| 1 | MODULE improvedclouds_mod |
|---|
| 2 | |
|---|
| 3 | IMPLICIT NONE |
|---|
| 4 | |
|---|
| 5 | CONTAINS |
|---|
| 6 | |
|---|
| 7 | !======================================================================= |
|---|
| 8 | |
|---|
| 9 | SUBROUTINE improvedclouds(ngrid,nlay,ptimestep,pplay,pt,pdt,pq,pdq,nq,tauscaling,imicro,zt,zq) |
|---|
| 10 | |
|---|
| 11 | use updaterad, only: updaterice_micro, updaterccn |
|---|
| 12 | use watersat_mod, only: watersat |
|---|
| 13 | use tracer_mod, only: rho_ice, nuice_sed, igcm_h2o_vap, igcm_h2o_ice, igcm_dust_mass, & |
|---|
| 14 | igcm_dust_number, igcm_ccn_mass, igcm_ccn_number, igcm_hdo_vap, & |
|---|
| 15 | igcm_hdo_ice,qperemin |
|---|
| 16 | use conc_mod, only: mmean |
|---|
| 17 | use comcstfi_h, only: pi, cpp |
|---|
| 18 | use microphys_h, only: nbin_cld, rad_cld, mteta, kbz, nav, rgp |
|---|
| 19 | use microphys_h, only: mco2, vo1, mh2o, mhdo, molco2, molhdo, To |
|---|
| 20 | use nuclea_mod, only: nuclea |
|---|
| 21 | use sig_h2o_mod, only: sig_h2o |
|---|
| 22 | use growthrate_mod, only: growthrate |
|---|
| 23 | use write_output_mod, only: write_output |
|---|
| 24 | use callkeys_mod, only: activice, scavenging, cloud_adapt_ts, hdo, hdofrac |
|---|
| 25 | |
|---|
| 26 | implicit none |
|---|
| 27 | |
|---|
| 28 | !------------------------------------------------------------------ |
|---|
| 29 | ! This routine is used to form clouds when a parcel of the GCM is |
|---|
| 30 | ! saturated. It includes the ability to have supersaturation, a |
|---|
| 31 | ! computation of the nucleation rates, growthrates and the |
|---|
| 32 | ! scavenging of dust particles by clouds. |
|---|
| 33 | ! It is worth noting that the amount of dust is computed using the |
|---|
| 34 | ! dust optical depth computed in aeropacity.F. That's why |
|---|
| 35 | ! the variable called "tauscaling" is used to convert |
|---|
| 36 | ! pq(dust_mass) and pq(dust_number), which are relative |
|---|
| 37 | ! quantities, to absolute and realistic quantities stored in zq. |
|---|
| 38 | ! This has to be done to convert the inputs into absolute |
|---|
| 39 | ! values, but also to convert the outputs back into relative |
|---|
| 40 | ! values which are then used by the sedimentation and advection |
|---|
| 41 | ! schemes. |
|---|
| 42 | |
|---|
| 43 | ! Authors: J.-B. Madeleine, based on the work by Franck Montmessin |
|---|
| 44 | ! (October 2011) |
|---|
| 45 | ! T. Navarro, debug,correction, new scheme (October-April 2011) |
|---|
| 46 | ! A. Spiga, optimization (February 2012) |
|---|
| 47 | ! J. Naar, adaptative subtimestep now done here (June 2023) |
|---|
| 48 | !------------------------------------------------------------------ |
|---|
| 49 | |
|---|
| 50 | !------------------------------------------------------------------ |
|---|
| 51 | ! Inputs/outputs: |
|---|
| 52 | INTEGER, INTENT(IN) :: ngrid,nlay |
|---|
| 53 | INTEGER, INTENT(IN) :: nq ! nombre de traceurs |
|---|
| 54 | REAL, INTENT(IN) :: ptimestep ! pas de temps physique (s) |
|---|
| 55 | REAL, dimension(ngrid,nlay), INTENT(IN) :: pplay ! pression au milieu des couches (Pa) |
|---|
| 56 | REAL, dimension(ngrid,nlay), INTENT(IN) :: pt ! temperature at the middle of the layers (K) |
|---|
| 57 | REAL, dimension(ngrid,nlay), INTENT(IN) :: pdt ! temperature tendency (K/s) |
|---|
| 58 | REAL, dimension(ngrid,nlay,nq), INTENT(IN) :: pq ! tracer (kg/kg) |
|---|
