1 | subroutine improvedclouds(ngrid,nlay,ptimestep, |
---|
2 | & pplev,pplay,pt,pdt, |
---|
3 | & pq,pdq,pdqcloud,pdtcloud, |
---|
4 | & nq,tauscaling,rdust,rice,nuice, |
---|
5 | & rsedcloud,rhocloud) |
---|
6 | ! to use 'getin' |
---|
7 | USE ioipsl_getincom |
---|
8 | implicit none |
---|
9 | c------------------------------------------------------------------ |
---|
10 | c This routine is used to form clouds when a parcel of the GCM is |
---|
11 | c saturated. It includes the ability to have supersaturation, a |
---|
12 | c computation of the nucleation rates, growthrates and the |
---|
13 | c scavenging of dust particles by clouds. |
---|
14 | c It is worth noting that the amount of dust is computed using the |
---|
15 | c dust optical depth computed in aeropacity.F. That's why |
---|
16 | c the variable called "tauscaling" is used to convert |
---|
17 | c pq(dust_mass) and pq(dust_number), which are relative |
---|
18 | c quantities, to absolute and realistic quantities stored in zq. |
---|
19 | c This has to be done to convert the inputs into absolute |
---|
20 | c values, but also to convert the outputs back into relative |
---|
21 | c values which are then used by the sedimentation and advection |
---|
22 | c schemes. |
---|
23 | c A word about the radius growth ... |
---|
24 | c A word about nucleation and ice growth strategies ... |
---|
25 | |
---|
26 | c Authors: J.-B. Madeleine, based on the work by Franck Montmessin |
---|
27 | c (October 2011) |
---|
28 | c T. Navarro, debug,correction, new scheme (October-April 2011) |
---|
29 | c A. Spiga, optimization (February 2012) |
---|
30 | c------------------------------------------------------------------ |
---|
31 | #include "dimensions.h" |
---|
32 | #include "dimphys.h" |
---|
33 | #include "comcstfi.h" |
---|
34 | #include "callkeys.h" |
---|
35 | #include "tracer.h" |
---|
36 | #include "comgeomfi.h" |
---|
37 | #include "dimradmars.h" |
---|
38 | #include "microphys.h" |
---|
39 | c------------------------------------------------------------------ |
---|
40 | c Inputs: |
---|
41 | |
---|
42 | INTEGER ngrid,nlay |
---|
43 | integer nq ! nombre de traceurs |
---|
44 | REAL ptimestep ! pas de temps physique (s) |
---|
45 | REAL pplev(ngrid,nlay+1) ! pression aux inter-couches (Pa) |
---|
46 | REAL pplay(ngrid,nlay) ! pression au milieu des couches (Pa) |
---|
47 | |
---|
48 | REAL pt(ngrid,nlay) ! temperature at the middle of the |
---|
49 | ! layers (K) |
---|
50 | REAL pdt(ngrid,nlay) ! tendance temperature des autres |
---|
51 | ! param. |
---|
52 | REAL pq(ngrid,nlay,nq) ! traceur (kg/kg) |
---|
53 | REAL pdq(ngrid,nlay,nq) ! tendance avant condensation |
---|
54 | ! (kg/kg.s-1) |
---|
55 | REAL tauscaling(ngridmx) ! Convertion factor for qdust and Ndust |
---|
56 | REAL rdust(ngridmx,nlayermx) ! Dust geometric mean radius (m) |
---|
57 | |
---|
58 | c Outputs: |
---|
59 | REAL rice(ngrid,nlay) ! Ice mass mean radius (m) |
---|
60 | ! (r_c in montmessin_2004) |
---|
61 | REAL nuice(ngrid,nlay) ! Estimated effective variance |
---|
62 | ! of the size distribution |
---|
63 | REAL rsedcloud(ngridmx,nlayermx) ! Cloud sedimentation radius |
---|
64 | REAL rhocloud(ngridmx,nlayermx) ! Cloud density (kg.m-3) |
---|
65 | REAL pdqcloud(ngrid,nlay,nq) ! tendance de la condensation |
---|
66 | ! H2O(kg/kg.s-1) |
---|
67 | REAL pdtcloud(ngrid,nlay) ! tendance temperature due |
---|
68 | ! a la chaleur latente |
---|
69 | |
---|
70 | c------------------------------------------------------------------ |
---|
71 | c Local variables: |
---|
72 | |
---|
73 | LOGICAL firstcall |
---|
74 | DATA firstcall/.true./ |
---|
75 | SAVE firstcall |
---|
76 | |
---|
77 | REAL*8 derf ! Error function |
---|
78 | !external derf |
---|
79 | |
---|
80 | REAL CBRT |
---|
81 | EXTERNAL CBRT |
---|
82 | |
---|
83 | INTEGER ig,l,i |
---|
84 | |
---|
85 | |
---|
86 | REAL zq(ngridmx,nlayermx,nqmx) ! local value of tracers |
---|
87 | REAL zq0(ngridmx,nlayermx,nqmx) ! local initial value of tracers |
---|
88 | REAL zt(ngridmx,nlayermx) ! local value of temperature |
---|
89 | REAL zqsat(ngridmx,nlayermx) ! saturation |
---|
90 | REAL lw !Latent heat of sublimation (J.kg-1) |
---|
91 | REAL Cste |
---|
92 | REAL dMice ! mass of condensated ice |
---|
93 | REAL sumcheck |
---|
94 | REAL*8 ph2o ! Water vapor partial pressure (Pa) |
---|
95 | REAL*8 satu ! Water vapor saturation ratio over ice |
