1 | subroutine improvedclouds(ngrid,nlay,ptimestep, |
---|
2 | & pplev,pplay,pt,pdt, |
---|
3 | & pq,pdq,pdqcloud,pdqscloud,pdtcloud, |
---|
4 | & nq,tauscaling,rdust,rice,nuice, |
---|
5 | & rsedcloud,rhocloud) |
---|
6 | implicit none |
---|
7 | c------------------------------------------------------------------ |
---|
8 | c This routine is used to form clouds when a parcel of the GCM is |
---|
9 | c saturated. It includes the ability to have supersaturation, a |
---|
10 | c computation of the nucleation rates, growthrates and the |
---|
11 | c scavenging of dust particles by clouds. |
---|
12 | c It is worth noting that the amount of dust is computed using the |
---|
13 | c dust optical depth computed in aeropacity.F. That's why |
---|
14 | c the variable called "tauscaling" is used to convert |
---|
15 | c pq(dust_mass) and pq(dust_number), which are relative |
---|
16 | c quantities, to absolute and realistic quantities stored in zq. |
---|
17 | c This has to be done to convert the inputs into absolute |
---|
18 | c values, but also to convert the outputs back into relative |
---|
19 | c values which are then used by the sedimentation and advection |
---|
20 | c schemes. |
---|
21 | |
---|
22 | c Authors: J.-B. Madeleine, based on the work by Franck Montmessin |
---|
23 | c (October 2011) |
---|
24 | c------------------------------------------------------------------ |
---|
25 | #include "dimensions.h" |
---|
26 | #include "dimphys.h" |
---|
27 | #include "comcstfi.h" |
---|
28 | #include "callkeys.h" |
---|
29 | #include "tracer.h" |
---|
30 | #include "comgeomfi.h" |
---|
31 | #include "dimradmars.h" |
---|
32 | #include "microphys.h" |
---|
33 | c------------------------------------------------------------------ |
---|
34 | c Inputs: |
---|
35 | |
---|
36 | INTEGER ngrid,nlay |
---|
37 | integer nq ! nombre de traceurs |
---|
38 | REAL ptimestep ! pas de temps physique (s) |
---|
39 | REAL pplev(ngrid,nlay+1),pplay(ngrid,nlay) ! pression au milieu des couches (Pa) |
---|
40 | REAL pt(ngrid,nlay) ! temperature at the middle of the |
---|
41 | ! layers (K) |
---|
42 | REAL pdt(ngrid,nlay) ! tendance temperature des autres |
---|
43 | ! param. |
---|
44 | REAL pq(ngrid,nlay,nq) ! traceur (kg/kg) |
---|
45 | REAL pdq(ngrid,nlay,nq) ! tendance avant condensation |
---|
46 | ! (kg/kg.s-1) |
---|
47 | REAL tauscaling(ngridmx) ! Convertion factor for qdust and Ndust |
---|
48 | REAL rdust(ngridmx,nlayermx) ! Dust geometric mean radius (m) |
---|
49 | |
---|
50 | c Outputs: |
---|
51 | REAL rice(ngrid,nlay) ! Ice mass mean radius (m) |
---|
52 | ! (r_c in montmessin_2004) |
---|
53 | REAL nuice(ngrid,nlay) ! Estimated effective variance |
---|
54 | ! of the size distribution |
---|
55 | REAL rsedcloud(ngridmx,nlayermx) ! Cloud sedimentation radius |
---|
56 | REAL rhocloud(ngridmx,nlayermx) ! Cloud density (kg.m-3) |
---|
57 | REAL pdqcloud(ngrid,nlay,nq) ! tendance de la condensation |
---|
58 | ! H2O(kg/kg.s-1) |
---|
59 | REAL pdqscloud(ngrid,nq) ! flux en surface (kg.m-2.s-1) |
---|
60 | REAL pdtcloud(ngrid,nlay) ! tendance temperature due |
---|
61 | ! a la chaleur latente |
---|
62 | |
---|
