source: trunk/LMDZ.MARS/libf/phymars/improvedclouds.F @ 1917

Last change on this file since 1917 was 1909, checked in by mvals, 7 years ago
File size: 21.0 KB
Line 
1      subroutine improvedclouds(ngrid,nlay,microtimestep,
2     &             pplay,pteff,sum_subpdt,
3     &             pqeff,sum_subpdq,subpdqcloud,subpdtcloud,
4     &             nq,tauscaling)
5! to use  'getin'
6      USE ioipsl_getincom
7      USE updaterad
8      use tracer_mod, only: rho_ice, nuice_sed, igcm_h2o_vap,
9     &                      igcm_h2o_ice, igcm_dust_mass,
10     &                      igcm_dust_number, igcm_ccn_mass,
11     &                      igcm_ccn_number
12      use conc_mod, only: mmean
13      USE comcstfi_h
14      implicit none
15     
16     
17c------------------------------------------------------------------
18c  This routine is used to form clouds when a parcel of the GCM is
19c    saturated. It includes the ability to have supersaturation, a
20c    computation of the nucleation rates, growthrates and the
21c    scavenging of dust particles by clouds.
22c  It is worth noting that the amount of dust is computed using the
23c    dust optical depth computed in aeropacity.F. That's why
24c    the variable called "tauscaling" is used to convert
25c    pq(dust_mass) and pq(dust_number), which are relative
26c    quantities, to absolute and realistic quantities stored in zq.
27c    This has to be done to convert the inputs into absolute
28c    values, but also to convert the outputs back into relative
29c    values which are then used by the sedimentation and advection
30c    schemes.
31
32c  Authors: J.-B. Madeleine, based on the work by Franck Montmessin
33c           (October 2011)
34c           T. Navarro, debug,correction, new scheme (October-April 2011)
35c           A. Spiga, optimization (February 2012)
36c------------------------------------------------------------------
37#include "callkeys.h"
38#include "microphys.h"
39c------------------------------------------------------------------
40c     Inputs:
41
42      INTEGER ngrid,nlay
43      integer nq                 ! nombre de traceurs
44      REAL microtimestep             ! pas de temps physique (s)
45      REAL pplay(ngrid,nlay)     ! pression au milieu des couches (Pa)
46           
47      REAL pteff(ngrid,nlay)        ! temperature at the middle of the
48                                 !   layers (K)
49      REAL sum_subpdt(ngrid,nlay)       ! tendance temperature des autres
50                                 !   param.
51      REAL pqeff(ngrid,nlay,nq)     ! traceur (kg/kg)
52      REAL sum_subpdq(ngrid,nlay,nq)    ! tendance avant condensation
53                                 !   (kg/kg.s-1)
54      REAL tauscaling(ngrid)     ! Convertion factor for qdust and Ndust
55
56c     Outputs:
57      REAL subpdqcloud(ngrid,nlay,nq) ! tendance de la condensation
58                                   !   H2O(kg/kg.s-1)
59      REAL subpdtcloud(ngrid,nlay)    ! tendance temperature due
60                                   !   a la chaleur latente
61
62c------------------------------------------------------------------
63c     Local variables:
64
65      LOGICAL firstcall
66      DATA firstcall/.true./
67      SAVE firstcall
68
69      REAL*8   derf ! Error function
70      !external derf
71     
72      INTEGER ig,l,i
73     
74      REAL zq(ngrid,nlay,nq)  ! local value of tracers
75      REAL zq0(ngrid,nlay,nq) ! local initial value of tracers
76      REAL zt(ngrid,nlay)       ! local value of temperature
77      REAL zqsat(ngrid,nlay)    ! saturation