| 59 | REAL, dimension(ngrid,nlay,nq), INTENT(IN) :: pdq ! tracer tendency (kg/kg/s) |
|---|
| 60 | REAL, dimension(ngrid), INTENT(IN) :: tauscaling ! Convertion factor for qdust and Ndust |
|---|
| 61 | INTEGER, INTENT(IN) :: imicro ! nb. microphy calls(retrocompatibility) |
|---|
| 62 | |
|---|
| 63 | REAL, dimension(ngrid,nlay,nq), INTENT(OUT) :: zq ! tracers post microphy (kg/kg) |
|---|
| 64 | REAL, dimension(ngrid,nlay), INTENT(OUT) :: zt ! temperature post microphy (K) |
|---|
| 65 | |
|---|
| 66 | !------------------------------------------------------------------ |
|---|
| 67 | ! Local variables: |
|---|
| 68 | LOGICAL, SAVE :: firstcall = .true. |
|---|
| 69 | !$OMP THREADPRIVATE(firstcall) |
|---|
| 70 | REAL*8 :: derf ! Error function |
|---|
| 71 | !external derf |
|---|
| 72 | INTEGER :: ig,l,i |
|---|
| 73 | REAL, dimension(ngrid,nlay) :: zqsat ! saturation |
|---|
| 74 | REAL :: lw ! Latent heat of sublimation (J.kg-1) |
|---|
| 75 | REAL :: cste |
|---|
| 76 | REAL :: dMice ! mass of condensed ice |
|---|
| 77 | REAL :: dMicetot ! JN |
|---|
| 78 | REAL :: dMice_hdo ! mass of condensed HDO ice |
|---|
| 79 | REAL, dimension(ngrid,nlay) :: alpha ! HDO equilibrium fractionation coefficient (Saturation=1) |
|---|
| 80 | REAL, dimension(ngrid,nlay) :: alpha_c ! HDO real fractionation coefficient |
|---|
| 81 | REAL*8 :: ph2o ! Water vapor partial pressure (Pa) |
|---|
| 82 | REAL*8 :: satu ! Water vapor saturation ratio over ice |
|---|
| 83 | REAL*8 :: Mo,No, Rn, Rm, dev2, n_derf, m_derf |
|---|
| 84 | REAL*8, dimension(nbin_cld) :: n_aer ! number conc. of particle/each size bin |
|---|
| 85 | REAL*8, dimension(nbin_cld) :: m_aer ! mass mixing ratio of particle/each size bin |
|---|
| 86 | REAL :: dN, dM, seq |
|---|
| 87 | REAL, dimension(nbin_cld) :: rate ! nucleation rate |
|---|
| 88 | REAL, dimension(ngrid,nlay) :: rice ! Ice mass mean radius (m) (r_c in montmessin_2004) |
|---|
| 89 | REAL, dimension(ngrid,nlay) :: rhocloud ! Cloud density (kg.m-3) |
|---|
| 90 | REAL, dimension(ngrid,nlay) :: rdust ! Dust geometric mean radius (m) |
|---|
| 91 | REAL :: res ! Resistance growth |
|---|
| 92 | REAL :: Dv,Dv_hdo ! Water/HDO vapor diffusion coefficient |
|---|
| 93 | |
|---|
| 94 | ! Parameters of the size discretization used by the microphysical scheme |
|---|
| 95 | DOUBLE PRECISION, PARAMETER :: rmin_cld = 0.1e-6 ! Minimum radius (m) |
|---|
| 96 | DOUBLE PRECISION, PARAMETER :: rmax_cld = 10.e-6 ! Maximum radius (m) |
|---|
| 97 | DOUBLE PRECISION, PARAMETER :: rbmin_cld = 0.0001e-6 ! Minimum boundary radius (m) |
|---|
| 98 | DOUBLE PRECISION, PARAMETER :: rbmax_cld = 1.e-2 ! Maximum boundary radius (m) |
|---|
| 99 | DOUBLE PRECISION :: vrat_cld ! Volume ratio |
|---|
| 100 | DOUBLE PRECISION, dimension(nbin_cld+1), SAVE :: rb_cld ! boundary values of each rad_cld bin (m) |
|---|
| 101 | !$OMP THREADPRIVATE(rb_cld) |
|---|
| 102 | DOUBLE PRECISION, dimension(nbin_cld) :: dr_cld ! width of each rad_cld bin (m) |
|---|
| 103 | DOUBLE PRECISION, dimension(nbin_cld) :: vol_cld ! particle volume for each bin (m3) |
|---|
| 104 | REAL, SAVE :: sigma_ice ! Variance of the ice and CCN distributions |
|---|
| 105 | !$OMP THREADPRIVATE(sigma_ice) |
|---|
| 106 | |
|---|
| 107 | !---------------------------------- |
|---|
| 108 | ! JN : used in subtimestep |
|---|
| 109 | REAL :: microtimestep! subdivision of ptimestep (s) |
|---|