---|
96 | REAL*8 Mo,No |
---|
97 | REAL*8 dN,dM,newvap |
---|
98 | REAL*8 Rn, Rm, dev2, yeah, n_derf, m_derf |
---|
99 | REAL*8 n_aer(nbin_cld) ! number conc. of particle/each size bin |
---|
100 | REAL*8 m_aer(nbin_cld) ! mass mixing ratio of particle/each size bin |
---|
101 | REAL*8 rate(nbin_cld) ! nucleation rate |
---|
102 | !REAL*8 up,dwn,Ctot,gr |
---|
103 | REAl*8 seq |
---|
104 | REAL*8 sig ! Water-ice/air surface tension (N.m) |
---|
105 | EXTERNAL sig |
---|
106 | |
---|
107 | c Parameters of the size discretization |
---|
108 | c used by the microphysical scheme |
---|
109 | DOUBLE PRECISION, PARAMETER :: rmin_cld = 0.1e-6 ! Minimum radius (m) |
---|
110 | DOUBLE PRECISION, PARAMETER :: rmax_cld = 10.e-6 ! Maximum radius (m) |
---|
111 | DOUBLE PRECISION, PARAMETER :: rbmin_cld = 0.0001e-6 |
---|
112 | ! Minimum boundary radius (m) |
---|
113 | DOUBLE PRECISION, PARAMETER :: rbmax_cld = 1.e-2 ! Maximum boundary radius (m) |
---|
114 | DOUBLE PRECISION vrat_cld ! Volume ratio |
---|
115 | DOUBLE PRECISION rb_cld(nbin_cld+1)! boundary values of each rad_cld bin (m) |
---|
116 | SAVE rb_cld |
---|
117 | DOUBLE PRECISION dr_cld(nbin_cld) ! width of each rad_cld bin (m) |
---|
118 | DOUBLE PRECISION vol_cld(nbin_cld) ! particle volume for each bin (m3) |
---|
119 | |
---|
120 | REAL sigma_ice ! Variance of the ice and CCN distributions |
---|
121 | SAVE sigma_ice |
---|
122 | |
---|
123 | REAL tdicho, tmax, rmin, rmax, req, rdicho |
---|
124 | REAL coeff0, coeff1, coeff2 |
---|
125 | REAL error_out(ngridmx,nlayermx) |
---|
126 | REAL error2d(ngridmx) |
---|
127 | |
---|
128 | REAL var1,var2,var3 |
---|
129 | |
---|
130 | REAL rccn, epsilon |
---|
131 | |
---|
132 | c---------------------------------- |
---|
133 | c some outputs for 1D -- TESTS |
---|
134 | REAL satu_out(ngridmx,nlayermx) ! satu ratio for output |
---|
135 | REAL dN_out(ngridmx,nlayermx) ! mass variation for output |
---|
136 | REAL dM_out(ngridmx,nlayermx) ! number variation for output |
---|
137 | REAL Mcon_out(ngridmx,nlayermx) ! mass to be condensed (not dMice !!) |
---|
138 | REAL gr_out(ngridmx,nlayermx) ! for 1d output |
---|
139 | REAL rice_out(ngridmx,nlayermx) ! ice radius change |
---|
140 | REAL rate_out(ngridmx,nlayermx) ! nucleation rate |
---|
141 | REAL satubf(ngridmx,nlayermx),satuaf(ngridmx,nlayermx) |
---|
142 | REAL ccnbf(ngridmx,nlayermx),ccnaf(ngridmx,nlayermx) |
---|
143 | INTEGER count |
---|
144 | |
---|
145 | LOGICAL test_flag ! flag for test/debuging outputs |
---|
146 | |
---|
147 | test_flag = .false. |
---|
148 | c---------------------------------- |
---|
149 | c---------------------------------- |
---|
150 | |
---|
151 | c------------------------------------------------------------------ |
---|
152 | |
---|
153 | IF (firstcall) THEN |
---|
154 | !============================================================= |
---|
155 | ! 0. Definition of the size grid |
---|
156 | !============================================================= |
---|
157 | c rad_cld is the primary radius grid used for microphysics computation. |
---|
158 | c The grid spacing is computed assuming a constant volume ratio |
---|
159 | c between two consecutive bins; i.e. vrat_cld. |
---|
160 | c vrat_cld is determined from the boundary values of the size grid: |
---|
161 | c rmin_cld and rmax_cld. |
---|
162 | c The rb_cld array contains the boundary values of each rad_cld bin. |
---|
163 | c dr_cld is the width of each rad_cld bin. |
---|
164 | |
---|
165 | c Volume ratio between two adjacent bins |
---|
166 | vrat_cld = dlog(rmax_cld/rmin_cld) / float(nbin_cld-1) *3. |
---|
167 | vrat_cld = dexp(vrat_cld) |
---|
168 | write(*,*) "vrat_cld", vrat_cld |
---|
169 | |
---|
170 | rb_cld(1) = rbmin_cld |
---|
171 | rad_cld(1) = rmin_cld |
---|
172 | vol_cld(1) = 4./3. * dble(pi) * rmin_cld*rmin_cld*rmin_cld |
---|
173 | |
---|
174 | do i=1,nbin_cld-1 |
---|
175 | rad_cld(i+1) = rad_cld(i) * vrat_cld**(1./3.) |
---|
176 | vol_cld(i+1) = vol_cld(i) * vrat_cld |
---|
177 | enddo |
---|
178 | |
---|
179 | do i=1,nbin_cld |
---|
180 | rb_cld(i+1)= ( (2.*vrat_cld) / (vrat_cld+1.) )**(1./3.) * |
---|
181 | & rad_cld(i) |
---|
182 | dr_cld(i) = rb_cld(i+1) - rb_cld(i) |
---|
183 | enddo |
---|
184 | rb_cld(nbin_cld+1) = rbmax_cld |
---|
185 | dr_cld(nbin_cld) = rb_cld(nbin_cld+1) - rb_cld(nbin_cld) |
---|
186 | |
---|
187 | print*, ' ' |
---|