78      REAL lw                         !Latent heat of sublimation (J.kg-1)
79      REAL cste
80      REAL dMice           ! mass of condensed ice
81!      REAL sumcheck
82      REAL*8 ph2o          ! Water vapor partial pressure (Pa)
83      REAL*8 satu          ! Water vapor saturation ratio over ice
84      REAL*8 Mo,No
85      REAL*8 Rn, Rm, dev2, n_derf, m_derf
86      REAL*8 n_aer(nbin_cld) ! number conc. of particle/each size bin
87      REAL*8 m_aer(nbin_cld) ! mass mixing ratio of particle/each size bin
88
89      REAL*8 sig      ! Water-ice/air surface tension  (N.m)
90      EXTERNAL sig
91
92      REAL dN,dM
93      REAL rate(nbin_cld)  ! nucleation rate
94      REAL seq
95
96      REAL rice(ngrid,nlay)      ! Ice mass mean radius (m)
97                                 ! (r_c in montmessin_2004)
98      REAL rhocloud(ngrid,nlay)  ! Cloud density (kg.m-3)
99      REAL rdust(ngrid,nlay) ! Dust geometric mean radius (m)
100
101      REAL res      ! Resistance growth
102     
103
104c     Parameters of the size discretization
105c       used by the microphysical scheme
106      DOUBLE PRECISION, PARAMETER :: rmin_cld = 0.1e-6 ! Minimum radius (m)
107      DOUBLE PRECISION, PARAMETER :: rmax_cld = 10.e-6 ! Maximum radius (m)
108      DOUBLE PRECISION, PARAMETER :: rbmin_cld = 0.0001e-6
109                                           ! Minimum boundary radius (m)
110      DOUBLE PRECISION, PARAMETER :: rbmax_cld = 1.e-2 ! Maximum boundary radius (m)
111      DOUBLE PRECISION vrat_cld ! Volume ratio
112      DOUBLE PRECISION rb_cld(nbin_cld+1)! boundary values of each rad_cld bin (m)
113      SAVE rb_cld
114      DOUBLE PRECISION dr_cld(nbin_cld)   ! width of each rad_cld bin (m)
115      DOUBLE PRECISION vol_cld(nbin_cld)  ! particle volume for each bin (m3)
116
117
118      REAL sigma_ice ! Variance of the ice and CCN distributions
119      SAVE sigma_ice
120
121
122     
123c----------------------------------     
124c TESTS
125
126      INTEGER countcells
127     
128      LOGICAL test_flag    ! flag for test/debuging outputs
129      SAVE    test_flag   
130
131
132      REAL satubf(ngrid,nlay),satuaf(ngrid,nlay)
133      REAL res_out(ngrid,nlay)
134 
135
136c------------------------------------------------------------------
137
138      ! AS: firstcall OK absolute
139      IF (firstcall) THEN
140!=============================================================
141! 0. Definition of the size grid
142!=============================================================
143c       rad_cld is the primary radius grid used for microphysics computation.
144c       The grid spacing is computed assuming a constant volume ratio
145c       between two consecutive bins; i.e. vrat_cld.
146c       vrat_cld is determined from the boundary values of the size grid:
147c       rmin_cld and rmax_cld.
148c       The rb_cld array contains the boundary values of each rad_cld bin.
149c       dr_cld is the width of each rad_cld bin.
150
151c       Volume ratio between two adjacent bins
152!        vrat_cld = log(rmax_cld/rmin_cld) / float(nbin_cld-1) *3.
153!        vrat_cld = exp(vrat_cld)
154        vrat_cld = dlog(rmax_cld/rmin_cld) / float(nbin_cld-1) *3.
155        vrat_cld = dexp(vrat_cld)
156        write(*,*) "vrat_cld", vrat_cld
157
158        rb_cld(1)  = rbmin_cld
159        rad_cld(1) = rmin_cld
160        vol_cld(1) = 4./3. * dble(pi) * rmin_cld*rmin_cld*rmin_cld
161!        vol_cld(1) = 4./3. * pi * rmin_cld*rmin_cld*rmin_cld
162
163        do i=1,nbin_cld-1
164          rad_cld(i+1)  = rad_cld(i) * vrat_cld**(1./3.)