63 | c------------------------------------------------------------------ |
---|
64 | c Local variables: |
---|
65 | |
---|
66 | LOGICAL firstcall |
---|
67 | DATA firstcall/.true./ |
---|
68 | SAVE firstcall |
---|
69 | |
---|
70 | REAL*8 derf ! Error function |
---|
71 | !external derf |
---|
72 | |
---|
73 | REAL CBRT |
---|
74 | EXTERNAL CBRT |
---|
75 | |
---|
76 | INTEGER ig,l,i |
---|
77 | |
---|
78 | REAL zq(ngridmx,nlayermx,nqmx) ! local value of tracers |
---|
79 | REAL zq0(ngridmx,nlayermx,nqmx) ! local initial value of tracers |
---|
80 | REAL zt(ngridmx,nlayermx) ! local value of temperature |
---|
81 | REAL zqsat(ngridmx,nlayermx) ! saturation |
---|
82 | REAL lw !Latent heat of sublimation (J.kg-1) |
---|
83 | REAL Cste |
---|
84 | REAL dMice ! mass of condensated ice |
---|
85 | REAL sumcheck |
---|
86 | REAL*8 ph2o ! Water vapor partial pressure (Pa) |
---|
87 | REAL*8 satu ! Water vapor saturation ratio over ice |
---|
88 | REAL*8 Mo,No |
---|
89 | REAL*8 dN,dM,newvap |
---|
90 | REAL*8 Rn, Rm, dev2 |
---|
91 | REAL*8 n_aer(nbin_cld) ! number conc. of particle/each size bin |
---|
92 | REAL*8 m_aer(nbin_cld) ! mass mixing ratio of particle/each size bin |
---|
93 | REAL*8 rate(nbin_cld) ! nucleation rate |
---|
94 | REAL*8 up,dwn,Ctot,gr,seq |
---|
95 | REAL*8 sig ! Water-ice/air surface tension (N.m) |
---|
96 | EXTERNAL sig |
---|
97 | |
---|
98 | c Parameters of the size discretization |
---|
99 | c used by the microphysical scheme |
---|
100 | DOUBLE PRECISION, PARAMETER :: rmin_cld = 0.1e-6 ! Minimum radius (m) |
---|
101 | DOUBLE PRECISION, PARAMETER :: rmax_cld = 10.e-6 ! Maximum radius (m) |
---|
102 | DOUBLE PRECISION, PARAMETER :: rbmin_cld = 0.0001e-6 |
---|
103 | ! Minimum boundary radius (m) |
---|
104 | DOUBLE PRECISION, PARAMETER :: rbmax_cld = 1.e-2 ! Maximum boundary radius (m) |
---|
105 | DOUBLE PRECISION vrat_cld ! Volume ratio |
---|
106 | DOUBLE PRECISION rb_cld(nbin_cld+1)! boundary values of each rad_cld bin (m) |
---|
107 | SAVE rb_cld |
---|
108 | DOUBLE PRECISION dr_cld(nbin_cld)! width of each rad_cld bin (m) |
---|
109 | DOUBLE PRECISION vol_cld(nbin_cld) ! particle volume for each bin (m3) |
---|
110 | |
---|
111 | REAL sigma_ice ! Variance of the ice and CCN distributions |
---|
112 | SAVE sigma_ice |
---|
113 | |
---|
114 | c some outputs for 1D |
---|
115 | REAL satu_out(ngridmx,nlayermx) ! satu ratio for output |
---|
116 | REAL dN_out(ngridmx,nlayermx) ! mass variation for output |
---|
117 | REAL dM_out(ngridmx,nlayermx) ! number variation for output |
---|
118 | REAL dM_col(ngridmx) ! total mass condensed in column |
---|
119 | REAL dN_col(ngridmx) ! total mass condensed in column |
---|
120 | REAL Mcon_out(ngridmx,nlayermx) ! mass to be condensed (not dMice !!) |
---|
121 | REAL gr_out(ngridmx,nlayermx) ! for 1d output |
---|
122 | REAL newvap_out(ngridmx,nlayermx) ! for 1d output |
---|
123 | REAL Mdust_col(ngridmx) ! total column dust mass |
---|
124 | REAL Ndust_col(ngridmx) ! total column dust mass |
---|
125 | REAL Mccn_col(ngridmx) ! total column ccn mass |
---|
126 | REAL Nccn_col(ngridmx) ! total column ccn mass |
---|
127 | REAL count |
---|
128 | |
---|
129 | |
---|
