1 | MODULE improvedclouds_mod |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | subroutine improvedclouds(ngrid,nlay,microtimestep, |
---|
8 | & pplay,pteff,sum_subpdt, |
---|
9 | & pqeff,sum_subpdq,subpdqcloud,subpdtcloud, |
---|
10 | & nq,tauscaling) |
---|
11 | USE updaterad, ONLY: updaterice_micro, updaterccn |
---|
12 | USE watersat_mod, ONLY: watersat |
---|
13 | use tracer_mod, only: rho_ice, nuice_sed, igcm_h2o_vap, |
---|
14 | & igcm_h2o_ice, igcm_dust_mass, |
---|
15 | & igcm_dust_number, igcm_ccn_mass, |
---|
16 | & igcm_ccn_number, |
---|
17 | & igcm_hdo_vap,igcm_hdo_ice, |
---|
18 | & qperemin |
---|
19 | use conc_mod, only: mmean |
---|
20 | use comcstfi_h, only: pi, cpp |
---|
21 | implicit none |
---|
22 | |
---|
23 | |
---|
24 | c------------------------------------------------------------------ |
---|
25 | c This routine is used to form clouds when a parcel of the GCM is |
---|
26 | c saturated. It includes the ability to have supersaturation, a |
---|
27 | c computation of the nucleation rates, growthrates and the |
---|
28 | c scavenging of dust particles by clouds. |
---|
29 | c It is worth noting that the amount of dust is computed using the |
---|
30 | c dust optical depth computed in aeropacity.F. That's why |
---|
31 | c the variable called "tauscaling" is used to convert |
---|
32 | c pq(dust_mass) and pq(dust_number), which are relative |
---|
33 | c quantities, to absolute and realistic quantities stored in zq. |
---|
34 | c This has to be done to convert the inputs into absolute |
---|
35 | c values, but also to convert the outputs back into relative |
---|
36 | c values which are then used by the sedimentation and advection |
---|
37 | c schemes. |
---|
38 | |
---|
39 | c Authors: J.-B. Madeleine, based on the work by Franck Montmessin |
---|
40 | c (October 2011) |
---|
41 | c T. Navarro, debug,correction, new scheme (October-April 2011) |
---|
42 | c A. Spiga, optimization (February 2012) |
---|
43 | c------------------------------------------------------------------ |
---|
44 | #include "callkeys.h" |
---|
45 | #include "microphys.h" |
---|
46 | c------------------------------------------------------------------ |
---|
47 | c Inputs/outputs: |
---|
48 | |
---|
49 | INTEGER, INTENT(IN) :: ngrid,nlay |
---|
50 | INTEGER, INTENT(IN) :: nq ! nombre de traceurs |
---|
51 | REAL, INTENT(IN) :: microtimestep ! pas de temps physique (s) |
---|
52 | REAL, INTENT(IN) :: pplay(ngrid,nlay) ! pression au milieu des couches (Pa) |
---|
53 | REAL, INTENT(IN) :: pteff(ngrid,nlay) ! temperature at the middle of the |
---|
54 | ! layers (K) |
---|
55 | REAL, INTENT(IN) :: sum_subpdt(ngrid,nlay)! tendance temperature des autres |
---|
56 | ! param. |
---|
57 | REAL, INTENT(IN) :: pqeff(ngrid,nlay,nq) ! traceur (kg/kg) |
---|
58 | REAL, INTENT(IN) :: sum_subpdq(ngrid,nlay,nq) ! tendance avant condensation |
---|
59 | ! (kg/kg.s-1) |
---|
60 | REAL, INTENT(IN) :: tauscaling(ngrid) ! Convertion factor for qdust and Ndust |
---|
61 | |
---|
62 | REAL, INTENT(OUT) :: subpdqcloud(ngrid,nlay,nq) ! tendance de la condensation |
---|
63 | ! H2O(kg/kg.s-1) |
---|
64 | REAL, INTENT(OUT) :: subpdtcloud(ngrid,nlay) ! tendance temperature due |
---|
65 | ! a la chaleur latente |
---|
66 | |
---|
67 | c------------------------------------------------------------------ |
---|
68 | c Local variables: |
---|
69 | |
---|
70 | LOGICAL firstcall |
---|
71 | DATA firstcall/.true./ |