| 110 | REAL, dimension(ngrid,nlay) :: subpdtcloud ! Temperature variation due to latent heat |
|---|
| 111 | REAL, dimension(ngrid,nlay,nq) :: zq0 ! local initial value of tracers |
|---|
| 112 | INTEGER, dimension(ngrid,nlay) :: zimicro ! Subdivision of ptimestep |
|---|
| 113 | INTEGER, dimension(ngrid,nlay) :: count_micro ! Number of microphys calls |
|---|
| 114 | REAL, dimension(ngrid,nlay) :: zpotcond ! maximal condensable water (previous two) |
|---|
| 115 | REAL, dimension(1) :: zqsat_tmp ! maximal condensable water (previous two) |
|---|
| 116 | REAL :: spenttime ! time spent in while loop |
|---|
| 117 | REAL :: zdq ! used to compute adaptative timestep |
|---|
| 118 | LOGICAL :: ending_ts ! Condition to end while loop |
|---|
| 119 | |
|---|
| 120 | !---------------------------------- |
|---|
| 121 | ! TESTS |
|---|
| 122 | INTEGER :: countcells |
|---|
| 123 | LOGICAL, SAVE :: test_flag ! flag for test/debuging outputs |
|---|
| 124 | !$OMP THREADPRIVATE(test_flag) |
|---|
| 125 | REAL, dimension(ngrid,nlay) :: satubf,satuaf, res_out |
|---|
| 126 | |
|---|
| 127 | !------------------------------------------------------------------ |
|---|
| 128 | |
|---|
| 129 | ! AS: firstcall OK absolute |
|---|
| 130 | IF (firstcall) THEN |
|---|
| 131 | !============================================================= |
|---|
| 132 | ! 0. Definition of the size grid |
|---|
| 133 | !============================================================= |
|---|
| 134 | ! rad_cld is the primary radius grid used for microphysics computation. |
|---|
| 135 | ! The grid spacing is computed assuming a constant volume ratio |
|---|
| 136 | ! between two consecutive bins; i.e. vrat_cld. |
|---|
| 137 | ! vrat_cld is determined from the boundary values of the size grid: |
|---|
| 138 | ! rmin_cld and rmax_cld. |
|---|
| 139 | ! The rb_cld array contains the boundary values of each rad_cld bin. |
|---|
| 140 | ! dr_cld is the width of each rad_cld bin. |
|---|
| 141 | |
|---|
| 142 | ! Volume ratio between two adjacent bins |
|---|
| 143 | ! vrat_cld = log(rmax_cld/rmin_cld) / float(nbin_cld-1) *3. |
|---|
| 144 | ! vrat_cld = exp(vrat_cld) |
|---|
| 145 | vrat_cld = log(rmax_cld/rmin_cld) / float(nbin_cld-1) *3. |
|---|
| 146 | vrat_cld = exp(vrat_cld) |
|---|
| 147 | write(*,*) "vrat_cld", vrat_cld |
|---|
| 148 | |
|---|
| 149 | rb_cld(1) = rbmin_cld |
|---|
| 150 | rad_cld(1) = rmin_cld |
|---|
| 151 | vol_cld(1) = 4./3. * dble(pi) * rmin_cld*rmin_cld*rmin_cld |
|---|
| 152 | |
|---|
| 153 | do i=1,nbin_cld-1 |
|---|
| 154 | rad_cld(i+1) = rad_cld(i) * vrat_cld**(1./3.) |
|---|
| 155 | vol_cld(i+1) = vol_cld(i) * vrat_cld |
|---|
| 156 | enddo |
|---|
| 157 | |
|---|
| 158 | do i=1,nbin_cld |
|---|
| 159 | rb_cld(i+1)= ( (2.*vrat_cld) / (vrat_cld+1.) )**(1./3.) * rad_cld(i) |
|---|
| 160 | dr_cld(i) = rb_cld(i+1) - rb_cld(i) |
|---|
| 161 | enddo |
|---|
| 162 | rb_cld(nbin_cld+1) = rbmax_cld |
|---|
| 163 | dr_cld(nbin_cld) = rb_cld(nbin_cld+1) - rb_cld(nbin_cld) |
|---|
| 164 | |
|---|
| 165 | print*, ' ' |
|---|
| 166 | print*,'Microphysics: size bin information:' |
|---|
| 167 | print*,'i,rb_cld(i), rad_cld(i),dr_cld(i)' |
|---|
| 168 | print*,'-----------------------------------' |
|---|
| 169 | do i=1,nbin_cld |
|---|
| 170 | write(*,'(i2,3x,3(e12.6,4x))') i,rb_cld(i), rad_cld(i), dr_cld(i) |
|---|
| 171 | enddo |
|---|
| 172 | write(*,'(i2,3x,e12.6)') nbin_cld+1,rb_cld(nbin_cld+1) |
