
---|
| 293 | computeflux = .false. |
---|
| 294 | |
---|
| 295 | IF (computeflux) THEN ! not used by the GCM only for diagnostic ! |
---|
| 296 | c upward flux |
---|
| 297 | c ~~~~~~~~~~~ |
---|
| 298 | do i = 0,nlaylte |
---|
| 299 | do j = 1,nlaylte+1 |
---|
| 300 | do ja = 1,nuco2 |
---|
| 301 | do jl = 1,kdlon |
---|
| 302 | coefu(jl,ja,i,j) =0. |
---|
| 303 | do l=j,nlaylte+1 |
---|
| 304 | coefu(jl,ja,i,j)=coefu(jl,ja,i,j)+xi(ig0+jl,ja,l,i) |
---|
| 305 | end do |
---|
| 306 | |
---|
| 307 | enddo |
---|
| 308 | enddo |
---|
| 309 | enddo |
---|
| 310 | enddo |
---|
| 311 | do j = 1,nlaylte+1 |
---|
| 312 | do jl = 1,kdlon |
---|
| 313 | flw_up(jl,j) = 0. |
---|
| 314 | do ja = 1,nuco2 |
---|
| 315 | flw_up(jl,j)=flw_up(jl,j)+bsurf(jl,ja)*coefu(jl,ja,0,j) |
---|
| 316 | do i=1,j-1 |
---|
| 317 | flw_up(jl,j)=flw_up(jl,j)+blay(jl,ja,i)*coefu(jl,ja,i,j) |
---|
| 318 | end do |
---|
| 319 | end do |
---|
| 320 | flw_up(jl,j)=flw_up(jl,j) + fluxdiff(jl,1,j) |
---|
| 321 | end do |
---|
| 322 | end do |
---|
| 323 | |
---|
| 324 | c downward flux |
---|
| 325 | c ~~~~~~~~~~~~~ |
---|
| 326 | do i = 1,nlaylte+1 |
---|
| 327 | do j = 1,nlaylte+1 |
---|
| 328 | do ja = 1,nuco2 |
---|
| 329 | do jl = 1,kdlon |
---|
| 330 | coefd(jl,ja,i,j) =0. |
---|
| 331 | do l=0,j-1 |
---|
| 332 | coefd(jl,ja,i,j)=coefd(jl,ja,i,j)+xi(ig0+jl,ja,l,i) |
---|
| 333 | end do |
---|
| 334 | enddo |
---|
| 335 | enddo |
---|
| 336 | enddo |
---|
| 337 | enddo |
---|
| 338 | do j = 1,nlaylte+1 |
---|
| 339 | do jl = 1,kdlon |
---|
| 340 | flw_dn(jl,j) = 0. |
---|
| 341 | do ja = 1,nuco2 |
---|
| 342 | do i=j,nlaylte |
---|
| 343 | flw_dn(jl,j)=flw_dn(jl,j)+blay(jl,ja,i)*coefd(jl,ja,i,j) |
---|
| 344 | end do |
---|
| 345 | end do |
---|
| 346 | flw_dn(jl,j)=flw_dn(jl,j) - fluxdiff(jl,2,j) |
---|
| 347 | end do |
---|
| 348 | end do |
---|
| 349 | END IF |
---|
| 350 | |
---|
| 351 | c---------------------------------------------------------------------- |
---|
| 352 | c 7.0 outputs Grads 2D |
---|
| 353 | c ---------------- |
---|
| 354 | |
---|
| 355 | c ig1d: point de la grille physique ou on veut faire la sortie |
---|
| 356 | c ig0+1: point du decoupage de la grille physique |
---|
| 357 | |
---|
| 358 | if (callg2d) then |
---|
| 359 | |
---|
[1047] | 360 | ig1d = kdlon/2 + 1 |
---|
| 361 | c ig1d = kdlon |
---|
[38] | 362 | |
---|
| 363 | if ((ig0+1).LE.ig1d .and. ig1d.LE.(ig0+kdlon) |
---|
[1047] | 364 | . .OR. kdlon.EQ.1 ) then |
---|
[38] | 365 | |
---|
| 366 | ig = ig1d-ig0 |
---|
| 367 | print*, 'Sortie g2d: ig1d, ig, ig0', ig1d, ig, ig0 |
---|
| 368 | |
---|
| 369 | c-------------------------------------------- |
---|
| 370 | c Ouverture de g2d.dat |
---|
| 371 | c-------------------------------------------- |
---|
| 372 | if (g2d_premier) then |
---|
| 373 | open (47,file='g2d.dat' |
---|
| 374 | clmd & ,form='unformatted',access='direct',recl=4) |
---|
| 375 | & ,form='unformatted',access='direct',recl=1 |
---|
| 376 | & ,status='unknown') |
---|
| 377 | g2d_irec=0 |
---|
| 378 | g2d_appel=0 |
---|
| 379 | g2d_premier=.false. |
---|
| 380 | endif |
---|
| 381 | g2d_appel = g2d_appel+1 |
---|
| 382 | |
---|
| 383 | c-------------------------------------------- |
---|
| 384 | c Sortie g2d des xi proches + distants |
---|
| 385 | c-------------------------------------------- |
---|
| 386 | cl if (nflev .NE. 500) then |
---|
| 387 | do ja = 1,nuco2 |
---|
| 388 | do j = 0,nlaylte+1 |
---|
| 389 | do i = 0,nlaylte+1 |
---|
| 390 | g2d_irec=g2d_irec+1 |
---|
| 391 | reel4 = xi(ig1d,ja,i,j) |
---|
| 392 | write(47,rec=g2d_irec) reel4 |
---|
| 393 | enddo |
---|
| 394 | enddo |
---|
| 395 | enddo |
---|
| 396 | cl endif |
---|
| 397 | |
---|