188 | print*,'Microphysics: size bin information:' |
---|
189 | print*,'i,rb_cld(i), rad_cld(i),dr_cld(i)' |
---|
190 | print*,'-----------------------------------' |
---|
191 | do i=1,nbin_cld |
---|
192 | write(*,'(i2,3x,3(e12.6,4x))') i,rb_cld(i), rad_cld(i), |
---|
193 | & dr_cld(i) |
---|
194 | enddo |
---|
195 | write(*,'(i2,3x,e12.6)') nbin_cld+1,rb_cld(nbin_cld+1) |
---|
196 | print*,'-----------------------------------' |
---|
197 | |
---|
198 | do i=1,nbin_cld+1 |
---|
199 | rb_cld(i) = dlog(rb_cld(i)) !! we save that so that it is not computed |
---|
200 | !! at each timestep and gridpoint |
---|
201 | enddo |
---|
202 | |
---|
203 | c Contact parameter of water ice on dust ( m=cos(theta) ) |
---|
204 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
205 | ! mteta = 0.95 |
---|
206 | write(*,*) 'water_param contact parameter:', mteta |
---|
207 | |
---|
208 | c Volume of a water molecule (m3) |
---|
209 | vo1 = mh2o / dble(rho_ice) |
---|
210 | c Variance of the ice and CCN distributions |
---|
211 | sigma_ice = sqrt(log(1.+nuice_sed)) |
---|
212 | |
---|
213 | write(*,*) 'Variance of ice & CCN distribs :', sigma_ice |
---|
214 | write(*,*) 'nuice for sedimentation:', nuice_sed |
---|
215 | write(*,*) 'Volume of a water molecule:', vo1 |
---|
216 | |
---|
217 | firstcall=.false. |
---|
218 | END IF |
---|
219 | |
---|
220 | !============================================================= |
---|
221 | ! 1. Initialisation |
---|
222 | !============================================================= |
---|
223 | |
---|
224 | c Initialize the tendencies |
---|
225 | pdqcloud(1:ngrid,1:nlay,1:nq)=0 |
---|
226 | pdtcloud(1:ngrid,1:nlay)=0 |
---|
227 | |
---|
228 | c Update the needed variables |
---|
229 | do l=1,nlay |
---|
230 | do ig=1,ngrid |
---|
231 | c Temperature |
---|
232 | zt(ig,l)=pt(ig,l)+ pdt(ig,l)*ptimestep |
---|
233 | c Dust mass mixing ratio |
---|
234 | zq(ig,l,igcm_dust_mass) = |
---|
235 | & pq(ig,l,igcm_dust_mass) + |
---|
236 | & pdq(ig,l,igcm_dust_mass) * ptimestep |
---|
237 | zq0(ig,l,igcm_dust_mass)=zq(ig,l,igcm_dust_mass) |
---|
238 | c Dust particle number |
---|
239 | zq(ig,l,igcm_dust_number) = |
---|
240 | & pq(ig,l,igcm_dust_number) + |
---|
241 | & pdq(ig,l,igcm_dust_number) * ptimestep |
---|
242 | zq0(ig,l,igcm_dust_number)=zq(ig,l,igcm_dust_number) |
---|
243 | c Update rdust from last tendencies |
---|
244 | rdust(ig,l)= |
---|
245 | & CBRT(r3n_q*zq(ig,l,igcm_dust_mass)/ |
---|
246 | & max(zq(ig,l,igcm_dust_number),0.01)) |
---|
247 | rdust(ig,l)=min(max(rdust(ig,l),1.e-10),500.e-6) |
---|
248 | c CCN mass mixing ratio |
---|
249 | zq(ig,l,igcm_ccn_mass)= |
---|
250 | & pq(ig,l,igcm_ccn_mass)+pdq(ig,l,igcm_ccn_mass)*ptimestep |
---|
251 | zq(ig,l,igcm_ccn_mass)=max(zq(ig,l,igcm_ccn_mass),1.E-30) |
---|
252 | zq0(ig,l,igcm_ccn_mass)=zq(ig,l,igcm_ccn_mass) |
---|
253 | c CCN particle number |
---|
254 | zq(ig,l,igcm_ccn_number)= |
---|
255 | & pq(ig,l,igcm_ccn_number)+pdq(ig,l,igcm_ccn_number)*ptimestep |
---|
256 | zq(ig,l,igcm_ccn_number)=max(zq(ig,l,igcm_ccn_number),1.E-30) |
---|
257 | zq0(ig,l,igcm_ccn_number)=zq(ig,l,igcm_ccn_number) |
---|
258 | c Water vapor |
---|
259 | zq(ig,l,igcm_h2o_vap)= |
---|
260 | & pq(ig,l,igcm_h2o_vap)+pdq(ig,l,igcm_h2o_vap)*ptimestep |
---|
261 | zq(ig,l,igcm_h2o_vap)=max(zq(ig,l,igcm_h2o_vap),1.E-30) ! FF 12/2004 |
---|
262 | zq0(ig,l,igcm_h2o_vap)=zq(ig,l,igcm_h2o_vap) |
---|
263 | c Water ice |
---|
264 | zq(ig,l,igcm_h2o_ice)= |
---|
265 | & pq(ig,l,igcm_h2o_ice)+pdq(ig,l,igcm_h2o_ice)*ptimestep |
---|
266 | zq(ig,l,igcm_h2o_ice)=max(zq(ig,l,igcm_h2o_ice),1e-30) ! FF 12/2004 |
---|
267 | zq0(ig,l,igcm_h2o_ice)=zq(ig,l,igcm_h2o_ice) |
---|
268 | enddo |
---|
269 | enddo |
---|
270 | |
---|
271 | !============================================================= |
---|
272 | ! 2. Compute saturation |
---|
273 | !============================================================= |
---|
274 | |
---|
275 | dev2 = 1. / ( sqrt(2.) * sigma_ice ) |
---|
276 | error_out(:,:) = 0. |
---|
277 | |
---|
278 | |
---|
279 | call watersat(ngridmx*nlayermx,zt,pplay,zqsat) |
---|
280 | |
---|
281 | count = 0 |
---|
282 | |
---|
283 | c Main loop over the GCM's grid |
---|
284 | DO l=1,nlay |
---|
285 | DO ig=1,ngrid |
---|
286 | |
---|
287 | c Get the partial pressure of water vapor and its saturation ratio |
---|
288 | ph2o = zq(ig,l,igcm_h2o_vap) * (44./18.) * pplay(ig,l) |