|---|
| 173 | print*,'-----------------------------------' |
|---|
| 174 | |
|---|
| 175 | ! we save that so that it is not computed at each timestep and gridpoint |
|---|
| 176 | rb_cld(:) = log(rb_cld(:)) |
|---|
| 177 | |
|---|
| 178 | ! Contact parameter of water ice on dust ( m=cos(theta) ) |
|---|
| 179 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 180 | ! mteta is initialized in conf_phys |
|---|
| 181 | write(*,*) 'water_param contact parameter:', mteta |
|---|
| 182 | |
|---|
| 183 | ! Volume of a water molecule (m3) |
|---|
| 184 | vo1 = mh2o / dble(rho_ice) |
|---|
| 185 | ! Variance of the ice and CCN distributions |
|---|
| 186 | sigma_ice = sqrt(log(1.+nuice_sed)) |
|---|
| 187 | |
|---|
| 188 | write(*,*) 'Variance of ice & CCN distribs :', sigma_ice |
|---|
| 189 | write(*,*) 'nuice for sedimentation:', nuice_sed |
|---|
| 190 | write(*,*) 'Volume of a water molecule:', vo1 |
|---|
| 191 | |
|---|
| 192 | test_flag = .false. |
|---|
| 193 | firstcall=.false. |
|---|
| 194 | ENDIF |
|---|
| 195 | |
|---|
| 196 | !============================================================= |
|---|
| 197 | ! 1. Initialisation |
|---|
| 198 | !============================================================= |
|---|
| 199 | |
|---|
| 200 | res_out(:,:) = 0 |
|---|
| 201 | rice(:,:) = 1.e-8 |
|---|
| 202 | |
|---|
| 203 | ! Initialize the temperature and tracers with tendencies |
|---|
| 204 | |
|---|
| 205 | ! If scavenging, add tendency for dust all-at-once |
|---|
| 206 | IF (scavenging) THEN |
|---|
| 207 | zq(:,:,igcm_dust_mass) =zq(:,:,igcm_dust_mass)+pdq(:,:,igcm_dust_mass)*ptimestep |
|---|
| 208 | zq(:,:,igcm_dust_number) =zq(:,:,igcm_dust_number)+pdq(:,:,igcm_dust_number)*ptimestep |
|---|
| 209 | ENDIF ! scavenging |
|---|
| 210 | |
|---|
| 211 | ! Add tendency for ccn all-at-once |
|---|
| 212 | zq(:,:,igcm_ccn_mass) = zq(:,:,igcm_ccn_mass) + pdq(:,:,igcm_ccn_mass)*ptimestep |
|---|
| 213 | zq(:,:,igcm_ccn_number) = zq(:,:,igcm_ccn_number) + pdq(:,:,igcm_ccn_number)*ptimestep |
|---|
| 214 | |
|---|
| 215 | ! Add tendency for water all-at-once |
|---|
| 216 | zq(:,:,igcm_h2o_ice) = zq(:,:,igcm_h2o_ice)+pdq(:,:,igcm_h2o_ice)*ptimestep |
|---|
| 217 | zq(:,:,igcm_h2o_vap) = zq(:,:,igcm_h2o_vap)+pdq(:,:,igcm_h2o_vap)*ptimestep |
|---|
| 218 | |
|---|
| 219 | ! Add tendency for HDO (if computed) all-at-once |
|---|
| 220 | IF (hdo) THEN |
|---|
| 221 | zq(:,:,igcm_hdo_ice) = zq(:,:,igcm_hdo_ice)+pdq(:,:,igcm_hdo_ice)*ptimestep |
|---|
| 222 | zq(:,:,igcm_hdo_vap) = zq(:,:,igcm_hdo_vap)+pdq(:,:,igcm_hdo_vap)*ptimestep |
|---|
| 223 | ENDIF |
|---|
| 224 | |
|---|
| 225 | ! Add tendency for temp all-at-one |
|---|
| 226 | zt(:,:)=pt(:,:)+pdt(:,:)*ptimestep |
|---|
| 227 | |
|---|
| 228 | ! Local temp tendency from clouds (due to latent heath release) |
|---|
| 229 | subpdtcloud(:,:)=0 |
|---|
| 230 | |
|---|
| 231 | ! Handle very small values to prevent precision error |
|---|
| 232 | WHERE( zq(:,:,:) < 1.e-30 ) zq(:,:,:) = 1.e-30 |
|---|
| 233 | |
|---|
| 234 | !============================================================= |
|---|
| 235 | ! 2. Compute saturation |
|---|
| 236 | !============================================================= |
|---|
| 237 | |
|---|
| 238 | dev2 = 1. / ( sqrt(2.) * sigma_ice ) |
|---|
| 239 | |
|---|
| 240 | ! Compute the condensable amount of water vapor or the sublimable water ice (if negative) |
|---|