130 | c------------------------------------------------------------------ |
---|
131 | |
---|
132 | IF (firstcall) THEN |
---|
133 | |
---|
134 | c Definition of the size grid |
---|
135 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
136 | c rad_cld is the primary radius grid used for microphysics computation. |
---|
137 | c The grid spacing is computed assuming a constant volume ratio |
---|
138 | c between two consecutive bins; i.e. vrat_cld. |
---|
139 | c vrat_cld is determined from the boundary values of the size grid: |
---|
140 | c rmin_cld and rmax_cld. |
---|
141 | c The rb_cld array contains the boundary values of each rad_cld bin. |
---|
142 | c dr_cld is the width of each rad_cld bin. |
---|
143 | |
---|
144 | c Volume ratio between two adjacent bins |
---|
145 | vrat_cld = dlog(rmax_cld/rmin_cld) / float(nbin_cld-1) *3. |
---|
146 | vrat_cld = dexp(vrat_cld) |
---|
147 | write(*,*) "vrat_cld", vrat_cld |
---|
148 | |
---|
149 | rb_cld(1) = rbmin_cld |
---|
150 | rad_cld(1) = rmin_cld |
---|
151 | vol_cld(1) = 4./3. * dble(pi) * rmin_cld**3. |
---|
152 | |
---|
153 | do i=1,nbin_cld-1 |
---|
154 | rad_cld(i+1) = rad_cld(i) * vrat_cld**(1./3.) |
---|
155 | vol_cld(i+1) = vol_cld(i) * vrat_cld |
---|
156 | enddo |
---|
157 | |
---|
158 | do i=1,nbin_cld |
---|
159 | rb_cld(i+1)= ( (2.*vrat_cld) / (vrat_cld+1.) )**(1./3.) * |
---|
160 | & rad_cld(i) |
---|
161 | dr_cld(i) = rb_cld(i+1) - rb_cld(i) |
---|
162 | enddo |
---|
163 | rb_cld(nbin_cld+1) = rbmax_cld |
---|
164 | dr_cld(nbin_cld) = rb_cld(nbin_cld+1) - rb_cld(nbin_cld) |
---|
165 | |
---|
166 | print*, ' ' |
---|
167 | print*,'Microphysics: size bin information:' |
---|
168 | print*,'i,rb_cld(i), rad_cld(i),dr_cld(i)' |
---|
169 | print*,'-----------------------------------' |
---|
170 | do i=1,nbin_cld |
---|
171 | write(*,'(i2,3x,3(e12.6,4x))') i,rb_cld(i), rad_cld(i), |
---|
172 | & dr_cld(i) |
---|
173 | enddo |
---|
174 | write(*,'(i2,3x,e12.6)') nbin_cld+1,rb_cld(nbin_cld+1) |
---|
175 | print*,'-----------------------------------' |
---|
176 | |
---|
177 | c Contact parameter of water ice on dust ( m=cos(theta) ) |
---|
178 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
179 | ! mteta = 0.95 |
---|
180 | write(*,*) 'water_param contact parameter:', mteta |
---|
181 | |
---|
182 | c Volume of a water molecule (m3) |
---|
183 | vo1 = mh2o / dble(rho_ice) |
---|
184 | c Variance of the ice and CCN distributions |
---|
185 | sigma_ice = sqrt(log(1.+nuice_sed)) |
---|
186 | |
---|
187 | write(*,*) 'Variance of ice & CCN distribs :', sigma_ice |
---|
188 | write(*,*) 'Volume of a water molecule:', vo1 |
---|
189 | |
---|
190 | firstcall=.false. |
---|
191 | END IF |
---|
192 | |
---|
193 | c----------------------------------------------------------------------- |
---|
194 | c 1. Initialization |
---|
195 | c----------------------------------------------------------------------- |
---|
196 | c Initialize the tendencies |
---|
197 | pdqscloud(1:ngrid,1:nq)=0 |
---|
198 | pdqcloud(1:ngrid,1:nlay,1:nq)=0 |
---|
199 | pdtcloud(1:ngrid,1:nlay)=0 |
---|
200 | |
---|
201 | c Update the needed variables |
---|
202 | do l=1,nlay |
---|
203 | do ig=1,ngrid |