---|
289 | satu = zq(ig,l,igcm_h2o_vap) / zqsat(ig,l) |
---|
290 | |
---|
291 | IF (( satu .ge. 1. ) .or. ! if there is condensation |
---|
292 | & ( zq(ig,l,igcm_ccn_number)*tauscaling(ig).ge. 1.)) THEN ! or sublimation |
---|
293 | |
---|
294 | |
---|
295 | !============================================================= |
---|
296 | ! 3. Nucleation |
---|
297 | !============================================================= |
---|
298 | |
---|
299 | c Expand the dust moments into a binned distribution |
---|
300 | Mo = zq(ig,l,igcm_dust_mass)* tauscaling(ig) !+ 1.e-30 |
---|
301 | No = zq(ig,l,igcm_dust_number)* tauscaling(ig) + 1.e-30 |
---|
302 | Rn = rdust(ig,l) |
---|
303 | Rn = -dlog(Rn) |
---|
304 | Rm = Rn - 3. * sigma_ice*sigma_ice |
---|
305 | n_derf = derf( (rb_cld(1)+Rn) *dev2) |
---|
306 | m_derf = derf( (rb_cld(1)+Rm) *dev2) |
---|
307 | do i = 1, nbin_cld |
---|
308 | n_aer(i) = -0.5 * No * n_derf !! this ith previously computed |
---|
309 | m_aer(i) = -0.5 * Mo * m_derf !! this ith previously computed |
---|
310 | n_derf = derf( (rb_cld(i+1)+Rn) *dev2) |
---|
311 | m_derf = derf( (rb_cld(i+1)+Rm) *dev2) |
---|
312 | n_aer(i) = n_aer(i) + 0.5 * No * n_derf |
---|
313 | m_aer(i) = m_aer(i) + 0.5 * Mo * m_derf |
---|
314 | enddo |
---|
315 | !!! MORE EFFICIENT COMPUTATIONALLY THAN |
---|
316 | ! Rn = rdust(ig,l) |
---|
317 | ! Rm = Rn * exp( 3. * sigma_ice**2. ) |
---|
318 | ! Rn = 1. / Rn |
---|
319 | ! Rm = 1. / Rm |
---|
320 | ! do i = 1, nbin_cld |
---|
321 | ! n_aer(i) = 0.5 * No * ( derf( dlog(rb_cld(i+1)*Rn) * dev2 ) |
---|
322 | ! & -derf( dlog(rb_cld(i) * Rn) * dev2 ) ) |
---|
323 | ! m_aer(i) = 0.5 * Mo * ( derf( dlog(rb_cld(i+1)*Rm) * dev2 ) |
---|
324 | ! & -derf( dlog(rb_cld(i) * Rm) * dev2 ) ) |
---|
325 | ! enddo |
---|
326 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
327 | |
---|
328 | ! sumcheck = 0 |
---|
329 | ! do i = 1, nbin_cld |
---|
330 | ! sumcheck = sumcheck + n_aer(i) |
---|
331 | ! enddo |
---|
332 | ! sumcheck = abs(sumcheck/No - 1) |
---|
333 | ! if ((sumcheck .gt. 1e-5).and. (1./Rn .gt. rmin_cld)) then |
---|
334 | ! print*, "WARNING, No sumcheck PROBLEM" |
---|
335 | ! print*, "sumcheck, No",sumcheck, No |
---|
336 | ! print*, "min radius, Rn, ig, l", rmin_cld, 1./Rn, ig, l |
---|
337 | ! print*, "Dust binned distribution", n_aer |
---|
338 | ! endif |
---|
339 | ! |
---|
340 | ! sumcheck = 0 |
---|
341 | ! do i = 1, nbin_cld |
---|
342 | ! sumcheck = sumcheck + m_aer(i) |
---|
343 | ! enddo |
---|
344 | ! sumcheck = abs(sumcheck/Mo - 1) |
---|
345 | ! if ((sumcheck .gt. 1e-5) .and. (1./Rn .gt. rmin_cld)) then |
---|
346 | ! print*, "WARNING, Mo sumcheck PROBLEM" |
---|
347 | ! print*, "sumcheck, Mo",sumcheck, Mo |
---|
348 | ! print*, "min radius, Rm, ig, l", rmin_cld, 1./Rm, ig, l |
---|
349 | ! print*, "Dust binned distribution", m_aer |
---|
350 | ! endif |
---|
351 | |
---|
352 | c Get the rates of nucleation |
---|
353 | call nuclea(ph2o,zt(ig,l),satu,n_aer,rate) |
---|
354 | |
---|
355 | |
---|
356 | dN = 0. |
---|
357 | dM = 0. |
---|
358 | rate_out(ig,l) = 0 |
---|
359 | do i = 1, nbin_cld |
---|
360 | n_aer(i) = n_aer(i) / ( 1. + rate(i)*ptimestep ) |
---|
361 | m_aer(i) = m_aer(i) / ( 1. + rate(i)*ptimestep ) |
---|
362 | dN = dN + n_aer(i) * rate(i) * ptimestep |
---|
363 | dM = dM + m_aer(i) * rate(i) * ptimestep |
---|
364 | !rate_out(ig,l)=rate_out(ig,l)+rate(i) |
---|
365 | enddo |
---|
366 | |
---|
367 | c Update CCNs, can also be done after the radius growth |
---|
368 | c Dust particles |
---|
369 | zq(ig,l,igcm_dust_mass) = |
---|
370 | & zq(ig,l,igcm_dust_mass) - dM/ tauscaling(ig) |
---|
371 | zq(ig,l,igcm_dust_number) = |
---|
372 | & zq(ig,l,igcm_dust_number) - dN/ tauscaling(ig) |
---|
373 | c CCNs |
---|
374 | zq(ig,l,igcm_ccn_mass) = |
---|
375 | & zq(ig,l,igcm_ccn_mass) + dM/ tauscaling(ig) |
---|
376 | zq(ig,l,igcm_ccn_number) = |
---|
377 | & zq(ig,l,igcm_ccn_number) + dN/ tauscaling(ig) |
---|
378 | |
---|
379 | |
---|
380 | !============================================================= |
---|
381 | ! 4. Ice growth: scheme for radius evolution |
---|
382 | !============================================================= |
---|
383 | |
---|
384 | Mo = zq(ig,l,igcm_h2o_ice) + |
---|
385 | & zq(ig,l,igcm_ccn_mass)* tauscaling(ig) + 1.e-30 |
---|
386 | No = zq(ig,l,igcm_ccn_number)* tauscaling(ig)+ 1e-30 |
---|