| 241 | call watersat(ngrid*nlay,max(1.,zt),pplay,zqsat) ! Make sure "temp+tendency" at least 1 |
|---|
| 242 | zpotcond=zq(:,:,igcm_h2o_vap) - zqsat |
|---|
| 243 | |
|---|
| 244 | countcells = 0 |
|---|
| 245 | zimicro(:,:)=imicro |
|---|
| 246 | count_micro(:,:)=0 |
|---|
| 247 | |
|---|
| 248 | ! Main loop over the GCM's grid |
|---|
| 249 | DO l=1,nlay |
|---|
| 250 | DO ig=1,ngrid |
|---|
| 251 | ! Subtimestep : here we go |
|---|
| 252 | IF (cloud_adapt_ts) call adapt_imicro(ptimestep,zpotcond(ig,l), zimicro(ig,l)) |
|---|
| 253 | spenttime = 0. |
|---|
| 254 | dMicetot= 0. |
|---|
| 255 | ending_ts=.false. |
|---|
| 256 | DO while (.not.ending_ts) |
|---|
| 257 | call watersat(1,(/zt(ig,l)/),(/pplay(ig,l)/),zqsat_tmp) |
|---|
| 258 | zqsat(ig,l)=zqsat_tmp(1) |
|---|
| 259 | ! Get the partial pressure of water vapor and its saturation ratio |
|---|
| 260 | ph2o = zq(ig,l,igcm_h2o_vap) * (mmean(ig,l)/18.) * pplay(ig,l) |
|---|
| 261 | satu = zq(ig,l,igcm_h2o_vap) / zqsat(ig,l) |
|---|
| 262 | microtimestep=ptimestep/real(zimicro(ig,l)) |
|---|
| 263 | |
|---|
| 264 | ! Initialize tracers for scavenging + hdo computations (JN) |
|---|
| 265 | zq0(ig,l,:)=zq(ig,l,:) |
|---|
| 266 | |
|---|
| 267 | ! Check if we are integrating over ptimestep |
|---|
| 268 | if (spenttime+microtimestep.ge.ptimestep) then |
|---|
| 269 | microtimestep=ptimestep-spenttime |
|---|
| 270 | ! If so : last call ! |
|---|
| 271 | ending_ts=.true. |
|---|
| 272 | endif! (spenttime+microtimestep.ge.ptimestep) then |
|---|
| 273 | |
|---|
| 274 | !============================================================= |
|---|
| 275 | ! 3. Nucleation |
|---|
| 276 | !============================================================= |
|---|
| 277 | |
|---|
| 278 | IF ( satu .ge. 1. ) THEN ! if there is condensation |
|---|
| 279 | call updaterccn(zq(ig,l,igcm_dust_mass),zq(ig,l,igcm_dust_number),rdust(ig,l),tauscaling(ig)) |
|---|
| 280 | |
|---|
| 281 | ! Expand the dust moments into a binned distribution |
|---|
| 282 | Mo = zq(ig,l,igcm_dust_mass)* tauscaling(ig) + 1.e-30 |
|---|
| 283 | No = zq(ig,l,igcm_dust_number)* tauscaling(ig) + 1.e-30 |
|---|
| 284 | Rn = rdust(ig,l) |
|---|
| 285 | Rn = -log(Rn) |
|---|
| 286 | Rm = Rn - 3. * sigma_ice*sigma_ice |
|---|
| 287 | n_derf = derf( (rb_cld(1)+Rn) *dev2) |
|---|
| 288 | m_derf = derf( (rb_cld(1)+Rm) *dev2) |
|---|
| 289 | do i = 1, nbin_cld |
|---|
| 290 | n_aer(i) = -0.5 * No * n_derf !! this ith previously computed |
|---|
| 291 | m_aer(i) = -0.5 * Mo * m_derf !! this ith previously computed |
|---|
| 292 | n_derf = derf( (rb_cld(i+1)+Rn) *dev2) |
|---|
| 293 | m_derf = derf( (rb_cld(i+1)+Rm) *dev2) |
|---|
| 294 | n_aer(i) = n_aer(i) + 0.5 * No * n_derf |
|---|
| 295 | m_aer(i) = m_aer(i) + 0.5 * Mo * m_derf |
|---|
| 296 | enddo |
|---|
| 297 | |
|---|
| 298 | ! Get the rates of nucleation |
|---|
| 299 | call nuclea(ph2o,zt(ig,l),satu,n_aer,rate) |
|---|
| 300 | |
|---|
| 301 | dN = 0. |
|---|
| 302 | dM = 0. |
|---|
| 303 | do i = 1, nbin_cld |
|---|
| 304 | dN = dN + n_aer(i)*(exp(-rate(i)*microtimestep)-1.) |
|---|
| 305 | dM = dM + m_aer(i)*(exp(-rate(i)*microtimestep)-1.) |
|---|
| 306 | enddo |
|---|
| 307 | |
|---|
| 308 | ! Update Dust particles |
|---|
| 309 | zq(ig,l,igcm_dust_mass) = zq(ig,l,igcm_dust_mass) + dM/ tauscaling(ig) !max(tauscaling(ig),1.e-10) |
|---|