---|
72 | SAVE firstcall |
---|
73 | |
---|
74 | !$OMP THREADPRIVATE(firstcall) |
---|
75 | |
---|
76 | REAL*8 derf ! Error function |
---|
77 | !external derf |
---|
78 | |
---|
79 | INTEGER ig,l,i |
---|
80 | |
---|
81 | REAL zq(ngrid,nlay,nq) ! local value of tracers |
---|
82 | REAL zq0(ngrid,nlay,nq) ! local initial value of tracers |
---|
83 | REAL zt(ngrid,nlay) ! local value of temperature |
---|
84 | REAL zqsat(ngrid,nlay) ! saturation |
---|
85 | REAL lw !Latent heat of sublimation (J.kg-1) |
---|
86 | REAL cste |
---|
87 | REAL dMice ! mass of condensed ice |
---|
88 | REAL dMice_hdo ! mass of condensed HDO ice |
---|
89 | REAL alpha(ngrid,nlay) ! HDO equilibrium fractionation coefficient (Saturation=1) |
---|
90 | REAL alpha_c(ngrid,nlay) ! HDO real fractionation coefficient |
---|
91 | ! REAL sumcheck |
---|
92 | REAL*8 ph2o ! Water vapor partial pressure (Pa) |
---|
93 | REAL*8 satu ! Water vapor saturation ratio over ice |
---|
94 | REAL*8 Mo,No |
---|
95 | REAL*8 Rn, Rm, dev2, n_derf, m_derf |
---|
96 | REAL*8 n_aer(nbin_cld) ! number conc. of particle/each size bin |
---|
97 | REAL*8 m_aer(nbin_cld) ! mass mixing ratio of particle/each size bin |
---|
98 | |
---|
99 | REAL*8 sig ! Water-ice/air surface tension (N.m) |
---|
100 | EXTERNAL sig |
---|
101 | |
---|
102 | REAL dN,dM |
---|
103 | REAL rate(nbin_cld) ! nucleation rate |
---|
104 | REAL seq |
---|
105 | |
---|
106 | REAL rice(ngrid,nlay) ! Ice mass mean radius (m) |
---|
107 | ! (r_c in montmessin_2004) |
---|
108 | REAL rhocloud(ngrid,nlay) ! Cloud density (kg.m-3) |
---|
109 | REAL rdust(ngrid,nlay) ! Dust geometric mean radius (m) |
---|
110 | |
---|
111 | REAL res ! Resistance growth |
---|
112 | REAL Dv,Dv_hdo ! Water/HDO vapor diffusion coefficient |
---|
113 | |
---|
114 | |
---|
115 | c Parameters of the size discretization |
---|
116 | c used by the microphysical scheme |
---|
117 | DOUBLE PRECISION, PARAMETER :: rmin_cld = 0.1e-6 ! Minimum radius (m) |
---|
118 | DOUBLE PRECISION, PARAMETER :: rmax_cld = 10.e-6 ! Maximum radius (m) |
---|
119 | DOUBLE PRECISION, PARAMETER :: rbmin_cld = 0.0001e-6 |
---|
120 | ! Minimum boundary radius (m) |
---|
121 | DOUBLE PRECISION, PARAMETER :: rbmax_cld = 1.e-2 ! Maximum boundary radius (m) |
---|
122 | DOUBLE PRECISION vrat_cld ! Volume ratio |
---|
123 | DOUBLE PRECISION rb_cld(nbin_cld+1)! boundary values of each rad_cld bin (m) |
---|
124 | SAVE rb_cld |
---|
125 | DOUBLE PRECISION dr_cld(nbin_cld) ! width of each rad_cld bin (m) |
---|
126 | DOUBLE PRECISION vol_cld(nbin_cld) ! particle volume for each bin (m3) |
---|
127 | |
---|
128 | !$OMP THREADPRIVATE(rb_cld) |
---|
129 | |
---|
130 | |
---|
131 | REAL sigma_ice ! Variance of the ice and CCN distributions |
---|
132 | SAVE sigma_ice |
---|
133 | |
---|
134 | !$OMP THREADPRIVATE(sigma_ice) |
---|
135 | |
---|
136 | |
---|
137 | |
---|
138 | c---------------------------------- |
---|
139 | c TESTS |
---|
140 | |
---|
141 | INTEGER countcells |
---|
142 | |
---|
143 | LOGICAL test_flag ! flag for test/debuging outputs |
---|
144 | SAVE test_flag |
---|
145 | |
---|
146 | !$OMP THREADPRIVATE(test_flag) |
---|
147 | |
---|
148 | |
---|
149 | REAL satubf(ngrid,nlay),satuaf(ngrid,nlay) |
---|
150 | REAL res_out(ngrid,nlay) |
---|
151 | |
---|
152 | |
---|
153 | c------------------------------------------------------------------ |
---|
154 | |
---|
155 | ! AS: firstcall OK absolute |
---|
156 | IF (firstcall) THEN |