387 | |
---|
388 | rhocloud(ig,l) = zq(ig,l,igcm_h2o_ice) / Mo * rho_ice |
---|
389 | & + zq(ig,l,igcm_ccn_mass)* tauscaling(ig) |
---|
390 | & / Mo * rho_dust |
---|
391 | rhocloud(ig,l) = min(max(rhocloud(ig,l),rho_ice),rho_dust) |
---|
392 | |
---|
393 | c nuclei radius |
---|
394 | rccn = CBRT(zq(ig,l,igcm_ccn_mass)/ |
---|
395 | & (pi*rho_dust*zq(ig,l,igcm_ccn_number)*4./3.)) |
---|
396 | |
---|
397 | c ice crystal radius |
---|
398 | rice (ig,l) = |
---|
399 | & CBRT( real(Mo)/real(No) * 0.75 / pi / rhocloud(ig,l) ) |
---|
400 | |
---|
401 | c enforce physical value : crystal cannot be smaller than its nuclei ! |
---|
402 | rice(ig,l) = max(rice(ig,l), rccn) |
---|
403 | |
---|
404 | c saturation at equilibrium |
---|
405 | seq = exp( 2.*sig(zt(ig,l))*mh2o / |
---|
406 | & (rho_ice*rgp*zt(ig,l)*rice(ig,l)) ) |
---|
407 | |
---|
408 | |
---|
409 | c If there is more than on nuclei, we peform ice growth |
---|
410 | var1 = zq0(ig,l,igcm_ccn_number)*tauscaling(ig) + dN |
---|
411 | IF (var1 .ge. -1) THEN |
---|
412 | |
---|
413 | |
---|
414 | if (test_flag) then |
---|
415 | print*, ' ' |
---|
416 | print*, ptimestep |
---|
417 | print*, 'satu,seq', real(satu), real(seq), ig,l |
---|
418 | print*, 'dN,dM', real(dN),real(dM) |
---|
419 | print*,'rccn', rccn |
---|
420 | print*, 'Nccn, Mccn', zq(ig,l,igcm_ccn_number)*tauscaling(ig), |
---|
421 | & zq(ig,l,igcm_ccn_mass)*tauscaling(ig) |
---|
422 | endif |
---|
423 | |
---|
424 | c crystal radius to reach saturation at equilibrium (i.e. satu=seq) |
---|
425 | req = ( zq0(ig,l,igcm_h2o_ice) + zq0(ig,l,igcm_h2o_vap) |
---|
426 | & + zq(ig,l,igcm_ccn_mass)*tauscaling(ig)* |
---|
427 | & rho_ice/rho_dust - seq * zqsat(ig,l)) |
---|
428 | & / ( zq(ig,l,igcm_ccn_number)*tauscaling(ig)* |
---|
429 | & pi*rho_ice*4./3. ) |
---|
430 | req = CBRT(req) |
---|
431 | |
---|
432 | c compute ice radius growth resistances (diffusive and latent heat resistancea) |
---|
433 | call growthrate(zt(ig,l),pplay(ig,l), |
---|
434 | & ph2o/satu,seq,req,coeff1,coeff2) |
---|
435 | |
---|
436 | coeff0 = -zqsat(ig,l) / (4.*pi*req*rho_ice |
---|
437 | & * zq(ig,l,igcm_ccn_number)*tauscaling(ig)) |
---|
438 | |
---|
439 | c compute tmax, the time needed to reach req |
---|
440 | call phi(rice(ig,l),req,coeff1,coeff2,tmax) |
---|
441 | |
---|
442 | if (test_flag) then |
---|
443 | print*, 'coeffs', coeff0,coeff1,coeff2 |
---|
444 | print*, 'req,tmax', req,tmax*coeff0 |
---|
445 | print*, 'i,rmin,rdicho,rmax,tdicho' |
---|
446 | endif |
---|
447 | |
---|
448 | c rmin is rice if r increases (satu >1) or req if it decreases (satu<1) |
---|
449 | c if req is lower than rccn (ie not enough ice to reach saturation), rmin is forced to rccn |
---|
450 | if (satu .ge. seq) then |
---|
451 | ! crystal size is increasing |
---|
452 | rmin = max(min(rice(ig,l),req),rccn) |
---|
453 | rmax = max(rice(ig,l),req) |
---|
454 | else |
---|
455 | ! crystal size is decreasing |
---|
456 | rmax = max(min(rice(ig,l),req),rccn) |
---|
457 | rmin = max(rice(ig,l),req) |
---|
458 | endif |
---|
459 | !rmax = min(rmax,1.e-3) ! au max on a des rayons de 1 mm pour la dicho ... |
---|
460 | rdicho = 0.5*(rmin+rmax) |
---|
461 | |
---|
462 | ! for output |
---|
463 | var1 = rice(ig,l) |
---|
464 | var2 = rmin |
---|
465 | var3 = rmax |
---|
466 | |
---|
467 | c Given the phi function is monotonous, we perform a simple dichotomy to find the raidus at t+1 |
---|
468 | do i = 1,10 ! dichotomy loop |
---|
469 | |
---|
470 | c compute tdicho, the time needed to reach rdicho |
---|
471 | call phi(rdicho,req,coeff1,coeff2,tdicho) |
---|
472 | !print*, tdicho,tmax |
---|
473 | tdicho = coeff0*(tdicho - tmax) |
---|
474 | |
---|
475 | if (test_flag) print*, i,rmin,rdicho,rmax,tdicho |
---|
476 | |
---|
477 | if (tdicho .ge. ptimestep) then |
---|
478 | rmax = rdicho |
---|
479 | else |
---|
480 | rmin = rdicho |
---|
481 | endif |
---|
482 | |
---|
483 | rdicho = 0.5*(rmin+rmax) |
---|
484 | |
---|
485 | enddo ! of dichotomy loop |
---|
486 | |
---|
487 | if (test_flag) then |
---|
488 | if (abs(rdicho - rccn) .ge. 1e-15) then ! to avoid infinite values |
---|
489 | epsilon = (rmax - rmin)/(2**10) |
---|
490 | error_out(ig,l) = |
---|
491 | & 100*(epsilon**3 +3*epsilon**2*rdicho +3*epsilon*rdicho**2) |
---|
492 | & / (rdicho**3-rccn**3) |
---|
493 | endif |
---|
494 | print*, 'error masse glace %', error_out(ig,l) |
---|