165          vol_cld(i+1)  = vol_cld(i) * vrat_cld
166        enddo
167       
168        do i=1,nbin_cld
169          rb_cld(i+1)= ( (2.*vrat_cld) / (vrat_cld+1.) )**(1./3.) *
170     &      rad_cld(i)
171          dr_cld(i)  = rb_cld(i+1) - rb_cld(i)
172        enddo
173        rb_cld(nbin_cld+1) = rbmax_cld
174        dr_cld(nbin_cld)   = rb_cld(nbin_cld+1) - rb_cld(nbin_cld)
175
176        print*, ' '
177        print*,'Microphysics: size bin information:'
178        print*,'i,rb_cld(i), rad_cld(i),dr_cld(i)'
179        print*,'-----------------------------------'
180        do i=1,nbin_cld
181          write(*,'(i2,3x,3(e12.6,4x))') i,rb_cld(i), rad_cld(i),
182     &      dr_cld(i)
183        enddo
184        write(*,'(i2,3x,e12.6)') nbin_cld+1,rb_cld(nbin_cld+1)
185        print*,'-----------------------------------'
186
187        do i=1,nbin_cld+1
188!           rb_cld(i) = log(rb_cld(i)) 
189            rb_cld(i) = dlog(rb_cld(i))  !! we save that so that it is not computed
190                                         !! at each timestep and gridpoint
191        enddo
192
193c       Contact parameter of water ice on dust ( m=cos(theta) )
194c       ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
195!       mteta  = 0.95
196        write(*,*) 'water_param contact parameter:', mteta
197
198c       Volume of a water molecule (m3)
199        vo1 = mh2o / dble(rho_ice)
200c       Variance of the ice and CCN distributions
201        sigma_ice = sqrt(log(1.+nuice_sed))
202       
203 
204        write(*,*) 'Variance of ice & CCN distribs :', sigma_ice
205        write(*,*) 'nuice for sedimentation:', nuice_sed
206        write(*,*) 'Volume of a water molecule:', vo1
207
208
209        test_flag = .false.
210 
211        firstcall=.false.
212      END IF
213
214
215!=============================================================
216! 1. Initialisation
217!=============================================================
218      cste = 4*pi*rho_ice*microtimestep
219
220      res_out(:,:) = 0
221      rice(:,:) = 1.e-8
222
223c     Initialize the tendencies
224      subpdqcloud(1:ngrid,1:nlay,1:nq)=0
225      subpdtcloud(1:ngrid,1:nlay)=0
226   
227     
228      zt(1:ngrid,1:nlay) =
229     &      pteff(1:ngrid,1:nlay) +
230     &      sum_subpdt(1:ngrid,1:nlay) * microtimestep
231
232      zq(1:ngrid,1:nlay,1:nq) =
233     &      pqeff(1:ngrid,1:nlay,1:nq) +
234     &      sum_subpdq(1:ngrid,1:nlay,1:nq) * microtimestep
235     
236     
237      WHERE( zq(1:ngrid,1:nlay,1:nq) < 1.e-30 )
238     &       zq(1:ngrid,1:nlay,1:nq) = 1.e-30
239
240      zq0(1:ngrid,1:nlay,1:nq) = zq(1:ngrid,1:nlay,1:nq)
241     
242!=============================================================
243! 2. Compute saturation
244!=============================================================
245
246
247      dev2 = 1. / ( sqrt(2.) * sigma_ice )
248
249      call watersat(ngrid*nlay,zt,pplay,zqsat)
250           
251      countcells = 0
252
253c     Main loop over the GCM's grid
254      DO l=1,nlay
255        DO ig=1,ngrid
256
257c       Get the partial pressure of water vapor and its saturation ratio
258        ph2o = zq(ig,l,igcm_h2o_vap) * (mmean(ig,l)/18.) * pplay(ig,l)
259        satu = zq(ig,l,igcm_h2o_vap) / zqsat(ig,l)
260
261!=============================================================
262! 3. Nucleation