---|
157 | !============================================================= |
---|
158 | ! 0. Definition of the size grid |
---|
159 | !============================================================= |
---|
160 | c rad_cld is the primary radius grid used for microphysics computation. |
---|
161 | c The grid spacing is computed assuming a constant volume ratio |
---|
162 | c between two consecutive bins; i.e. vrat_cld. |
---|
163 | c vrat_cld is determined from the boundary values of the size grid: |
---|
164 | c rmin_cld and rmax_cld. |
---|
165 | c The rb_cld array contains the boundary values of each rad_cld bin. |
---|
166 | c dr_cld is the width of each rad_cld bin. |
---|
167 | |
---|
168 | c Volume ratio between two adjacent bins |
---|
169 | ! vrat_cld = log(rmax_cld/rmin_cld) / float(nbin_cld-1) *3. |
---|
170 | ! vrat_cld = exp(vrat_cld) |
---|
171 | vrat_cld = log(rmax_cld/rmin_cld) / float(nbin_cld-1) *3. |
---|
172 | vrat_cld = exp(vrat_cld) |
---|
173 | write(*,*) "vrat_cld", vrat_cld |
---|
174 | |
---|
175 | rb_cld(1) = rbmin_cld |
---|
176 | rad_cld(1) = rmin_cld |
---|
177 | vol_cld(1) = 4./3. * dble(pi) * rmin_cld*rmin_cld*rmin_cld |
---|
178 | ! vol_cld(1) = 4./3. * pi * rmin_cld*rmin_cld*rmin_cld |
---|
179 | |
---|
180 | do i=1,nbin_cld-1 |
---|
181 | rad_cld(i+1) = rad_cld(i) * vrat_cld**(1./3.) |
---|
182 | vol_cld(i+1) = vol_cld(i) * vrat_cld |
---|
183 | enddo |
---|
184 | |
---|
185 | do i=1,nbin_cld |
---|
186 | rb_cld(i+1)= ( (2.*vrat_cld) / (vrat_cld+1.) )**(1./3.) * |
---|
187 | & rad_cld(i) |
---|
188 | dr_cld(i) = rb_cld(i+1) - rb_cld(i) |
---|
189 | enddo |
---|
190 | rb_cld(nbin_cld+1) = rbmax_cld |
---|
191 | dr_cld(nbin_cld) = rb_cld(nbin_cld+1) - rb_cld(nbin_cld) |
---|
192 | |
---|
193 | print*, ' ' |
---|
194 | print*,'Microphysics: size bin information:' |
---|
195 | print*,'i,rb_cld(i), rad_cld(i),dr_cld(i)' |
---|
196 | print*,'-----------------------------------' |
---|
197 | do i=1,nbin_cld |
---|
198 | write(*,'(i2,3x,3(e12.6,4x))') i,rb_cld(i), rad_cld(i), |
---|
199 | & dr_cld(i) |
---|
200 | enddo |
---|
201 | write(*,'(i2,3x,e12.6)') nbin_cld+1,rb_cld(nbin_cld+1) |
---|
202 | print*,'-----------------------------------' |
---|
203 | |
---|
204 | do i=1,nbin_cld+1 |
---|
205 | ! rb_cld(i) = log(rb_cld(i)) |
---|
206 | rb_cld(i) = log(rb_cld(i)) !! we save that so that it is not computed |
---|
207 | !! at each timestep and gridpoint |
---|
208 | enddo |
---|
209 | |
---|
210 | c Contact parameter of water ice on dust ( m=cos(theta) ) |
---|
211 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
212 | ! mteta = 0.95 |
---|
213 | write(*,*) 'water_param contact parameter:', mteta |
---|
214 | |
---|
215 | c Volume of a water molecule (m3) |
---|
216 | vo1 = mh2o / dble(rho_ice) |
---|
217 | c Variance of the ice and CCN distributions |
---|
218 | sigma_ice = sqrt(log(1.+nuice_sed)) |
---|
219 | |
---|
220 | |
---|
221 | write(*,*) 'Variance of ice & CCN distribs :', sigma_ice |
---|
222 | write(*,*) 'nuice for sedimentation:', nuice_sed |
---|
223 | write(*,*) 'Volume of a water molecule:', vo1 |
---|
224 | |
---|
225 | |
---|
226 | test_flag = .false. |
---|
227 | |
---|
228 | firstcall=.false. |
---|
229 | END IF |
---|
230 | |
---|
231 | |
---|
232 | !============================================================= |
---|
233 | ! 1. Initialisation |
---|
234 | !============================================================= |
---|