| 310 | zq(ig,l,igcm_dust_number) = zq(ig,l,igcm_dust_number) + dN/ tauscaling(ig) !max(tauscaling(ig),1.e-10) |
|---|
| 311 | ! Update CCNs |
|---|
| 312 | zq(ig,l,igcm_ccn_mass) = zq(ig,l,igcm_ccn_mass) - dM/ tauscaling(ig) !max(tauscaling(ig),1.e-10) |
|---|
| 313 | zq(ig,l,igcm_ccn_number) = zq(ig,l,igcm_ccn_number) - dN/ tauscaling(ig) !max(tauscaling(ig),1.e-10) |
|---|
| 314 | |
|---|
| 315 | ENDIF ! of is satu >1 |
|---|
| 316 | |
|---|
| 317 | !============================================================= |
|---|
| 318 | ! 4. Ice growth: scheme for radius evolution |
|---|
| 319 | !============================================================= |
|---|
| 320 | ! We trigger crystal growth if and only if there is at least one nuclei (N>1). |
|---|
| 321 | ! Indeed, if we are supersaturated and still don't have at least one nuclei, we should better wait |
|---|
| 322 | ! to avoid unrealistic value for nuclei radius and so on for cases that remain negligible. |
|---|
| 323 | IF ( zq(ig,l,igcm_ccn_number)*tauscaling(ig).ge. 1.) THEN ! we trigger crystal growth |
|---|
| 324 | call updaterice_micro(zq(ig,l,igcm_h2o_ice),zq(ig,l,igcm_ccn_mass),zq(ig,l,igcm_ccn_number),tauscaling(ig),rice(ig,l),rhocloud(ig,l)) |
|---|
| 325 | |
|---|
| 326 | No = zq(ig,l,igcm_ccn_number)* tauscaling(ig) + 1.e-30 |
|---|
| 327 | |
|---|
| 328 | ! saturation at equilibrium |
|---|
| 329 | ! rice should not be too small, otherwise seq value is not valid |
|---|
| 330 | seq = exp(2.*sig_h2o(zt(ig,l))*mh2o / (rho_ice*rgp*zt(ig,l)*max(rice(ig,l),1.e-7))) |
|---|
| 331 | |
|---|
| 332 | ! get resistance growth |
|---|
| 333 | call growthrate(zt(ig,l),pplay(ig,l),real(ph2o/satu),rice(ig,l),res,Dv) |
|---|
| 334 | |
|---|
| 335 | res_out(ig,l) = res |
|---|
| 336 | |
|---|
| 337 | ! implicit scheme of mass growth |
|---|
| 338 | ! cste here must be computed at each step |
|---|
| 339 | cste = 4*pi*rho_ice*microtimestep |
|---|
| 340 | |
|---|
| 341 | dMice = (zq(ig,l,igcm_h2o_vap)-seq*zqsat(ig,l))/(res*zqsat(ig,l)/(cste*No*rice(ig,l)) + 1.) |
|---|
| 342 | |
|---|
| 343 | ! With the above scheme, dMice cannot be bigger than vapor, but can be bigger than all available ice. |
|---|
| 344 | dMice = max(dMice,-zq(ig,l,igcm_h2o_ice)) |
|---|
| 345 | dMice = min(dMice,zq(ig,l,igcm_h2o_vap)) |
|---|
| 346 | |
|---|
| 347 | zq(ig,l,igcm_h2o_ice) = zq(ig,l,igcm_h2o_ice)+dMice |
|---|
| 348 | zq(ig,l,igcm_h2o_vap) = zq(ig,l,igcm_h2o_vap)-dMice |
|---|
| 349 | |
|---|
| 350 | countcells = countcells + 1 |
|---|
| 351 | |
|---|
| 352 | ! latent heat release |
|---|
| 353 | lw=(2834.3-0.28*(zt(ig,l)-To)-0.004*(zt(ig,l)-To)*(zt(ig,l)-To))*1.e+3 |
|---|
| 354 | subpdtcloud(ig,l)= dMice*lw/cpp/microtimestep |
|---|
| 355 | |
|---|
| 356 | ! DIFF: trend is enforce in a range, stabilize the scheme ? |
|---|
| 357 | if (subpdtcloud(ig,l)*microtimestep.gt.5.0) then |
|---|
| 358 | subpdtcloud(ig,l)=5./microtimestep |
|---|
| 359 | endif! (subpdtcloud(ig,l)*microtimestep.gt.5.0) then |
|---|
| 360 | if (subpdtcloud(ig,l)*microtimestep.lt.-5.0) then |
|---|
| 361 | subpdtcloud(ig,l)=-5./microtimestep |
|---|
| 362 | endif! (subpdtcloud(ig,l)*microtimestep.gt.5.0) then |
|---|
| 363 | |
|---|
| 364 | ! Special case of the isotope of water HDO |
|---|
| 365 | if (hdo) then |
|---|
| 366 | ! condensation |
|---|
| 367 | if (dMice.gt.0.0) then |
|---|
| 368 | ! do we use fractionation? |
|---|
| 369 | if (hdofrac) then |
|---|
| 370 | ! Calculation of the HDO vapor coefficient |