263!=============================================================
264
265       IF ( satu .ge. 1. ) THEN         ! if there is condensation
266
267        call updaterccn(zq(ig,l,igcm_dust_mass),
268     &          zq(ig,l,igcm_dust_number),rdust(ig,l),tauscaling(ig))
269
270
271c       Expand the dust moments into a binned distribution
272        Mo = zq(ig,l,igcm_dust_mass)* tauscaling(ig)   + 1.e-30
273        No = zq(ig,l,igcm_dust_number)* tauscaling(ig) + 1.e-30
274        Rn = rdust(ig,l)
275        Rn = -dlog(Rn)
276        Rm = Rn - 3. * sigma_ice*sigma_ice 
277        n_derf = derf( (rb_cld(1)+Rn) *dev2)
278        m_derf = derf( (rb_cld(1)+Rm) *dev2)
279        do i = 1, nbin_cld
280          n_aer(i) = -0.5 * No * n_derf !! this ith previously computed
281          m_aer(i) = -0.5 * Mo * m_derf !! this ith previously computed
282          n_derf = derf( (rb_cld(i+1)+Rn) *dev2)
283          m_derf = derf( (rb_cld(i+1)+Rm) *dev2)
284          n_aer(i) = n_aer(i) + 0.5 * No * n_derf
285          m_aer(i) = m_aer(i) + 0.5 * Mo * m_derf
286        enddo
287       
288!        sumcheck = 0
289!        do i = 1, nbin_cld
290!          sumcheck = sumcheck + n_aer(i)
291!        enddo
292!        sumcheck = abs(sumcheck/No - 1)
293!        if ((sumcheck .gt. 1e-5).and. (1./Rn .gt. rmin_cld)) then
294!          print*, "WARNING, No sumcheck PROBLEM"
295!          print*, "sumcheck, No",sumcheck, No
296!          print*, "min radius, Rn, ig, l", rmin_cld, 1./Rn, ig, l
297!          print*, "Dust binned distribution", n_aer
298!        endif
299!       
300!        sumcheck = 0
301!        do i = 1, nbin_cld
302!          sumcheck = sumcheck + m_aer(i)
303!        enddo
304!        sumcheck = abs(sumcheck/Mo - 1)
305!        if ((sumcheck .gt. 1e-5) .and.  (1./Rn .gt. rmin_cld)) then
306!          print*, "WARNING, Mo sumcheck PROBLEM"
307!          print*, "sumcheck, Mo",sumcheck, Mo
308!          print*, "min radius, Rm, ig, l", rmin_cld, 1./Rm, ig, l
309!          print*, "Dust binned distribution", m_aer
310!        endif
311
312 
313c       Get the rates of nucleation
314        call nuclea(ph2o,zt(ig,l),satu,n_aer,rate)
315       
316        dN = 0.
317        dM = 0.
318        do i = 1, nbin_cld
319          n_aer(i) = n_aer(i)/( 1. + rate(i)*microtimestep)
320          m_aer(i) = m_aer(i)/( 1. + rate(i)*microtimestep)
321          dN       = dN + n_aer(i) * rate(i) * microtimestep
322          dM       = dM + m_aer(i) * rate(i) * microtimestep
323        enddo
324
325
326c       Update Dust particles
327        zq(ig,l,igcm_dust_mass)   =
328     &  zq(ig,l,igcm_dust_mass)   - dM/ tauscaling(ig) !max(tauscaling(ig),1.e-10)
329        zq(ig,l,igcm_dust_number) =
330     &  zq(ig,l,igcm_dust_number) - dN/ tauscaling(ig) !max(tauscaling(ig),1.e-10)
331c       Update CCNs
332        zq(ig,l,igcm_ccn_mass)   =
333     &  zq(ig,l,igcm_ccn_mass)   + dM/ tauscaling(ig) !max(tauscaling(ig),1.e-10)
334        zq(ig,l,igcm_ccn_number) =
335     &  zq(ig,l,igcm_ccn_number) + dN/ tauscaling(ig) !max(tauscaling(ig),1.e-10)
336       
337        ENDIF ! of is satu >1
338
339!=============================================================
340! 4. Ice growth: scheme for radius evolution
341!=============================================================
342
343c We trigger crystal growth if and only if there is at least one nuclei (N>1).