235 | cste = 4*pi*rho_ice*microtimestep |
---|
236 | |
---|
237 | res_out(:,:) = 0 |
---|
238 | rice(:,:) = 1.e-8 |
---|
239 | |
---|
240 | c Initialize the tendencies |
---|
241 | subpdqcloud(1:ngrid,1:nlay,1:nq)=0 |
---|
242 | subpdtcloud(1:ngrid,1:nlay)=0 |
---|
243 | |
---|
244 | |
---|
245 | zt(1:ngrid,1:nlay) = |
---|
246 | & pteff(1:ngrid,1:nlay) + |
---|
247 | & sum_subpdt(1:ngrid,1:nlay) * microtimestep |
---|
248 | |
---|
249 | zq(1:ngrid,1:nlay,1:nq) = |
---|
250 | & pqeff(1:ngrid,1:nlay,1:nq) + |
---|
251 | & sum_subpdq(1:ngrid,1:nlay,1:nq) * microtimestep |
---|
252 | |
---|
253 | |
---|
254 | WHERE( zq(1:ngrid,1:nlay,1:nq) < 1.e-30 ) |
---|
255 | & zq(1:ngrid,1:nlay,1:nq) = 1.e-30 |
---|
256 | |
---|
257 | zq0(1:ngrid,1:nlay,1:nq) = zq(1:ngrid,1:nlay,1:nq) |
---|
258 | |
---|
259 | !============================================================= |
---|
260 | ! 2. Compute saturation |
---|
261 | !============================================================= |
---|
262 | |
---|
263 | |
---|
264 | dev2 = 1. / ( sqrt(2.) * sigma_ice ) |
---|
265 | |
---|
266 | call watersat(ngrid*nlay,zt,pplay,zqsat) |
---|
267 | |
---|
268 | countcells = 0 |
---|
269 | |
---|
270 | c Main loop over the GCM's grid |
---|
271 | DO l=1,nlay |
---|
272 | DO ig=1,ngrid |
---|
273 | |
---|
274 | c Get the partial pressure of water vapor and its saturation ratio |
---|
275 | ph2o = zq(ig,l,igcm_h2o_vap) * (mmean(ig,l)/18.) * pplay(ig,l) |
---|
276 | satu = zq(ig,l,igcm_h2o_vap) / zqsat(ig,l) |
---|
277 | |
---|
278 | !============================================================= |
---|
279 | ! 3. Nucleation |
---|
280 | !============================================================= |
---|
281 | |
---|
282 | IF ( satu .ge. 1. ) THEN ! if there is condensation |
---|
283 | |
---|
284 | call updaterccn(zq(ig,l,igcm_dust_mass), |
---|
285 | & zq(ig,l,igcm_dust_number),rdust(ig,l),tauscaling(ig)) |
---|
286 | |
---|
287 | |
---|
288 | c Expand the dust moments into a binned distribution |
---|
289 | Mo = zq(ig,l,igcm_dust_mass)* tauscaling(ig) + 1.e-30 |
---|
290 | No = zq(ig,l,igcm_dust_number)* tauscaling(ig) + 1.e-30 |
---|
291 | Rn = rdust(ig,l) |
---|
292 | Rn = -log(Rn) |
---|
293 | Rm = Rn - 3. * sigma_ice*sigma_ice |
---|
294 | n_derf = derf( (rb_cld(1)+Rn) *dev2) |
---|
295 | m_derf = derf( (rb_cld(1)+Rm) *dev2) |
---|
296 | do i = 1, nbin_cld |
---|
297 | n_aer(i) = -0.5 * No * n_derf !! this ith previously computed |
---|
298 | m_aer(i) = -0.5 * Mo * m_derf !! this ith previously computed |
---|
299 | n_derf = derf( (rb_cld(i+1)+Rn) *dev2) |
---|
300 | m_derf = derf( (rb_cld(i+1)+Rm) *dev2) |
---|
301 | n_aer(i) = n_aer(i) + 0.5 * No * n_derf |
---|
302 | m_aer(i) = m_aer(i) + 0.5 * Mo * m_derf |
---|
303 | enddo |
---|
304 | |
---|
305 | ! sumcheck = 0 |
---|
306 | ! do i = 1, nbin_cld |
---|
307 | ! sumcheck = sumcheck + n_aer(i) |
---|
308 | ! enddo |
---|
309 | ! sumcheck = abs(sumcheck/No - 1) |
---|
310 | ! if ((sumcheck .gt. 1e-5).and. (1./Rn .gt. rmin_cld)) then |
---|
311 | ! print*, "WARNING, No sumcheck PROBLEM" |
---|
312 | ! print*, "sumcheck, No",sumcheck, No |
---|
313 | ! print*, "min radius, Rn, ig, l", rmin_cld, 1./Rn, ig, l |
---|
314 | ! print*, "Dust binned distribution", n_aer |
---|
315 | ! endif |
---|
316 | ! |
---|
317 | ! sumcheck = 0 |
---|
318 | ! do i = 1, nbin_cld |
---|
319 | ! sumcheck = sumcheck + m_aer(i) |
---|
320 | ! enddo |
---|
321 | ! sumcheck = abs(sumcheck/Mo - 1) |