495 | print*, 'rice,ice,vap bf', |
---|
496 | & rice(ig,l),zq0(ig,l,igcm_h2o_ice),zq0(ig,l,igcm_h2o_vap) |
---|
497 | endif |
---|
498 | |
---|
499 | c If the initial condition is subsaturated and there is not enough ice available for sublimation |
---|
500 | c to reach equilibrium, req is neagtive. Therefore, enforce physical value. |
---|
501 | rice(ig,l) = max(rdicho,rccn) |
---|
502 | |
---|
503 | !!!!! Water ice mass is computed with radius at t+1 and their current number |
---|
504 | !!!!! Nccn is at t or t+1, depending on what has been done before |
---|
505 | ! zq(ig,l,igcm_h2o_ice) = |
---|
506 | ! & (pi*rho_ice*zq(ig,l,igcm_ccn_number)*4./3. |
---|
507 | ! & * rdicho*rdicho*rdicho - |
---|
508 | ! & zq(ig,l,igcm_ccn_mass)*rho_ice/rho_dust) |
---|
509 | ! & * tauscaling(ig) |
---|
510 | |
---|
511 | !!!!! Water ice mass is computed with radius at t+1 and their number at t+1 |
---|
512 | !!!!! that is dirty, but this enforces the use of Nccn at t+1, whatever is done before |
---|
513 | !!!!! TO BE CLEANED ONE DAY |
---|
514 | var1 = zq0(ig,l,igcm_ccn_number)*tauscaling(ig) + dN |
---|
515 | var2 = zq0(ig,l,igcm_ccn_mass)*tauscaling(ig) + dM |
---|
516 | zq(ig,l,igcm_h2o_ice) = |
---|
517 | & (pi*rho_ice*var1*4./3. |
---|
518 | & * rdicho*rdicho*rdicho - |
---|
519 | & var2*rho_ice/rho_dust) |
---|
520 | |
---|
521 | |
---|
522 | !!!! enforce realistic values (if the case of growth on Nccn(t) and condensation on Nccn(t+1)) |
---|
523 | zq(ig,l,igcm_h2o_ice) = |
---|
524 | & min(zq0(ig,l,igcm_h2o_ice) + zq0(ig,l,igcm_h2o_vap), |
---|
525 | & zq(ig,l,igcm_h2o_ice)) |
---|
526 | zq(ig,l,igcm_h2o_ice) = |
---|
527 | & max(1e-30,zq(ig,l,igcm_h2o_ice)) |
---|
528 | |
---|
529 | zq(ig,l,igcm_h2o_vap) = |
---|
530 | & zq0(ig,l,igcm_h2o_ice) + zq0(ig,l,igcm_h2o_vap) |
---|
531 | & - zq(ig,l,igcm_h2o_ice) |
---|
532 | |
---|
533 | |
---|
534 | if (test_flag) then |
---|
535 | print*, 'rice,ice,vap af', |
---|
536 | & rice(ig,l),zq(ig,l,igcm_h2o_ice),zq(ig,l,igcm_h2o_vap) |
---|
537 | print*, 'satu bf, af', |
---|
538 | & zq0(ig,l,igcm_h2o_vap)/zqsat(ig,l), |
---|
539 | & zq(ig,l,igcm_h2o_vap)/zqsat(ig,l) |
---|
540 | endif |
---|
541 | |
---|
542 | |
---|
543 | !!!!!!!!!!!! TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST |
---|
544 | if ((zq(ig,l,igcm_h2o_ice).le. -1e-8) |
---|
545 | & .or. (zq(ig,l,igcm_h2o_vap).le. -1e-8)) then |
---|
546 | print*, 'NEGATIVE WATER' |
---|
547 | print*, 'ig,l', ig,l |
---|
548 | print*, 'satu', satu |
---|
549 | print*, 'vap, ice bf', |
---|
550 | & zq0(ig,l,igcm_h2o_vap), zq0(ig,l,igcm_h2o_ice) |
---|
551 | print*, 'vap, ice af', |
---|
552 | & zq(ig,l,igcm_h2o_vap), zq(ig,l,igcm_h2o_ice) |
---|
553 | print*, 'ccn N,M bf', |
---|
554 | & zq0(ig,l,igcm_ccn_number), zq0(ig,l,igcm_ccn_mass) |
---|
555 | print*, 'ccn N,M af', |
---|
556 | & zq(ig,l,igcm_ccn_number), zq(ig,l,igcm_ccn_mass) |
---|
557 | print*, 'tauscaling', |
---|
558 | & tauscaling(ig) |
---|
559 | print*, 'req,rccn,rice bf,rice af', |
---|
560 | & req,rccn,var1,rice(ig,l) |
---|
561 | print*, 'rmin, rmax', var2,var3 |
---|
562 | print*, 'error_out,tdicho,ptimestep', |
---|
563 | & error_out(ig,l),tdicho,ptimestep |
---|
564 | print*, ' ' |
---|
565 | endif |
---|
566 | !!!!!!!!!!!! TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST |
---|
567 | |
---|
568 | |
---|
569 | ENDIF !of if Nccn >1 |
---|
570 | |
---|
571 | |
---|
572 | !============================================================= |
---|
573 | ! 5. Dust cores released, tendancies, latent heat, etc ... |
---|
574 | !============================================================= |
---|
575 | |
---|
576 | c If all the ice particles sublimate, all the condensation |
---|
577 | c nuclei are released: |
---|
578 | if (zq(ig,l,igcm_h2o_ice).le.1e-10) then |
---|
579 | ! for coherence |
---|
580 | ! dM = 0 |
---|
581 | ! dN = 0 |
---|
582 | ! dN_out(ig,l) = - zq(ig,l,igcm_ccn_number)*tauscaling(ig) |
---|
583 | ! dM_out(ig,l) = - zq(ig,l,igcm_ccn_mass)*tauscaling(ig) |
---|
584 | c Water |
---|
585 | zq(ig,l,igcm_h2o_vap) = zq(ig,l,igcm_h2o_vap) |
---|
586 | & + zq(ig,l,igcm_h2o_ice) |
---|
587 | zq(ig,l,igcm_h2o_ice) = 0. |
---|
588 | c Dust particles |
---|
589 | zq(ig,l,igcm_dust_mass) = zq(ig,l,igcm_dust_mass) |
---|
590 | & + zq(ig,l,igcm_ccn_mass) |
---|
591 | zq(ig,l,igcm_dust_number) = zq(ig,l,igcm_dust_number) |
---|
592 | & + zq(ig,l,igcm_ccn_number) |