344c Indeed, if we are supersaturated and still don't have at least one nuclei, we should better wait
345c to avoid unrealistic value for nuclei radius and so on for cases that remain negligible.
346
347       IF ( zq(ig,l,igcm_ccn_number)*tauscaling(ig).ge. 1.) THEN ! we trigger crystal growth
348
349     
350        call updaterice_micro(zq(ig,l,igcm_h2o_ice),
351     &    zq(ig,l,igcm_ccn_mass),zq(ig,l,igcm_ccn_number),
352     &    tauscaling(ig),rice(ig,l),rhocloud(ig,l))
353
354        No   = zq(ig,l,igcm_ccn_number)* tauscaling(ig) + 1.e-30
355
356c       saturation at equilibrium
357c       rice should not be too small, otherwise seq value is not valid
358        seq  = exp(2.*sig(zt(ig,l))*mh2o / (rho_ice*rgp*zt(ig,l)*
359     &             max(rice(ig,l),1.e-7)))
360       
361c       get resistance growth
362        call growthrate(zt(ig,l),pplay(ig,l),
363     &             real(ph2o/satu),rice(ig,l),res)
364
365        res_out(ig,l) = res
366
367ccccccc  implicit scheme of mass growth
368
369        dMice =
370     & (zq(ig,l,igcm_h2o_vap)-seq*zqsat(ig,l))
371     &   /(res*zqsat(ig,l)/(cste*No*rice(ig,l)) + 1.)
372
373
374! With the above scheme, dMice cannot be bigger than vapor,
375! but can be bigger than all available ice.
376       dMice = max(dMice,-zq(ig,l,igcm_h2o_ice))
377       dMice = min(dMice,zq(ig,l,igcm_h2o_vap)) ! this should be useless...
378
379       zq(ig,l,igcm_h2o_ice) = zq(ig,l,igcm_h2o_ice)+dMice
380       zq(ig,l,igcm_h2o_vap) = zq(ig,l,igcm_h2o_vap)-dMice
381
382
383       countcells = countcells + 1
384       
385       ! latent heat release
386       lw=(2834.3-0.28*(zt(ig,l)-To)-
387     &     0.004*(zt(ig,l)-To)*(zt(ig,l)-To))*1.e+3
388       subpdtcloud(ig,l)= dMice*lw/cpp/microtimestep
389         
390         
391     
392!=============================================================
393! 5. Dust cores released, tendancies, latent heat, etc ...
394!=============================================================
395
396c         If all the ice particles sublimate, all the condensation
397c         nuclei are released:
398          if (zq(ig,l,igcm_h2o_ice).le.1.e-28) then
399         
400c           Water
401            zq(ig,l,igcm_h2o_vap) = zq(ig,l,igcm_h2o_vap)
402     &                            + zq(ig,l,igcm_h2o_ice)
403            zq(ig,l,igcm_h2o_ice) = 0.
404c           Dust particles
405            zq(ig,l,igcm_dust_mass) = zq(ig,l,igcm_dust_mass)
406     &                              + zq(ig,l,igcm_ccn_mass)
407            zq(ig,l,igcm_dust_number) = zq(ig,l,igcm_dust_number)
408     &                                + zq(ig,l,igcm_ccn_number)
409c           CCNs
410            zq(ig,l,igcm_ccn_mass) = 0.
411            zq(ig,l,igcm_ccn_number) = 0.