|---|
| 371 | Dv_hdo = 1./3. * sqrt( 8*kbz*zt(ig,l)/(pi*mhdo/nav) ) * kbz * zt(ig,l) / ( pi * pplay(ig,l) * (molco2+molhdo)*(molco2+molhdo) * sqrt(1.+mhdo/mco2) ) |
|---|
| 372 | ! Calculation of the fractionnation coefficient at equilibrium |
|---|
| 373 | alpha(ig,l) = exp(16288./zt(ig,l)**2.-9.34d-2) |
|---|
| 374 | ! Calculation of the 'real' fractionnation coefficient |
|---|
| 375 | alpha_c(ig,l) = (alpha(ig,l)*satu)/( (alpha(ig,l)*(Dv/Dv_hdo)*(satu-1.)) + 1.) |
|---|
| 376 | else |
|---|
| 377 | alpha_c(ig,l) = 1.d0 |
|---|
| 378 | endif |
|---|
| 379 | if (zq0(ig,l,igcm_h2o_vap).gt.qperemin) then |
|---|
| 380 | dMice_hdo = dMice*alpha_c(ig,l)*( zq0(ig,l,igcm_hdo_vap)/zq0(ig,l,igcm_h2o_vap) ) |
|---|
| 381 | else |
|---|
| 382 | dMice_hdo=0. |
|---|
| 383 | endif |
|---|
| 384 | !! sublimation |
|---|
| 385 | else |
|---|
| 386 | if (zq0(ig,l,igcm_h2o_ice).gt.qperemin) then |
|---|
| 387 | dMice_hdo=dMice*( zq0(ig,l,igcm_hdo_ice)/zq0(ig,l,igcm_h2o_ice) ) |
|---|
| 388 | else |
|---|
| 389 | dMice_hdo=0. |
|---|
| 390 | endif |
|---|
| 391 | endif !if (dMice.gt.0.0) |
|---|
| 392 | |
|---|
| 393 | dMice_hdo = max(dMice_hdo,-zq(ig,l,igcm_hdo_ice)) |
|---|
| 394 | dMice_hdo = min(dMice_hdo,zq(ig,l,igcm_hdo_vap)) |
|---|
| 395 | |
|---|
| 396 | zq(ig,l,igcm_hdo_ice) = zq(ig,l,igcm_hdo_ice)+dMice_hdo |
|---|
| 397 | zq(ig,l,igcm_hdo_vap) = zq(ig,l,igcm_hdo_vap)-dMice_hdo |
|---|
| 398 | |
|---|
| 399 | endif ! if (hdo) |
|---|
| 400 | |
|---|
| 401 | !============================================================= |
|---|
| 402 | ! 5. Dust cores released, tendancies, latent heat, etc ... |
|---|
| 403 | !============================================================= |
|---|
| 404 | |
|---|
| 405 | ! If all the ice particles sublimate, all the condensation |
|---|
| 406 | ! nuclei are released: |
|---|
| 407 | if (zq(ig,l,igcm_h2o_ice).le.1.e-28) then |
|---|
| 408 | ! Water |
|---|
| 409 | zq(ig,l,igcm_h2o_vap) = zq(ig,l,igcm_h2o_vap) + zq(ig,l,igcm_h2o_ice) |
|---|
| 410 | zq(ig,l,igcm_h2o_ice) = 0. |
|---|
| 411 | if (hdo) then |
|---|
| 412 | zq(ig,l,igcm_hdo_vap) = zq(ig,l,igcm_hdo_vap) + zq(ig,l,igcm_hdo_ice) |
|---|
| 413 | zq(ig,l,igcm_hdo_ice) = 0. |
|---|
| 414 | endif |
|---|
| 415 | ! Dust particles |
|---|
| 416 | zq(ig,l,igcm_dust_mass) = zq(ig,l,igcm_dust_mass) + zq(ig,l,igcm_ccn_mass) |
|---|
| 417 | zq(ig,l,igcm_dust_number) = zq(ig,l,igcm_dust_number) + zq(ig,l,igcm_ccn_number) |
|---|
| 418 | ! CCNs |
|---|
| 419 | zq(ig,l,igcm_ccn_mass) = 0. |
|---|
| 420 | zq(ig,l,igcm_ccn_number) = 0. |
|---|
| 421 | endif |
|---|
| 422 | |
|---|
| 423 | ELSE |
|---|
| 424 | ! Initialization of dMice when it's not computed |
|---|
| 425 | dMice=0 ! no condensation/sublimation to account for |
|---|
| 426 | subpdtcloud(ig,l)=0 ! no condensation/sublimation to account for |
|---|
| 427 | ENDIF !of if Nccn>1 |
|---|
| 428 | |
|---|
| 429 | ! No more getting tendency : we increment tracers & temp directly |
|---|
| 430 | |
|---|
| 431 | ! If not activice, the tendency from latent heat release is set to zero |
|---|
| 432 | IF (.not.activice) subpdtcloud(ig,l)=0. |
|---|
| 433 | |
|---|
| 434 | ! Temperature change as a feedback from latent heat release |
|---|
| 435 | zt(ig,l) = zt(ig,l)+subpdtcloud(ig,l)*microtimestep |
|---|
| 436 | |
|---|
| 437 | ! Prevent negative tracers ! JN |
|---|
| 438 | WHERE (zq(ig,l,:) < 1.e-30) zq(ig,l,:) = 1.e-30 |