---|
204 | c Temperature |
---|
205 | zt(ig,l)=pt(ig,l)+ pdt(ig,l)*ptimestep |
---|
206 | c Dust mass mixing ratio |
---|
207 | zq(ig,l,igcm_dust_mass) = |
---|
208 | & pq(ig,l,igcm_dust_mass) + |
---|
209 | & pdq(ig,l,igcm_dust_mass) * ptimestep |
---|
210 | zq0(ig,l,igcm_dust_mass)=zq(ig,l,igcm_dust_mass) |
---|
211 | c Dust particle number |
---|
212 | zq(ig,l,igcm_dust_number) = |
---|
213 | & pq(ig,l,igcm_dust_number) + |
---|
214 | & pdq(ig,l,igcm_dust_number) * ptimestep |
---|
215 | zq0(ig,l,igcm_dust_number)=zq(ig,l,igcm_dust_number) |
---|
216 | c Update rdust from last tendencies |
---|
217 | rdust(ig,l)= |
---|
218 | & CBRT(r3n_q*zq(ig,l,igcm_dust_mass)/ |
---|
219 | & max(zq(ig,l,igcm_dust_number),0.01)) |
---|
220 | rdust(ig,l)=min(max(rdust(ig,l),1.e-10),500.e-6) |
---|
221 | c CCN mass mixing ratio |
---|
222 | zq(ig,l,igcm_ccn_mass)= |
---|
223 | & pq(ig,l,igcm_ccn_mass)+pdq(ig,l,igcm_ccn_mass)*ptimestep |
---|
224 | zq(ig,l,igcm_ccn_mass)=max(zq(ig,l,igcm_ccn_mass),1.E-30) |
---|
225 | zq0(ig,l,igcm_ccn_mass)=zq(ig,l,igcm_ccn_mass) |
---|
226 | c CCN particle number |
---|
227 | zq(ig,l,igcm_ccn_number)= |
---|
228 | & pq(ig,l,igcm_ccn_number)+pdq(ig,l,igcm_ccn_number)*ptimestep |
---|
229 | zq(ig,l,igcm_ccn_number)=max(zq(ig,l,igcm_ccn_number),1.E-30) |
---|
230 | zq0(ig,l,igcm_ccn_number)=zq(ig,l,igcm_ccn_number) |
---|
231 | c Water vapor |
---|
232 | zq(ig,l,igcm_h2o_vap)= |
---|
233 | & pq(ig,l,igcm_h2o_vap)+pdq(ig,l,igcm_h2o_vap)*ptimestep |
---|
234 | zq(ig,l,igcm_h2o_vap)=max(zq(ig,l,igcm_h2o_vap),1.E-30) ! FF 12/2004 |
---|
235 | zq0(ig,l,igcm_h2o_vap)=zq(ig,l,igcm_h2o_vap) |
---|
236 | c Water ice |
---|
237 | zq(ig,l,igcm_h2o_ice)= |
---|
238 | & pq(ig,l,igcm_h2o_ice)+pdq(ig,l,igcm_h2o_ice)*ptimestep |
---|
239 | zq(ig,l,igcm_h2o_ice)=max(zq(ig,l,igcm_h2o_ice),0.) ! FF 12/2004 |
---|
240 | zq0(ig,l,igcm_h2o_ice)=zq(ig,l,igcm_h2o_ice) |
---|
241 | enddo |
---|
242 | enddo |
---|
243 | |
---|
244 | |
---|
245 | c------------------------------------------------------------------ |
---|
246 | c Cloud microphysical scheme |
---|
247 | c------------------------------------------------------------------ |
---|
248 | |
---|
249 | Cste = ptimestep * 4. * pi * rho_ice |
---|
250 | |
---|
251 | call watersat(ngridmx*nlayermx,zt,pplay,zqsat) |
---|
252 | |
---|
253 | count = 0 |
---|
254 | |
---|
255 | c Main loop over the GCM's grid |
---|
256 | DO l=1,nlay |
---|
257 | DO ig=1,ngrid |
---|
258 | |
---|
259 | c Get the partial pressure of water vapor and its saturation ratio |
---|
260 | ph2o = zq(ig,l,igcm_h2o_vap) * (44./18.) * pplay(ig,l) |
---|
261 | satu = zq(ig,l,igcm_h2o_vap) / zqsat(ig,l) |
---|
262 | |
---|
263 | IF ((satu .ge. 1)! ) THEN ! if we have condensation |
---|
264 | & .or. ( zq(ig,l,igcm_ccn_number) |
---|
265 | & .ge. 10) ) THEN ! or sublimation |
---|
266 | |
---|
267 | |
---|
268 | c Expand the dust moments into a binned distribution |
---|
269 | Mo = zq(ig,l,igcm_dust_mass)* tauscaling(ig) |
---|
270 | No = zq(ig,l,igcm_dust_number)* tauscaling(ig)+ 1.e-30 |
---|
271 | Rn = rdust(ig,l) |
---|
272 | Rm = Rn * exp( 3. * sigma_ice**2. ) |
---|
273 | Rn = 1. / Rn |
---|