| 398 | c------------------------------------------------------ |
---|
| 399 | c Writeg2d des ksidb |
---|
| 400 | c------------------------------------------------------ |
---|
| 401 | do ja = 1,nuco2 |
---|
| 402 | c ja=1 |
---|
| 403 | do j = 0,nlaylte+1 |
---|
| 404 | do i = 0,nlaylte+1 |
---|
| 405 | g2d_irec=g2d_irec+1 |
---|
| 406 | reel4 = ksidb(ig,ja,i,j) |
---|
| 407 | write(47,rec=g2d_irec) reel4 |
---|
| 408 | enddo |
---|
| 409 | enddo |
---|
| 410 | enddo |
---|
| 411 | |
---|
| 412 | do j = 0,nlaylte+1 |
---|
| 413 | do i = 0,nlaylte+1 |
---|
| 414 | g2d_irec=g2d_irec+1 |
---|
| 415 | reel4 = ksidb(ig,3,i,j) |
---|
| 416 | write(47,rec=g2d_irec) reel4 |
---|
| 417 | enddo |
---|
| 418 | enddo |
---|
| 419 | |
---|
| 420 | c------------------------------------------------------ |
---|
| 421 | c Writeg2d dpsgcp |
---|
| 422 | c------------------------------------------------------ |
---|
| 423 | |
---|
| 424 | do j = 1 , nlaylte |
---|
| 425 | do i = 0 , nlaylte+1 |
---|
| 426 | dpsgcp(i,j) = dp(ig,j) / gcp |
---|
| 427 | enddo |
---|
| 428 | enddo |
---|
| 429 | |
---|
| 430 | do i = 0 , nlaylte+1 |
---|
| 431 | c dpsgcp(i,0) = 0.0002 ! (rapport ~ entre 1000 et 10000 pour le sol) |
---|
| 432 | dpsgcp(i,0) = 1. ! (pour regler l'echelle des sorties) |
---|
| 433 | dpsgcp(i,nlaylte+1) = 0. |
---|
| 434 | enddo |
---|
| 435 | |
---|
| 436 | c print* |
---|
| 437 | c print*,'gcp: ',gcp |
---|
| 438 | c print* |
---|
| 439 | c do i = 0 , nlaylte+1 |
---|
| 440 | c print*,i,'dp: ',dp(ig,i) |
---|
| 441 | c enddo |
---|
| 442 | c print* |
---|
| 443 | c do i = 0 , nlaylte+1 |
---|
| 444 | c print*,i,'dpsgcp: ',dpsgcp(i,1) |
---|
| 445 | c enddo |
---|
| 446 | |
---|
| 447 | do j = 0,nlaylte+1 |
---|
| 448 | do i = 0,nlaylte+1 |
---|
| 449 | g2d_irec=g2d_irec+1 |
---|
| 450 | reel4 = dpsgcp(i,j) |
---|
| 451 | write(47,rec=g2d_irec) reel4 |
---|
| 452 | enddo |
---|
| 453 | enddo |
---|
| 454 | |
---|
| 455 | c------------------------------------------------------ |
---|
| 456 | c Writeg2d temperature |
---|
| 457 | c------------------------------------------------------ |
---|
| 458 | |
---|
| 459 | do j = 1 , nlaylte |
---|
| 460 | do i = 0 , nlaylte+1 |
---|
| 461 | temp(i,j) = tlay(ig,j) |
---|
| 462 | enddo |
---|
| 463 | enddo |
---|
| 464 | |
---|
| 465 | do i = 0 , nlaylte+1 |
---|
| 466 | temp(i,0) = tlev(ig,1)+dt0(ig) ! temperature surface |
---|
| 467 | temp(i,nlaylte+1) = 0. ! temperature espace (=0) |
---|
| 468 | enddo |
---|
| 469 | |
---|
| 470 | do j = 0,nlaylte+1 |
---|
| 471 | do i = 0,nlaylte+1 |
---|
| 472 | g2d_irec=g2d_irec+1 |
---|
| 473 | reel4 = temp(i,j) |
---|
| 474 | write(47,rec=g2d_irec) reel4 |
---|
| 475 | enddo |
---|
| 476 | enddo |
---|
| 477 | |
---|
| 478 | write(76,*) 'ig1d, ig, ig0', ig1d, ig, ig0 |
---|
| 479 | write(76,*) 'nlaylte', nlaylte |
---|
| 480 | write(76,*) 'nflev', nflev |
---|
| 481 | write(76,*) 'kdlon', kdlon |
---|
| 482 | write(76,*) 'ndlo2', ndlo2 |
---|
| 483 | write(76,*) 'ndlon', ndlon |
---|
| 484 | do ja=1,4 |
---|
| 485 | write(76,*) 'bsurf', ja, bsurf(ig,ja) |
---|
| 486 | write(76,*) 'btop', ja, btop(ig,ja) |
---|
| 487 | |
---|
| 488 | do j=1,nlaylte+1 |
---|
| 489 | write(76,*) 'blev', ja, j, blev(ig,ja,j) |
---|
| 490 | enddo |
---|
| 491 | |
---|
| 492 | do j=1,nlaylte |
---|
| 493 | write(76,*) 'blay', ja, j, blay(ig,ja,j) |
---|
| 494 | enddo |
---|
| 495 | |
---|
| 496 | do j=1,2*nlaylte |
---|
| 497 | write(76,*) 'dbsublay', ja, j, dbsublay(ig,ja,j) |
---|
| 498 | enddo |
---|
| 499 | enddo |
---|
| 500 | |
---|
| 501 | endif |
---|
| 502 | c************************************************************************ |
---|
| 503 | endif ! callg2d |
---|
| 504 | |
---|
| 505 | end |
---|