---|
593 | c CCNs |
---|
594 | zq(ig,l,igcm_ccn_mass) = 0. |
---|
595 | zq(ig,l,igcm_ccn_number) = 0. |
---|
596 | endif |
---|
597 | |
---|
598 | |
---|
599 | ! dN = dN/ tauscaling(ig) |
---|
600 | ! dM = dM/ tauscaling(ig) |
---|
601 | !c Dust particles |
---|
602 | ! zq(ig,l,igcm_dust_mass) = zq(ig,l,igcm_dust_mass) - dM |
---|
603 | ! zq(ig,l,igcm_dust_number) = zq(ig,l,igcm_dust_number) - dN |
---|
604 | !c CCNs |
---|
605 | ! zq(ig,l,igcm_ccn_mass) = zq(ig,l,igcm_ccn_mass) + dM |
---|
606 | ! zq(ig,l,igcm_ccn_number) = zq(ig,l,igcm_ccn_number) + dN |
---|
607 | |
---|
608 | |
---|
609 | pdqcloud(ig,l,igcm_dust_mass)=(zq(ig,l,igcm_dust_mass) |
---|
610 | & -zq0(ig,l,igcm_dust_mass))/ptimestep |
---|
611 | pdqcloud(ig,l,igcm_dust_number)=(zq(ig,l,igcm_dust_number) |
---|
612 | & -zq0(ig,l,igcm_dust_number))/ptimestep |
---|
613 | pdqcloud(ig,l,igcm_ccn_mass)=(zq(ig,l,igcm_ccn_mass) |
---|
614 | & -zq0(ig,l,igcm_ccn_mass))/ptimestep |
---|
615 | pdqcloud(ig,l,igcm_ccn_number)=(zq(ig,l,igcm_ccn_number) |
---|
616 | & -zq0(ig,l,igcm_ccn_number))/ptimestep |
---|
617 | pdqcloud(ig,l,igcm_h2o_vap)=(zq(ig,l,igcm_h2o_vap) |
---|
618 | & -zq0(ig,l,igcm_h2o_vap))/ptimestep |
---|
619 | pdqcloud(ig,l,igcm_h2o_ice)=(zq(ig,l,igcm_h2o_ice) |
---|
620 | & -zq0(ig,l,igcm_h2o_ice))/ptimestep |
---|
621 | |
---|
622 | |
---|
623 | count = count +1 |
---|
624 | |
---|
625 | |
---|
626 | ELSE ! for coherence (rdust, rice computations etc ..) |
---|
627 | zq(ig,l,igcm_dust_mass) = zq0(ig,l,igcm_dust_mass) |
---|
628 | zq(ig,l,igcm_dust_number) = zq0(ig,l,igcm_dust_number) |
---|
629 | zq(ig,l,igcm_ccn_mass) = zq0(ig,l,igcm_ccn_mass) |
---|
630 | zq(ig,l,igcm_ccn_number) = zq0(ig,l,igcm_ccn_number) |
---|
631 | zq(ig,l,igcm_h2o_ice) = zq0(ig,l,igcm_h2o_ice) |
---|
632 | zq(ig,l,igcm_h2o_vap) = zq0(ig,l,igcm_h2o_vap) |
---|
633 | |
---|
634 | ! pour les sorties de test |
---|
635 | ! satu_out(ig,l) = satu |
---|
636 | ! gr_out(ig,l) = 0 |
---|
637 | ! dN_out(ig,l) = 0 |
---|
638 | ! dM_out(ig,l) = 0 |
---|
639 | |
---|
640 | ENDIF ! end if (saturation ratio > 1) or (there is h2o_ice) |
---|
641 | |
---|
642 | ! ccnbf(ig,l) = zq0(ig,l,igcm_ccn_number) * tauscaling(ig) |
---|
643 | ! ccnaf(ig,l) = zq(ig,l,igcm_ccn_number) * tauscaling(ig) |
---|
644 | ! |
---|
645 | ! satubf(ig,l) = zq0(ig,l,igcm_h2o_vap) / zqsat(ig,l) |
---|
646 | ! satuaf(ig,l) = zq(ig,l,igcm_h2o_vap) / zqsat(ig,l) |
---|
647 | |
---|
648 | |
---|
649 | c-----update temperature (latent heat relase) |
---|
650 | lw=(2834.3-0.28*(zt(ig,l)-To)-0.004*(zt(ig,l)-To)**2)*1.e+3 |
---|
651 | pdtcloud(ig,l)= -pdqcloud(ig,l,igcm_h2o_vap)*lw/cpp |
---|
652 | |
---|
653 | c----- update rice & rhocloud AFTER microphysic |
---|
654 | Mo = zq(ig,l,igcm_h2o_ice) + |
---|
655 | & zq(ig,l,igcm_ccn_mass)* tauscaling(ig) + 1.e-30 |
---|
656 | No = zq(ig,l,igcm_ccn_number)* tauscaling(ig)+ 1e-30 |
---|
657 | rhocloud(ig,l) = zq(ig,l,igcm_h2o_ice) / Mo * rho_ice |
---|
658 | & +zq(ig,l,igcm_ccn_mass)* tauscaling(ig) |
---|
659 | & / Mo * rho_dust |
---|
660 | rhocloud(ig,l) = min(max(rhocloud(ig,l),rho_ice),rho_dust) |
---|
661 | |
---|
662 | if ((Mo.lt.1.e-20) .or. (No.le.1)) then |
---|
663 | rice(ig,l) = 1.e-8 |
---|
664 | else |
---|
665 | rice(ig,l) = |
---|
666 | & CBRT( real(Mo)/real(No) * 0.75 / pi / rhocloud(ig,l) ) !**(1./3.) |
---|
667 | endif |
---|
668 | |
---|
669 | nuice(ig,l)=nuice_ref ! used for rad. transfer calculations |
---|
670 | |
---|
671 | c----- update rdust and sedimentation radius |
---|
672 | rdust(ig,l)= |
---|
673 | & CBRT(r3n_q*zq(ig,l,igcm_dust_mass)/ |
---|
674 | & max(zq(ig,l,igcm_dust_number),0.01)) |
---|
675 | rdust(ig,l)=min(max(rdust(ig,l),1.e-10),500.e-6) |
---|
676 | |
---|
677 | rsedcloud(ig,l)=max( rice(ig,l)*(1.+nuice_sed)* |
---|
678 | & (1.+nuice_sed)*(1.+nuice_sed), |
---|
679 | & rdust(ig,l) ) |
---|
680 | rsedcloud(ig,l)=min(rsedcloud(ig,l),1.e-4) |
---|
681 | |
---|
682 | ENDDO ! of ig loop |
---|
683 | ENDDO ! of nlayer loop |
---|
684 | |
---|
685 | |
---|
686 | !!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS |
---|
687 | !!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS |
---|
688 | !!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS |
---|
689 | IF (test_flag) then |
---|
690 | |
---|
691 | error2d(:) = 0. |
---|
692 | DO l=1,nlay |
---|
693 | DO ig=1,ngrid |
---|
694 | error2d(ig) = max(abs(error_out(ig,l)),error2d(ig)) |
