| 1 | module interp_line_mod |
|---|
| 2 | |
|---|
| 3 | implicit none |
|---|
| 4 | |
|---|
| 5 | contains |
|---|
| 6 | |
|---|
| 7 | subroutine interp_line(x1,y1,len1,x2,y2,len2) |
|---|
| 8 | implicit none |
|---|
| 9 | !----------------------------------------------------------------------- |
|---|
| 10 | ! |
|---|
| 11 | ! Purpose: Do a series of linear interpolations |
|---|
| 12 | ! Data sets are organized as vectors (see below) |
|---|
| 13 | ! If x2(:), and abscissa at which interpolation is requiered, lies |
|---|
| 14 | ! outside of the interval covered by x1(:), instead of doing an |
|---|
| 15 | ! extrapolation, y2() is set to the value y1() corresponding to |
|---|
| 16 | ! the nearby x1(:) point |
|---|
| 17 | ! |
|---|
| 18 | c----------------------------------------------------------------------- |
|---|
| 19 | ! arguments |
|---|
| 20 | ! --------- |
|---|
| 21 | ! inputs: |
|---|
| 22 | real,intent(in) :: x1(len1) ! ordered list of abscissas |
|---|
| 23 | real,intent(in) :: y1(len1) ! values at x1(:) |
|---|
| 24 | integer,intent(in) :: len1 ! length of x1(:) and y1(:) |
|---|
| 25 | real,intent(in) :: x2(len2) !ordered list of abscissas at which interpolation is done |
|---|
| 26 | integer,intent(in) :: len2 ! length of x2(:) and y2(:) |
|---|
| 27 | ! outputs: |
|---|
| 28 | real,intent(out) :: y2(len2) ! interpolated values |
|---|
| 29 | !----------------------------------------------------------------------- |
|---|
| 30 | |
|---|
| 31 | ! local variables: |
|---|
| 32 | integer i,j |
|---|
| 33 | |
|---|
| 34 | |
|---|
| 35 | do i=1,len2 |
|---|
| 36 | ! check if x2(i) lies outside of the interval covered by x1() |
|---|
| 37 | if(((x2(i).le.x1(1)).and.(x2(i).le.x1(len1))).or. |
|---|
| 38 | & ((x2(i).ge.x1(1)).and.(x2(i).ge.x1(len1)))) then |
|---|
| 39 | ! set y2(i) to y1(1) or y1(len1) |
|---|
| 40 | if (abs(x2(i)-x1(1)).lt.abs(x2(i)-x1(len1))) then |
|---|
| 41 | ! x2(i) lies closest to x1(1) |
|---|
| 42 | y2(i)=y1(1) |
|---|
| 43 | else |
|---|
| 44 | ! x2(i) lies closest to x1(len1) |
|---|
| 45 | y2(i)=y1(len1) |
|---|
| 46 | endif |
|---|
| 47 | |
|---|
| 48 | else |
|---|
| 49 | ! find the nearest neigbours and do a linear interpolation |
|---|
| 50 | do j=1,len1-1 |
|---|
| 51 | if(((x2(i).ge.x1(j)).and.(x2(i).le.x1(j+1))).or. |
|---|
| 52 | & ((x2(i).le.x1(j)).and.(x2(i).ge.x1(j+1)))) then |
|---|
| 53 | y2(i)=((x2(i)-x1(j))/(x1(j+1)-x1(j)))*y1(j+1)+ |
|---|
| 54 | & ((x2(i)-x1(j+1))/(x1(j)-x1(j+1)))*y1(j) |
|---|
| 55 | endif |
|---|
| 56 | enddo |
|---|
| 57 | endif |
|---|
| 58 | |
|---|
| 59 | enddo |
|---|
| 60 | |
|---|
| 61 | end subroutine interp_line |
|---|
| 62 | |
|---|
| 63 | end module interp_line_mod |
|---|