1 | c *********************************************************************** |
---|
2 | |
---|
3 | subroutine interdp_limits ( yy,zz,m, i1,i2, y,z,n, j1,j2, opt) |
---|
4 | |
---|
5 | c Interpolation soubroutine. |
---|
6 | c Returns values between indexes i1 & i2, donde 1 =< i1 =< i2 =< m |
---|
7 | c Solo usan los indices de los inputs entre j1,j2, 1 =< j1 =< j2 =< n |
---|
8 | c Input values: y(n) , z(n) (solo se usan los valores entre j1,j2) |
---|
9 | c zz(m) (solo se necesita entre i1,i2) |
---|
10 | c Output values: yy(m) (solo se calculan entre i1,i2) |
---|
11 | c Options: opt=1 -> lineal ,, opt=2 -> logarithmic |
---|
12 | c Difference with interdp: |
---|
13 | c here interpolation proceeds between indexes i1,i2 only |
---|
14 | c if i1=1 & i2=m, both subroutines are exactly the same |
---|
15 | c thus previous calls to interdp or interdp2 could be easily replaced |
---|
16 | |
---|
17 | c JAN 98 MALV Version for mz1d |
---|
18 | c jul 2011 malv+fgg Adapted to LMD-MGCM |
---|
19 | c *********************************************************************** |
---|
20 | |
---|
21 | implicit none |
---|
22 | |
---|
23 | ! Arguments |
---|
24 | integer n,m ! I. Dimensions |
---|
25 | integer i1, i2, j1, j2, opt ! I |
---|
26 | real*8 zz(m),yy(m) ! O |
---|
27 | real*8 z(n),y(n) ! I |
---|
28 | |
---|
29 | ! Local variables |
---|
30 | integer i,j |
---|
31 | real*8 zmin,zzmin,zmax,zzmax |
---|
32 | |
---|
33 | c ******************************* |
---|
34 | |
---|
35 | ! type *, ' d interpolating ' |
---|
36 | call mindp_limits (z,n,zmin, j1,j2) |
---|
37 | call mindp_limits (zz,m,zzmin, i1,i2) |
---|
38 | call maxdp_limits (z,n,zmax, j1,j2) |
---|
39 | call maxdp_limits (zz,m,zzmax, i1,i2) |
---|
40 | |
---|
41 | if(zzmin.lt.zmin)then |
---|
42 | write (*,*) 'from d interp: new variable out of limits' |
---|
43 | write (*,*) zzmin,'must be .ge. ',zmin |
---|
44 | stop |
---|
45 | ! elseif(zzmax.gt.zmax)then |
---|
46 | ! type *,'from interp: new variable out of limits' |
---|
47 | ! type *,zzmax, 'must be .le. ',zmax |
---|
48 | ! stop |
---|
49 | end if |
---|
50 | |
---|
51 | do 1,i=i1,i2 |
---|
52 | |
---|
53 | do 2,j=j1,j2-1 |
---|
54 | if(zz(i).ge.z(j).and.zz(i).lt.z(j+1)) goto 3 |
---|
55 | 2 continue |
---|
56 | c in this case (zz(i2).eq.z(j2)) and j leaves the loop with j=j2-1+1=j2 |
---|
57 | if(opt.eq.1)then |
---|
58 | yy(i)=y(j2-1)+(y(j2)-y(j2-1))*(zz(i)-z(j2-1))/(z(j2)-z(j2-1)) |
---|
59 | elseif(opt.eq.2)then |
---|
60 | if(y(j2).eq.0.0d0.or.y(j2-1).eq.0.0d0)then |
---|
61 | yy(i)=0.0d0 |
---|
62 | else |
---|
63 | yy(i)=exp(log(y(j2-1))+log(y(j2)/y(j2-1))* |
---|
64 | @ (zz(i)-z(j2-1))/(z(j2)-z(j2-1))) |
---|
65 | end if |
---|
66 | else |
---|
67 | write (*,*) ' d interp : opt must be 1 or 2, opt= ',opt |
---|
68 | end if |
---|
69 | goto 1 |
---|
70 | 3 continue |
---|
71 | if(opt.eq.1)then |
---|
72 | yy(i)=y(j)+(y(j+1)-y(j))*(zz(i)-z(j))/(z(j+1)-z(j)) |
---|
73 | ! type *, ' ' |
---|
74 | ! type *, ' z(j),z(j+1) =', z(j),z(j+1) |
---|
75 | ! type *, ' t(j),t(j+1) =', y(j),y(j+1) |
---|
76 | ! type *, ' zz, tt = ', zz(i), yy(i) |
---|
77 | elseif(opt.eq.2)then |
---|
78 | if(y(j+1).eq.0.0d0.or.y(j).eq.0.0d0)then |
---|
79 | yy(i)=0.0d0 |
---|
80 | else |
---|
81 | yy(i)=exp(log(y(j))+log(y(j+1)/y(j))* |
---|
82 | @ (zz(i)-z(j))/(z(j+1)-z(j))) |
---|
83 | end if |
---|
84 | else |
---|
85 | write (*,*) ' interp : opt must be 1 or 2, opt= ',opt |
---|
86 | end if |
---|
87 | 1 continue |
---|
88 | return |
---|
89 | end |
---|
90 | |
---|
91 | |
---|
92 | |
---|
93 | |
---|
94 | |
---|
95 | |
---|
96 | |
---|