---|
322 | ! if ((sumcheck .gt. 1e-5) .and. (1./Rn .gt. rmin_cld)) then |
---|
323 | ! print*, "WARNING, Mo sumcheck PROBLEM" |
---|
324 | ! print*, "sumcheck, Mo",sumcheck, Mo |
---|
325 | ! print*, "min radius, Rm, ig, l", rmin_cld, 1./Rm, ig, l |
---|
326 | ! print*, "Dust binned distribution", m_aer |
---|
327 | ! endif |
---|
328 | |
---|
329 | |
---|
330 | c Get the rates of nucleation |
---|
331 | call nuclea(ph2o,zt(ig,l),satu,n_aer,rate) |
---|
332 | |
---|
333 | dN = 0. |
---|
334 | dM = 0. |
---|
335 | do i = 1, nbin_cld |
---|
336 | dN = dN + n_aer(i)*(exp(-rate(i)*microtimestep)-1.) |
---|
337 | dM = dM + m_aer(i)*(exp(-rate(i)*microtimestep)-1.) |
---|
338 | enddo |
---|
339 | |
---|
340 | |
---|
341 | c Update Dust particles |
---|
342 | zq(ig,l,igcm_dust_mass) = |
---|
343 | & zq(ig,l,igcm_dust_mass) + dM/ tauscaling(ig) !max(tauscaling(ig),1.e-10) |
---|
344 | zq(ig,l,igcm_dust_number) = |
---|
345 | & zq(ig,l,igcm_dust_number) + dN/ tauscaling(ig) !max(tauscaling(ig),1.e-10) |
---|
346 | c Update CCNs |
---|
347 | zq(ig,l,igcm_ccn_mass) = |
---|
348 | & zq(ig,l,igcm_ccn_mass) - dM/ tauscaling(ig) !max(tauscaling(ig),1.e-10) |
---|
349 | zq(ig,l,igcm_ccn_number) = |
---|
350 | & zq(ig,l,igcm_ccn_number) - dN/ tauscaling(ig) !max(tauscaling(ig),1.e-10) |
---|
351 | |
---|
352 | ENDIF ! of is satu >1 |
---|
353 | |
---|
354 | !============================================================= |
---|
355 | ! 4. Ice growth: scheme for radius evolution |
---|
356 | !============================================================= |
---|
357 | |
---|
358 | c We trigger crystal growth if and only if there is at least one nuclei (N>1). |
---|
359 | c Indeed, if we are supersaturated and still don't have at least one nuclei, we should better wait |
---|
360 | c to avoid unrealistic value for nuclei radius and so on for cases that remain negligible. |
---|
361 | |
---|
362 | IF ( zq(ig,l,igcm_ccn_number)*tauscaling(ig).ge. 1.) THEN ! we trigger crystal growth |
---|
363 | |
---|
364 | |
---|
365 | call updaterice_micro(zq(ig,l,igcm_h2o_ice), |
---|
366 | & zq(ig,l,igcm_ccn_mass),zq(ig,l,igcm_ccn_number), |
---|
367 | & tauscaling(ig),rice(ig,l),rhocloud(ig,l)) |
---|
368 | |
---|
369 | No = zq(ig,l,igcm_ccn_number)* tauscaling(ig) + 1.e-30 |
---|
370 | |
---|
371 | c saturation at equilibrium |
---|
372 | c rice should not be too small, otherwise seq value is not valid |
---|
373 | seq = exp(2.*sig(zt(ig,l))*mh2o / (rho_ice*rgp*zt(ig,l)* |
---|
374 | & max(rice(ig,l),1.e-7))) |
---|
375 | |
---|
376 | c get resistance growth |
---|
377 | call growthrate(zt(ig,l),pplay(ig,l), |
---|
378 | & real(ph2o/satu),rice(ig,l),res,Dv) |
---|
379 | |
---|
380 | res_out(ig,l) = res |
---|
381 | |
---|
382 | ccccccc implicit scheme of mass growth |
---|
383 | |
---|
384 | dMice = |
---|
385 | & (zq(ig,l,igcm_h2o_vap)-seq*zqsat(ig,l)) |
---|
386 | & /(res*zqsat(ig,l)/(cste*No*rice(ig,l)) + 1.) |
---|
387 | |
---|
388 | |
---|
389 | ! With the above scheme, dMice cannot be bigger than vapor, |
---|
390 | ! but can be bigger than all available ice. |
---|
391 | dMice = max(dMice,-zq(ig,l,igcm_h2o_ice)) |
---|
392 | dMice = min(dMice,zq(ig,l,igcm_h2o_vap)) ! this should be useless... |
---|
393 | |
---|
394 | zq(ig,l,igcm_h2o_ice) = zq(ig,l,igcm_h2o_ice)+dMice |
---|
395 | zq(ig,l,igcm_h2o_vap) = zq(ig,l,igcm_h2o_vap)-dMice |
---|
396 | |
---|
397 | |
---|
398 | countcells = countcells + 1 |