274 | Rm = 1. / Rm |
---|
275 | dev2 = 1. / ( sqrt(2.) * sigma_ice ) |
---|
276 | do i = 1, nbin_cld |
---|
277 | n_aer(i) = 0.5 * No * ( derf( dlog(rb_cld(i+1)*Rn) * dev2 ) |
---|
278 | & -derf( dlog(rb_cld(i) * Rn) * dev2 ) ) |
---|
279 | m_aer(i) = 0.5 * Mo * ( derf( dlog(rb_cld(i+1)*Rm) * dev2 ) |
---|
280 | & -derf( dlog(rb_cld(i) * Rm) * dev2 ) ) |
---|
281 | enddo |
---|
282 | |
---|
283 | ! sumcheck = 0 |
---|
284 | ! do i = 1, nbin_cld |
---|
285 | ! sumcheck = sumcheck + n_aer(i) |
---|
286 | ! enddo |
---|
287 | ! sumcheck = abs(sumcheck/No - 1) |
---|
288 | ! if ((sumcheck .gt. 1e-5).and. (1./Rn .gt. rmin_cld)) then |
---|
289 | ! print*, "WARNING, No sumcheck PROBLEM" |
---|
290 | ! print*, "sumcheck, No",sumcheck, No |
---|
291 | ! print*, "min radius, Rn, ig, l", rmin_cld, 1./Rn, ig, l |
---|
292 | ! print*, "Dust binned distribution", n_aer |
---|
293 | ! endif |
---|
294 | ! |
---|
295 | ! sumcheck = 0 |
---|
296 | ! do i = 1, nbin_cld |
---|
297 | ! sumcheck = sumcheck + m_aer(i) |
---|
298 | ! enddo |
---|
299 | ! sumcheck = abs(sumcheck/Mo - 1) |
---|
300 | ! if ((sumcheck .gt. 1e-5) .and. (1./Rn .gt. rmin_cld)) then |
---|
301 | ! print*, "WARNING, Mo sumcheck PROBLEM" |
---|
302 | ! print*, "sumcheck, Mo",sumcheck, Mo |
---|
303 | ! print*, "min radius, Rm, ig, l", rmin_cld, 1./Rm, ig, l |
---|
304 | ! print*, "Dust binned distribution", m_aer |
---|
305 | ! endif |
---|
306 | |
---|
307 | c Get the rates of nucleation |
---|
308 | call nuclea(ph2o,zt(ig,l),satu,n_aer,rate) |
---|
309 | |
---|
310 | |
---|
311 | dN = 0. |
---|
312 | dM = 0. |
---|
313 | do i = 1, nbin_cld |
---|
314 | n_aer(i) = n_aer(i) / ( 1. + rate(i)*ptimestep ) |
---|
315 | m_aer(i) = m_aer(i) / ( 1. + rate(i)*ptimestep ) |
---|
316 | dN = dN + n_aer(i) * rate(i) * ptimestep |
---|
317 | dM = dM + m_aer(i) * rate(i) * ptimestep |
---|
318 | enddo |
---|
319 | |
---|
320 | ! dN = min( max(dN,-zq(ig,l,igcm_ccn_number) ), |
---|
321 | ! & zq(ig,l,igcm_dust_number) ) |
---|
322 | ! |
---|
323 | ! dM = min( max(dM,-zq(ig,l,igcm_ccn_mass) ), |
---|
324 | ! & zq(ig,l,igcm_dust_mass) ) |
---|
325 | |
---|
326 | Mo = zq0(ig,l,igcm_h2o_ice) + |
---|
327 | & zq0(ig,l,igcm_ccn_mass)* tauscaling(ig) + 1.e-30 |
---|
328 | No = zq0(ig,l,igcm_ccn_number)* tauscaling(ig)+ 1e-30 |
---|
329 | !write(*,*) "l,cloud particles,cloud mass",l, No, Mo |
---|
330 | rhocloud(ig,l) = zq0(ig,l,igcm_h2o_ice) / Mo * rho_ice |
---|
331 | & +zq0(ig,l,igcm_ccn_mass)* tauscaling(ig) |
---|
332 | & / Mo * rho_dust |
---|
333 | rhocloud(ig,l) = min(max(rhocloud(ig,l),rho_ice),rho_dust) |
---|
334 | rice(ig,l) = |
---|
335 | & ( Mo / No * 0.75 / pi / rhocloud(ig,l) ) **(1./3.) |
---|
336 | c nuice(ig,l)=nuice_ref ! used for rad. transfer calculations |
---|
337 | if ((Mo.lt.1.e-20) .or. (No.le.1)) rice(ig,l) = 1.e-8 |
---|
338 | seq = exp( 2.*sig(zt(ig,l))*mh2o / |
---|
339 | & (rho_ice*rgp*zt(ig,l)*rice(ig,l)) ) |
---|
340 | |
---|
341 | call growthrate(ptimestep,zt(ig,l),pplay(ig,l), |
---|
342 | & ph2o,ph2o/satu,seq,rice(ig,l),gr) |
---|
343 | |
---|
344 | up = Cste * gr * rice(ig,l) * No * seq + |
---|
345 | & zq(ig,l,igcm_h2o_vap) |
---|
346 | dwn = Cste * gr * rice(ig,l) * No / zqsat(ig,l)+ 1. |