---|
695 | ENDDO |
---|
696 | ENDDO |
---|
697 | |
---|
698 | print*, 'count is ',count, ' i.e. ', |
---|
699 | & count*100/(nlay*ngrid), '% for microphys computation' |
---|
700 | |
---|
701 | IF (ngrid.ne.1) THEN ! 3D |
---|
702 | ! call WRITEDIAGFI(ngrid,"satu","ratio saturation","",3, |
---|
703 | ! & satu_out) |
---|
704 | ! call WRITEDIAGFI(ngrid,"dM","ccn variation","kg/kg",3, |
---|
705 | ! & dM_out) |
---|
706 | ! call WRITEDIAGFI(ngrid,"dN","ccn variation","#",3, |
---|
707 | ! & dN_out) |
---|
708 | call WRITEDIAGFI(ngrid,"error","dichotomy max error","%",2, |
---|
709 | & error2d) |
---|
710 | ! call WRITEDIAGFI(ngrid,"zqsat","zqsat","kg",3, |
---|
711 | ! & zqsat) |
---|
712 | ENDIF |
---|
713 | |
---|
714 | IF (ngrid.eq.1) THEN ! 1D |
---|
715 | call WRITEDIAGFI(ngrid,"error","incertitude sur glace","%",1, |
---|
716 | & error_out) |
---|
717 | call WRITEDIAGFI(ngrid,"satu_bf","satu before","kg/kg",1, |
---|
718 | & satubf) |
---|
719 | call WRITEDIAGFI(ngrid,"satu_af","satu after","kg/kg",1, |
---|
720 | & satuaf) |
---|
721 | call WRITEDIAGFI(ngrid,"vapbf","h2ovap before","kg/kg",1, |
---|
722 | & zq0(1,:,igcm_h2o_vap)) |
---|
723 | call WRITEDIAGFI(ngrid,"vapaf","h2ovap after","kg/kg",1, |
---|
724 | & zq(1,:,igcm_h2o_vap)) |
---|
725 | call WRITEDIAGFI(ngrid,"icebf","h2oice before","kg/kg",1, |
---|
726 | & zq0(1,:,igcm_h2o_ice)) |
---|
727 | call WRITEDIAGFI(ngrid,"iceaf","h2oice after","kg/kg",1, |
---|
728 | & zq(1,:,igcm_h2o_ice)) |
---|
729 | call WRITEDIAGFI(ngrid,"ccnbf","ccn before","/kg",1, |
---|
730 | & ccnbf) |
---|
731 | call WRITEDIAGFI(ngrid,"ccnaf","ccn after","/kg",1, |
---|
732 | & ccnaf) |
---|
733 | c call WRITEDIAGFI(ngrid,"growthrate","growth rate","m^2/s",1, |
---|
734 | c & gr_out) |
---|
735 | c call WRITEDIAGFI(ngrid,"nuclearate","nucleation rate","",1, |
---|
736 | c & rate_out) |
---|
737 | c call WRITEDIAGFI(ngrid,"dM","ccn variation","kg",1, |
---|
738 | c & dM_out) |
---|
739 | c call WRITEDIAGFI(ngrid,"dN","ccn variation","#",1, |
---|
740 | c & dN_out) |
---|
741 | call WRITEDIAGFI(ngrid,"zqsat","p vap sat","kg/kg",1, |
---|
742 | & zqsat) |
---|
743 | call WRITEDIAGFI(ngrid,"satu","ratio saturation","",1, |
---|
744 | & satu_out) |
---|
745 | call WRITEDIAGFI(ngrid,"rice_sca","ice radius","m",1, |
---|
746 | & rice) |
---|
747 | call WRITEDIAGFI(ngrid,"rdust_sca","rdust","m",1, |
---|
748 | & rdust) |
---|
749 | call WRITEDIAGFI(ngrid,"rsedcloud","rsedcloud","m",1, |
---|
750 | & rsedcloud) |
---|
751 | call WRITEDIAGFI(ngrid,"rhocloud","rhocloud","kg.m-3",1, |
---|
752 | & rhocloud) |
---|
753 | ENDIF |
---|
754 | |
---|
755 | ENDIF ! endif test_flag |
---|
756 | !!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS |
---|
757 | !!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS |
---|
758 | !!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS |
---|
759 | |
---|
760 | return |
---|
761 | end |
---|
762 | |
---|
763 | |
---|
764 | |
---|
765 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
766 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
767 | c The so -called "phi" function is such as phi(r) - phi(r0) = t - t0 |
---|
768 | c It is an analytical solution to the ice radius growth equation, |
---|
769 | c with the approximation of a constant 'reduced' cunningham correction factor |
---|
770 | c (lambda in growthrate.F) taken at radius req instead of rice |
---|
771 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
772 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
773 | |
---|
774 | subroutine phi(rice,req,coeff1,coeff2,time) |
---|
775 | |
---|
776 | implicit none |
---|
777 | |
---|
778 | ! inputs |
---|
779 | real rice ! ice radius |
---|
780 | real req ! ice radius at equilibirum |
---|
781 | real coeff1 ! coeff for the log |
---|
782 | real coeff2 ! coeff for the arctan |
---|
783 | |
---|
784 | ! output |
---|
785 | real time |
---|
786 | |
---|
787 | !local |
---|
788 | real var |
---|
789 | |
---|
790 | ! 1.73205 is sqrt(3) |
---|
791 | |
---|
792 | var = max( |
---|
793 | & abs(rice-req) / sqrt(rice*rice + rice*req + req*req),1e-30) |
---|
794 | |
---|
795 | time = |
---|
796 | & coeff1 * |
---|
797 | & log( var ) |
---|
798 | & + coeff2 * 1.73205 * |
---|
799 | & atan( (2*rice+req) / (1.73205*req) ) |
---|
800 | |
---|
801 | return |
---|
802 | end |
---|
803 | |
---|
804 | |
---|
805 | |
---|