---|
399 | |
---|
400 | ! latent heat release |
---|
401 | lw=(2834.3-0.28*(zt(ig,l)-To)- |
---|
402 | & 0.004*(zt(ig,l)-To)*(zt(ig,l)-To))*1.e+3 |
---|
403 | subpdtcloud(ig,l)= dMice*lw/cpp/microtimestep |
---|
404 | |
---|
405 | c Special case of the isotope of water HDO |
---|
406 | if (hdo) then |
---|
407 | !! condensation |
---|
408 | if (dMice.gt.0.0) then |
---|
409 | !! do we use fractionation? |
---|
410 | if (hdofrac) then |
---|
411 | !! Calculation of the HDO vapor coefficient |
---|
412 | Dv_hdo = 1./3. * sqrt( 8*kbz*zt(ig,l)/(pi*mhdo/nav) ) |
---|
413 | & * kbz * zt(ig,l) / |
---|
414 | & ( pi * pplay(ig,l) * (molco2+molhdo)*(molco2+molhdo) |
---|
415 | & * sqrt(1.+mhdo/mco2) ) |
---|
416 | !! Calculation of the fractionnation coefficient at equilibrium |
---|
417 | alpha(ig,l) = exp(16288./zt(ig,l)**2.-9.34d-2) |
---|
418 | c alpha = exp(13525./zt(ig,l)**2.-5.59d-2) !Lamb |
---|
419 | !! Calculation of the 'real' fractionnation coefficient |
---|
420 | alpha_c(ig,l) = (alpha(ig,l)*satu)/ |
---|
421 | & ( (alpha(ig,l)*(Dv/Dv_hdo)*(satu-1.)) + 1.) |
---|
422 | c alpha_c(ig,l) = alpha(ig,l) ! to test without the effect of cinetics |
---|
423 | else |
---|
424 | alpha_c(ig,l) = 1.d0 |
---|
425 | endif |
---|
426 | if (zq0(ig,l,igcm_h2o_vap).gt.qperemin) then |
---|
427 | dMice_hdo= |
---|
428 | & dMice*alpha_c(ig,l)* |
---|
429 | & ( zq0(ig,l,igcm_hdo_vap) |
---|
430 | & /zq0(ig,l,igcm_h2o_vap) ) |
---|
431 | else |
---|
432 | dMice_hdo=0. |
---|
433 | endif |
---|
434 | !! sublimation |
---|
435 | else |
---|
436 | if (zq0(ig,l,igcm_h2o_ice).gt.qperemin) then |
---|
437 | dMice_hdo= |
---|
438 | & dMice* |
---|
439 | & ( zq0(ig,l,igcm_hdo_ice) |
---|
440 | & /zq0(ig,l,igcm_h2o_ice) ) |
---|
441 | else |
---|
442 | dMice_hdo=0. |
---|
443 | endif |
---|
444 | endif !if (dMice.gt.0.0) |
---|
445 | |
---|
446 | dMice_hdo = max(dMice_hdo,-zq(ig,l,igcm_hdo_ice)) |
---|
447 | dMice_hdo = min(dMice_hdo,zq(ig,l,igcm_hdo_vap)) |
---|
448 | |
---|
449 | zq(ig,l,igcm_hdo_ice) = zq(ig,l,igcm_hdo_ice)+dMice_hdo |
---|
450 | zq(ig,l,igcm_hdo_vap) = zq(ig,l,igcm_hdo_vap)-dMice_hdo |
---|
451 | |
---|
452 | endif ! if (hdo) |
---|
453 | |
---|
454 | !============================================================= |
---|
455 | ! 5. Dust cores released, tendancies, latent heat, etc ... |
---|
456 | !============================================================= |
---|
457 | |
---|
458 | c If all the ice particles sublimate, all the condensation |
---|
459 | c nuclei are released: |
---|
460 | if (zq(ig,l,igcm_h2o_ice).le.1.e-28) then |
---|
461 | |
---|
462 | c Water |
---|
463 | zq(ig,l,igcm_h2o_vap) = zq(ig,l,igcm_h2o_vap) |
---|
464 | & + zq(ig,l,igcm_h2o_ice) |
---|
465 | zq(ig,l,igcm_h2o_ice) = 0. |
---|
466 | if (hdo) then |
---|
467 | zq(ig,l,igcm_hdo_vap) = zq(ig,l,igcm_hdo_vap) |
---|
468 | & + zq(ig,l,igcm_hdo_ice) |
---|
469 | zq(ig,l,igcm_hdo_ice) = 0. |
---|
470 | endif |
---|
471 | c Dust particles |
---|
472 | zq(ig,l,igcm_dust_mass) = zq(ig,l,igcm_dust_mass) |
---|
473 | & + zq(ig,l,igcm_ccn_mass) |
---|
474 | zq(ig,l,igcm_dust_number) = zq(ig,l,igcm_dust_number) |
---|
475 | & + zq(ig,l,igcm_ccn_number) |
---|
476 | c CCNs |
---|
477 | zq(ig,l,igcm_ccn_mass) = 0. |
---|
478 | zq(ig,l,igcm_ccn_number) = 0. |
---|
479 | |
---|
480 | endif |
---|
481 | |
---|
482 | ENDIF !of if Nccn>1 |
---|
483 | |
---|
484 | ENDDO ! of ig loop |
---|
485 | ENDDO ! of nlayer loop |
---|