---|
347 | |
---|
348 | Ctot = zq0(ig,l,igcm_h2o_ice) + zq(ig,l,igcm_h2o_vap) |
---|
349 | |
---|
350 | newvap = min(up/dwn,Ctot) |
---|
351 | |
---|
352 | gr = gr * ( newvap/zqsat(ig,l) - seq ) |
---|
353 | |
---|
354 | |
---|
355 | dMice = min( max(Cste * No * rice(ig,l) * gr, |
---|
356 | & -zq(ig,l,igcm_h2o_ice) ), |
---|
357 | & zq(ig,l,igcm_h2o_vap) ) |
---|
358 | |
---|
359 | c----------- TESTS 1D output --------- |
---|
360 | satu_out(ig,l) = satu |
---|
361 | Mcon_out(ig,l) = dMice |
---|
362 | newvap_out(ig,l) = newvap |
---|
363 | gr_out(ig,l) = gr |
---|
364 | dN_out(ig,l) = dN |
---|
365 | dM_out(ig,l) = dM |
---|
366 | c------------------------------------- |
---|
367 | |
---|
368 | c Water ice |
---|
369 | zq(ig,l,igcm_h2o_ice) = zq0(ig,l,igcm_h2o_ice) + |
---|
370 | & dMice |
---|
371 | |
---|
372 | c Water vapor |
---|
373 | zq(ig,l,igcm_h2o_vap) = zq0(ig,l,igcm_h2o_vap) - |
---|
374 | & dMice |
---|
375 | |
---|
376 | c If all the ice particles sublimate, all the condensation |
---|
377 | c nuclei are released: |
---|
378 | if (zq(ig,l,igcm_h2o_ice).le.1e-30) then |
---|
379 | c for coherence |
---|
380 | dM = 0 |
---|
381 | dN = 0 |
---|
382 | dN_out(ig,l) = - zq(ig,l,igcm_ccn_number)*tauscaling(ig) |
---|
383 | dM_out(ig,l) = - zq(ig,l,igcm_ccn_mass)*tauscaling(ig) |
---|
384 | c Water ice particles |
---|
385 | zq(ig,l,igcm_h2o_ice) = 0. |
---|
386 | c Dust particles |
---|
387 | zq(ig,l,igcm_dust_mass) = zq(ig,l,igcm_dust_mass) + |
---|
388 | & zq(ig,l,igcm_ccn_mass) |
---|
389 | zq(ig,l,igcm_dust_number) = zq(ig,l,igcm_dust_number) + |
---|
390 | & zq(ig,l,igcm_ccn_number) |
---|
391 | c CCNs |
---|
392 | zq(ig,l,igcm_ccn_mass) = 0. |
---|
393 | zq(ig,l,igcm_ccn_number) = 0. |
---|
394 | endif |
---|
395 | |
---|
396 | dN = dN/ tauscaling(ig) |
---|
397 | dM = dM/ tauscaling(ig) |
---|
398 | c Dust particles |
---|
399 | zq(ig,l,igcm_dust_mass) = zq(ig,l,igcm_dust_mass) - dM |
---|
400 | zq(ig,l,igcm_dust_number) = zq(ig,l,igcm_dust_number) - dN |
---|
401 | c CCNs |
---|
402 | zq(ig,l,igcm_ccn_mass) = zq(ig,l,igcm_ccn_mass) + dM |
---|
403 | zq(ig,l,igcm_ccn_number) = zq(ig,l,igcm_ccn_number) + dN |
---|
404 | |
---|
405 | pdqcloud(ig,l,igcm_dust_mass)=(zq(ig,l,igcm_dust_mass) |
---|
406 | & -zq0(ig,l,igcm_dust_mass))/ptimestep |
---|
407 | pdqcloud(ig,l,igcm_dust_number)=(zq(ig,l,igcm_dust_number) |
---|
408 | & -zq0(ig,l,igcm_dust_number))/ptimestep |
---|
409 | pdqcloud(ig,l,igcm_ccn_mass)=(zq(ig,l,igcm_ccn_mass) |
---|
410 | & -zq0(ig,l,igcm_ccn_mass))/ptimestep |
---|
411 | pdqcloud(ig,l,igcm_ccn_number)=(zq(ig,l,igcm_ccn_number) |
---|
412 | & -zq0(ig,l,igcm_ccn_number))/ptimestep |
---|
413 | pdqcloud(ig,l,igcm_h2o_vap)=(zq(ig,l,igcm_h2o_vap) |
---|
414 | & -zq0(ig,l,igcm_h2o_vap))/ptimestep |
---|
415 | pdqcloud(ig,l,igcm_h2o_ice)=(zq(ig,l,igcm_h2o_ice) |
---|
416 | & -zq0(ig,l,igcm_h2o_ice))/ptimestep |
---|
417 | |
---|
418 | count = count +1 |
---|
419 | ELSE ! for coherence (rdust, rice computations etc ..) |
---|
420 | zq(ig,l,igcm_dust_mass) = zq0(ig,l,igcm_dust_mass) |
---|
421 | zq(ig,l,igcm_dust_number) = zq0(ig,l,igcm_dust_number) |
---|