|---|
| 439 | |
|---|
| 440 | IF (cloud_adapt_ts) then |
|---|
| 441 | ! Estimation of how much is actually condensing/subliming |
|---|
| 442 | dMicetot=dMicetot+abs(dMice) ! total accumulated ice formation since the beginning |
|---|
| 443 | IF (spenttime.ne.0) then |
|---|
| 444 | zdq=(dMicetot/spenttime)!*(ptimestep-spenttime) |
|---|
| 445 | ENDIF |
|---|
| 446 | zdq=abs(zdq) |
|---|
| 447 | call adapt_imicro(ptimestep,zdq,zimicro(ig,l)) |
|---|
| 448 | ENDIF! (cloud_adapt_ts) then |
|---|
| 449 | ! Increment time spent in here |
|---|
| 450 | spenttime=spenttime+microtimestep |
|---|
| 451 | count_micro(ig,l)=count_micro(ig,l)+1 |
|---|
| 452 | ENDDO ! while (.not. ending_ts) |
|---|
| 453 | ENDDO ! of ig loop |
|---|
| 454 | ENDDO ! of nlayer loop |
|---|
| 455 | |
|---|
| 456 | !------ Useful outputs to check how it went |
|---|
| 457 | call write_output("zpotcond","zpotcond microphysics","(kg/kg)",zpotcond(:,:)) |
|---|
| 458 | call write_output("count_micro","count_micro after microphysics","integer",count_micro(:,:)) |
|---|
| 459 | |
|---|
| 460 | !!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS |
|---|
| 461 | IF (test_flag) then |
|---|
| 462 | DO l=1,nlay |
|---|
| 463 | DO ig=1,ngrid |
|---|
| 464 | satubf(ig,l) = zq0(ig,l,igcm_h2o_vap)/zqsat(ig,l) |
|---|
| 465 | satuaf(ig,l) = zq(ig,l,igcm_h2o_vap)/zqsat(ig,l) |
|---|
| 466 | ENDDO |
|---|
| 467 | ENDDO |
|---|
| 468 | print*, 'count is ',countcells, ' i.e. ', countcells*100/(nlay*ngrid), '% for microphys computation' |
|---|
| 469 | ENDIF ! endif test_flag |
|---|
| 470 | |
|---|
| 471 | END SUBROUTINE improvedclouds |
|---|
| 472 | |
|---|
| 473 | SUBROUTINE adapt_imicro(ptimestep,potcond,zimicro) |
|---|
| 474 | |
|---|
| 475 | ! Adaptative timestep for water ice clouds. |
|---|
| 476 | ! Works using a powerlaw to compute the minimal duration of subtimestep |
|---|
| 477 | ! (in s) should all the avalaible vapor (resp. ice) condenses (resp.sublimates) |
|---|
| 478 | ! Then, we use the instantaneous vap (ice) gradient extrapolated to the |
|---|
| 479 | ! rest of duration to increase subtimestep duration, for computing |
|---|
| 480 | ! efficiency. |
|---|
| 481 | |
|---|
| 482 | real,intent(in) :: ptimestep ! total duration of physics (sec) |
|---|
| 483 | real,intent(in) :: potcond ! condensible vapor / sublimable ice(kg/kg) |
|---|
| 484 | real :: alpha, beta ! Coefficients for power law |
|---|
| 485 | real :: defstep,coef ! Default ptimestep of 7.5 mins (iphysiq=5) |
|---|
| 486 | integer,intent(out) :: zimicro ! number of ptimestep division |
|---|
| 487 | |
|---|
| 488 | ! Default ptimestep : defstep (7.5 mins) |
|---|
| 489 | defstep=88775.*5./960. |
|---|
| 490 | coef=ptimestep/defstep |
|---|
| 491 | ! Conservative coefficients : |
|---|
| 492 | ! alpha=1.81846504e+11 |
|---|
| 493 | ! beta=1.54550140e+00 |
|---|
| 494 | alpha=1.88282793e+05 ! Latest values for high obliquity |
|---|
| 495 | beta=4.57764370e-01 ! Latest values for high obliquity |
|---|
| 496 | !alpha=1.72198978e+10 ! Present day Mars |
|---|
| 497 | !beta=1.88473210e+00 |
|---|
| 498 | zimicro=ceiling(coef*min(max(alpha*abs(potcond)**beta,5.),7000.)) |
|---|
| 499 | !zimicro=2*zimicro ! Prediction times two, allow to complete year at high obliquity |
|---|
| 500 | |
|---|
| 501 | END SUBROUTINE adapt_imicro |
|---|
| 502 | |
|---|
| 503 | END MODULE improvedclouds_mod |
|---|