486 | |
---|
487 | |
---|
488 | ! Get cloud tendencies |
---|
489 | subpdqcloud(1:ngrid,1:nlay,igcm_h2o_vap) = |
---|
490 | & (zq(1:ngrid,1:nlay,igcm_h2o_vap) - |
---|
491 | & zq0(1:ngrid,1:nlay,igcm_h2o_vap))/microtimestep |
---|
492 | subpdqcloud(1:ngrid,1:nlay,igcm_h2o_ice) = |
---|
493 | & (zq(1:ngrid,1:nlay,igcm_h2o_ice) - |
---|
494 | & zq0(1:ngrid,1:nlay,igcm_h2o_ice))/microtimestep |
---|
495 | if (hdo) then |
---|
496 | subpdqcloud(1:ngrid,1:nlay,igcm_hdo_vap) = |
---|
497 | & (zq(1:ngrid,1:nlay,igcm_hdo_vap) - |
---|
498 | & zq0(1:ngrid,1:nlay,igcm_hdo_vap))/microtimestep |
---|
499 | subpdqcloud(1:ngrid,1:nlay,igcm_hdo_ice) = |
---|
500 | & (zq(1:ngrid,1:nlay,igcm_hdo_ice) - |
---|
501 | & zq0(1:ngrid,1:nlay,igcm_hdo_ice))/microtimestep |
---|
502 | endif |
---|
503 | subpdqcloud(1:ngrid,1:nlay,igcm_ccn_mass) = |
---|
504 | & (zq(1:ngrid,1:nlay,igcm_ccn_mass) - |
---|
505 | & zq0(1:ngrid,1:nlay,igcm_ccn_mass))/microtimestep |
---|
506 | subpdqcloud(1:ngrid,1:nlay,igcm_ccn_number) = |
---|
507 | & (zq(1:ngrid,1:nlay,igcm_ccn_number) - |
---|
508 | & zq0(1:ngrid,1:nlay,igcm_ccn_number))/microtimestep |
---|
509 | |
---|
510 | if (scavenging) then |
---|
511 | |
---|
512 | subpdqcloud(1:ngrid,1:nlay,igcm_dust_mass) = |
---|
513 | & (zq(1:ngrid,1:nlay,igcm_dust_mass) - |
---|
514 | & zq0(1:ngrid,1:nlay,igcm_dust_mass))/microtimestep |
---|
515 | subpdqcloud(1:ngrid,1:nlay,igcm_dust_number) = |
---|
516 | & (zq(1:ngrid,1:nlay,igcm_dust_number) - |
---|
517 | & zq0(1:ngrid,1:nlay,igcm_dust_number))/microtimestep |
---|
518 | |
---|
519 | endif |
---|
520 | |
---|
521 | |
---|
522 | |
---|
523 | !!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS |
---|
524 | !!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS |
---|
525 | !!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS |
---|
526 | IF (test_flag) then |
---|
527 | |
---|
528 | ! error2d(:) = 0. |
---|
529 | DO l=1,nlay |
---|
530 | DO ig=1,ngrid |
---|
531 | ! error2d(ig) = max(abs(error_out(ig,l)),error2d(ig)) |
---|
532 | satubf(ig,l) = zq0(ig,l,igcm_h2o_vap)/zqsat(ig,l) |
---|
533 | satuaf(ig,l) = zq(ig,l,igcm_h2o_vap)/zqsat(ig,l) |
---|
534 | ENDDO |
---|
535 | ENDDO |
---|
536 | |
---|
537 | print*, 'count is ',countcells, ' i.e. ', |
---|
538 | & countcells*100/(nlay*ngrid), '% for microphys computation' |
---|
539 | |
---|
540 | #ifndef MESOSCALE |
---|
541 | ! IF (ngrid.ne.1) THEN ! 3D |
---|
542 | ! call WRITEDIAGFI(ngrid,"satu","ratio saturation","",3, |
---|
543 | ! & satu_out) |
---|
544 | ! call WRITEDIAGFI(ngrid,"dM","ccn variation","kg/kg",3, |
---|
545 | ! & dM_out) |
---|
546 | ! call WRITEDIAGFI(ngrid,"dN","ccn variation","#",3, |
---|
547 | ! & dN_out) |
---|
548 | ! call WRITEDIAGFI(ngrid,"error","dichotomy max error","%",2, |
---|
549 | ! & error2d) |
---|
550 | ! call WRITEDIAGFI(ngrid,"zqsat","zqsat","kg",3, |
---|
551 | ! & zqsat) |
---|
552 | ! ENDIF |
---|
553 | |
---|
554 | ! IF (ngrid.eq.1) THEN ! 1D |
---|
555 | ! call WRITEDIAGFI(ngrid,"error","incertitude sur glace","%",1, |
---|
556 | ! & error_out) |
---|
557 | call WRITEdiagfi(ngrid,"resist","resistance","s/m2",1, |
---|
558 | & res_out) |
---|
559 | call WRITEdiagfi(ngrid,"satu_bf","satu before","kg/kg",1, |
---|
560 | & satubf) |
---|
561 | call WRITEdiagfi(ngrid,"satu_af","satu after","kg/kg",1, |
---|
562 | & satuaf) |
---|
563 | call WRITEdiagfi(ngrid,"vapbf","h2ovap before","kg/kg",1, |
---|
564 | & zq0(1,1,igcm_h2o_vap)) |