422 | zq(ig,l,igcm_ccn_mass) = zq0(ig,l,igcm_ccn_mass) |
---|
423 | zq(ig,l,igcm_ccn_number) = zq0(ig,l,igcm_ccn_number) |
---|
424 | zq(ig,l,igcm_h2o_ice) = zq0(ig,l,igcm_h2o_ice) |
---|
425 | zq(ig,l,igcm_h2o_vap) = zq0(ig,l,igcm_h2o_vap) |
---|
426 | |
---|
427 | ! pour les sorties de test |
---|
428 | satu_out(ig,l) = satu |
---|
429 | Mcon_out(ig,l) = 0 |
---|
430 | newvap_out(ig,l) = zq(ig,l,igcm_h2o_ice) |
---|
431 | gr_out(ig,l) = gr |
---|
432 | dN_out(ig,l) = dN |
---|
433 | dM_out(ig,l) = dM |
---|
434 | |
---|
435 | ENDIF ! end if (saturation ratio > 1) or (there is h2o_ice) |
---|
436 | |
---|
437 | c-----update temperature |
---|
438 | lw=(2834.3-0.28*(zt(ig,l)-To)-0.004*(zt(ig,l)-To)**2)*1.e+3 |
---|
439 | pdtcloud(ig,l)=-pdqcloud(ig,l,igcm_h2o_vap)*lw/cpp |
---|
440 | |
---|
441 | c----- update rice & rhocloud AFTER scavenging |
---|
442 | Mo = zq(ig,l,igcm_h2o_ice) + |
---|
443 | & zq(ig,l,igcm_ccn_mass)* tauscaling(ig) + 1.e-30 |
---|
444 | No = zq(ig,l,igcm_ccn_number)* tauscaling(ig)+ 1e-30 |
---|
445 | rhocloud(ig,l) = zq(ig,l,igcm_h2o_ice) / Mo * rho_ice |
---|
446 | & +zq(ig,l,igcm_ccn_mass)* tauscaling(ig) |
---|
447 | & / Mo * rho_dust |
---|
448 | rhocloud(ig,l) = min(max(rhocloud(ig,l),rho_ice),rho_dust) |
---|
449 | rice(ig,l) = |
---|
450 | & ( Mo / No * 0.75 / pi / rhocloud(ig,l) ) **(1./3.) |
---|
451 | if ((Mo.lt.1.e-20) .or. (No.le.1)) rice(ig,l) = 1.e-8 |
---|
452 | |
---|
453 | nuice(ig,l)=nuice_ref ! used for rad. transfer calculations |
---|
454 | |
---|
455 | c----- update rdust and sedimentation radius |
---|
456 | rdust(ig,l)= |
---|
457 | & CBRT(r3n_q*zq(ig,l,igcm_dust_mass)/ |
---|
458 | & max(zq(ig,l,igcm_dust_number),0.01)) |
---|
459 | rdust(ig,l)=min(max(rdust(ig,l),1.e-10),500.e-6) |
---|
460 | |
---|
461 | rsedcloud(ig,l)=max( rice(ig,l)*(1.+nuice_sed)**3., |
---|
462 | & rdust(ig,l) ) |
---|
463 | rsedcloud(ig,l)=min(rsedcloud(ig,l),1.e-4) |
---|
464 | |
---|
465 | ENDDO |
---|
466 | ENDDO |
---|
467 | |
---|
468 | |
---|
469 | c------------------------------------------------------------------ |
---|
470 | c------------------------------------------------------------------ |
---|
471 | c------------------------------------------------------------------ |
---|
472 | c------------------------------------------------------------------ |
---|
473 | c------------------------------------------------------------------ |
---|
474 | c TESTS |
---|
475 | |
---|
476 | print*, 'count is ',count, ' i.e. ', |
---|
477 | & count*100/(nlay*ngrid), '% for microphys computation' |
---|
478 | |
---|
479 | c dM_col(:) = 0 |
---|
480 | c dN_col(:) = 0 |
---|
481 | c Mdust_col(:) = 0 |
---|
482 | c Ndust_col(:) = 0 |
---|
483 | c Mccn_col(:) = 0 |
---|
484 | c Nccn_col(:) = 0 |
---|
485 | c do l=1, nlay |
---|
486 | c do ig=1,ngrid |
---|
487 | c dM_col(ig) = dM_col(ig) + |
---|
488 | c & dM_out(ig,l)*(pplev(ig,l) - pplev(ig,l+1)) / g |
---|
489 | c dN_col(ig) = dN_col(ig) + |
---|
490 | c & dN_out(ig,l)*(pplev(ig,l) - pplev(ig,l+1)) / g |
---|
491 | c Mdust_col(ig) = Mdust_col(ig) + |
---|
492 | c & zq(ig,l,igcm_dust_mass)*tauscaling(ig) |
---|
493 | c & *(pplev(ig,l) - pplev(ig,l+1)) / g |
---|
494 | c Ndust_col(ig) = Ndust_col(ig) + |
---|
495 | c & zq(ig,l,igcm_dust_number)*tauscaling(ig) |
---|
496 | c & *(pplev(ig,l) - pplev(ig,l+1)) / g |
---|
497 | c Mccn_col(ig) = Mccn_col(ig) + |
---|
498 | c & zq(ig,l,igcm_ccn_mass)*tauscaling(ig) |
---|
499 | c & *(pplev(ig,l) - pplev(ig,l+1)) / g |
---|
500 | c Nccn_col(ig) = Nccn_col(ig) + |
---|
501 | c & zq(ig,l,igcm_ccn_number)*tauscaling(ig) |
---|
502 | c & *(pplev(ig,l) - pplev(ig,l+1)) / g |
---|
503 | c enddo ! of do ig=1,ngrid |
---|
504 | c enddo ! of do l=1,nlay |
---|
505 | |
---|
506 | |
---|
507 | IF (ngrid.eq.0) THEN ! 3D |
---|
508 | call WRITEDIAGFI(ngrid,"satu","ratio saturation","",3, |
---|
509 | & satu_out) |
---|
510 | call WRITEDIAGFI(ngrid,"dM_col","dM column","kg",2, |
---|
511 | & dM_col) |
---|
512 | call WRITEDIAGFI(ngrid,"dN_col","dN column","N",2, |
---|
513 | & dN_col) |
---|
514 | call WRITEDIAGFI(ngrid,"Ndust_col","M column","N",2, |
---|
515 | & Ndust_col) |
---|
516 | call WRITEDIAGFI(ngrid,"Mdust_col","N column","kg",2, |
---|
517 | & Mdust_col) |
---|
518 | call WRITEDIAGFI(ngrid,"Nccn_col","M column","N",2, |
---|
519 | & Nccn_col) |
---|
520 | call WRITEDIAGFI(ngrid,"Mccn_col","N column","kg",2, |
---|
521 | & Mccn_col) |
---|
522 | call WRITEDIAGFI(ngrid,"dM","ccn variation","kg/kg",3, |
---|
523 | & dM_out) |
---|
524 | call WRITEDIAGFI(ngrid,"dN","ccn variation","#",3, |
---|
525 | & dN_out) |
---|
526 | ENDIF |
---|
527 | |
---|
528 | IF (ngrid.eq.1) THEN ! 1D |
---|
529 | |
---|
530 | call WRITEDIAGFI(ngrid,"newvap","h2o newvap","kg",1, |
---|
531 | & newvap_out) |
---|
532 | call WRITEDIAGFI(ngrid,"growthrate","growth rate","m^2/s",1, |
---|
533 | & gr_out) |
---|
534 | call WRITEDIAGFI(ngrid,"dM","ccn variation","kg",1, |
---|
535 | & dM_out) |
---|
536 | call WRITEDIAGFI(ngrid,"dN","ccn variation","#",1, |
---|
537 | & dN_out) |
---|
538 | call WRITEDIAGFI(ngrid,"mcond","h2o condensed mass","kg",1, |
---|
539 | & Mcon_out) |
---|
540 | call WRITEDIAGFI(ngrid,"zqsat","p vap sat","kg/kg",1, |
---|
541 | & zqsat) |
---|
542 | call WRITEDIAGFI(ngrid,"satu","ratio saturation","",1, |
---|
543 | & satu_out) |
---|
544 | call WRITEDIAGFI(ngrid,"rice_sca","ice radius","m",1, |
---|
545 | & rice) |
---|
546 | call WRITEDIAGFI(ngrid,"rdust","rdust","m",1, |
---|
547 | & rdust) |
---|
548 | call WRITEDIAGFI(ngrid,"rsedcloud","rsedcloud","m",1, |
---|
549 | & rsedcloud) |
---|
550 | call WRITEDIAGFI(ngrid,"rhocloud","rhocloud","kg.m-3",1, |
---|
551 | & rhocloud) |
---|
552 | call WRITEDIAGFI(ngrid,"dM_col","dM column","kg",0, |
---|
553 | & dM_col) |
---|
554 | call WRITEDIAGFI(ngrid,"dN_col","dN column","N",0, |
---|
555 | & dN_col) |
---|
556 | call WRITEDIAGFI(ngrid,"Ndust_col","M column","N",0, |
---|
557 | & Ndust_col) |
---|
558 | call WRITEDIAGFI(ngrid,"Mdust_col","N column","kg",0, |
---|
559 | & Mdust_col) |
---|
560 | call WRITEDIAGFI(ngrid,"Nccn_col","M column","N",0, |
---|
561 | & Nccn_col) |
---|
562 | call WRITEDIAGFI(ngrid,"Mccn_col","N column","kg",0, |
---|
563 | & Mccn_col) |
---|
564 | ENDIF |
---|
565 | c------------------------------------------------------------------ |
---|
566 | return |
---|
567 | end |
---|