---|
565 | call WRITEdiagfi(ngrid,"vapaf","h2ovap after","kg/kg",1, |
---|
566 | & zq(1,1,igcm_h2o_vap)) |
---|
567 | call WRITEdiagfi(ngrid,"icebf","h2oice before","kg/kg",1, |
---|
568 | & zq0(1,1,igcm_h2o_ice)) |
---|
569 | call WRITEdiagfi(ngrid,"iceaf","h2oice after","kg/kg",1, |
---|
570 | & zq(1,1,igcm_h2o_ice)) |
---|
571 | call WRITEdiagfi(ngrid,"ccnbf","ccn before","/kg",1, |
---|
572 | & zq0(1,1,igcm_ccn_number)) |
---|
573 | call WRITEdiagfi(ngrid,"ccnaf","ccn after","/kg",1, |
---|
574 | & zq(1,1,igcm_ccn_number)) |
---|
575 | c call WRITEDIAGFI(ngrid,"growthrate","growth rate","m^2/s",1, |
---|
576 | c & gr_out) |
---|
577 | c call WRITEDIAGFI(ngrid,"nuclearate","nucleation rate","",1, |
---|
578 | c & rate_out) |
---|
579 | c call WRITEDIAGFI(ngrid,"dM","ccn variation","kg",1, |
---|
580 | c & dM_out) |
---|
581 | c call WRITEDIAGFI(ngrid,"dN","ccn variation","#",1, |
---|
582 | c & dN_out) |
---|
583 | call WRITEdiagfi(ngrid,"zqsat","p vap sat","kg/kg",1, |
---|
584 | & zqsat) |
---|
585 | ! call WRITEDIAGFI(ngrid,"satu","ratio saturation","",1, |
---|
586 | ! & satu_out) |
---|
587 | call WRITEdiagfi(ngrid,"rice","ice radius","m",1, |
---|
588 | & rice) |
---|
589 | ! call WRITEDIAGFI(ngrid,"rdust_sca","rdust","m",1, |
---|
590 | ! & rdust) |
---|
591 | ! call WRITEDIAGFI(ngrid,"rsedcloud","rsedcloud","m",1, |
---|
592 | ! & rsedcloud) |
---|
593 | ! call WRITEDIAGFI(ngrid,"rhocloud","rhocloud","kg.m-3",1, |
---|
594 | ! & rhocloud) |
---|
595 | ! ENDIF |
---|
596 | #endif |
---|
597 | |
---|
598 | ENDIF ! endif test_flag |
---|
599 | !!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS |
---|
600 | !!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS |
---|
601 | !!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS |
---|
602 | |
---|
603 | return |
---|
604 | |
---|
605 | |
---|
606 | |
---|
607 | |
---|
608 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
609 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
610 | c The so -called "phi" function is such as phi(r) - phi(r0) = t - t0 |
---|
611 | c It is an analytical solution to the ice radius growth equation, |
---|
612 | c with the approximation of a constant 'reduced' cunningham correction factor |
---|
613 | c (lambda in growthrate.F) taken at radius req instead of rice |
---|
614 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
615 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
616 | |
---|
617 | c subroutine phi(rice,req,coeff1,coeff2,time) |
---|
618 | c |
---|
619 | c implicit none |
---|
620 | c |
---|
621 | c ! inputs |
---|
622 | c real rice ! ice radius |
---|
623 | c real req ! ice radius at equilibirum |
---|
624 | c real coeff1 ! coeff for the log |
---|
625 | c real coeff2 ! coeff for the arctan |
---|
626 | c |
---|
627 | c ! output |
---|
628 | c real time |
---|
629 | c |
---|
630 | c !local |
---|
631 | c real var |
---|
632 | c |
---|
633 | c ! 1.73205 is sqrt(3) |
---|
634 | c |
---|
635 | c var = max( |
---|
636 | c & abs(rice-req) / sqrt(rice*rice + rice*req + req*req),1e-30) |
---|
637 | c |
---|
638 | c time = |
---|
639 | c & coeff1 * |
---|
640 | c & log( var ) |
---|
641 | c & + coeff2 * 1.73205 * |
---|
642 | c & atan( (2*rice+req) / (1.73205*req) ) |
---|
643 | c |
---|
644 | c return |
---|
645 | c end |
---|
646 | |
---|
647 | |
---|
648 | |
---|
649 | END SUBROUTINE improvedclouds |
---|
650 | |
---|
651 | END MODULE improvedclouds_mod |
---|