412
413          endif
414         
415          ENDIF !of if Nccn>1
416         
417        ENDDO ! of ig loop
418      ENDDO ! of nlayer loop
419     
420     
421      ! Get cloud tendencies
422        subpdqcloud(1:ngrid,1:nlay,igcm_h2o_vap) =
423     &   (zq(1:ngrid,1:nlay,igcm_h2o_vap) -
424     &    zq0(1:ngrid,1:nlay,igcm_h2o_vap))/microtimestep
425        subpdqcloud(1:ngrid,1:nlay,igcm_h2o_ice) =
426     &   (zq(1:ngrid,1:nlay,igcm_h2o_ice) -
427     &    zq0(1:ngrid,1:nlay,igcm_h2o_ice))/microtimestep
428        subpdqcloud(1:ngrid,1:nlay,igcm_ccn_mass) =
429     &   (zq(1:ngrid,1:nlay,igcm_ccn_mass) -
430     &    zq0(1:ngrid,1:nlay,igcm_ccn_mass))/microtimestep
431        subpdqcloud(1:ngrid,1:nlay,igcm_ccn_number) =
432     &   (zq(1:ngrid,1:nlay,igcm_ccn_number) -
433     &    zq0(1:ngrid,1:nlay,igcm_ccn_number))/microtimestep
434     
435      if (scavenging) then
436     
437        subpdqcloud(1:ngrid,1:nlay,igcm_dust_mass) =
438     &   (zq(1:ngrid,1:nlay,igcm_dust_mass) -
439     &    zq0(1:ngrid,1:nlay,igcm_dust_mass))/microtimestep
440        subpdqcloud(1:ngrid,1:nlay,igcm_dust_number) =
441     &   (zq(1:ngrid,1:nlay,igcm_dust_number) -
442     &    zq0(1:ngrid,1:nlay,igcm_dust_number))/microtimestep
443         
444      endif
445     
446     
447     
448!!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS
449!!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS
450!!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS
451      IF (test_flag) then
452     
453!       error2d(:) = 0.
454       DO l=1,nlay
455       DO ig=1,ngrid
456!         error2d(ig) = max(abs(error_out(ig,l)),error2d(ig))
457          satubf(ig,l) = zq0(ig,l,igcm_h2o_vap)/zqsat(ig,l)
458          satuaf(ig,l) = zq(ig,l,igcm_h2o_vap)/zqsat(ig,l)
459       ENDDO
460       ENDDO
461
462      print*, 'count is ',countcells, ' i.e. ',
463     &     countcells*100/(nlay*ngrid), '% for microphys computation'
464
465#ifndef MESOSCALE
466!      IF (ngrid.ne.1) THEN ! 3D
467!         call WRITEDIAGFI(ngrid,"satu","ratio saturation","",3,
468!     &                    satu_out)
469!         call WRITEDIAGFI(ngrid,"dM","ccn variation","kg/kg",3,
470!     &                    dM_out)
471!         call WRITEDIAGFI(ngrid,"dN","ccn variation","#",3,
472!     &                    dN_out)
473!         call WRITEDIAGFI(ngrid,"error","dichotomy max error","%",2,
474!     &                    error2d)
475!         call WRITEDIAGFI(ngrid,"zqsat","zqsat","kg",3,
476!     &                    zqsat)
477!      ENDIF
478
479!      IF (ngrid.eq.1) THEN ! 1D
480!         call WRITEDIAGFI(ngrid,"error","incertitude sur glace","%",1,
481!     &                    error_out)
482         call WRITEdiagfi(ngrid,"resist","resistance","s/m2",1,
483     &                    res_out)
484         call WRITEdiagfi(ngrid,"satu_bf","satu before","kg/kg",1,
485     &                    satubf)
486         call WRITEdiagfi(ngrid,"satu_af","satu after","kg/kg",1,
487     &                    satuaf)
488         call WRITEdiagfi(ngrid,"vapbf","h2ovap before","kg/kg",1,
489     &                    zq0(1,1,igcm_h2o_vap))
490         call WRITEdiagfi(ngrid,"vapaf","h2ovap after","kg/kg",1,
491     &                    zq(1,1,igcm_h2o_vap))
492         call WRITEdiagfi(ngrid,"icebf","h2oice before","kg/kg",1,
493     &                    zq0(1,1,igcm_h2o_ice))
494         call WRITEdiagfi(ngrid,"iceaf","h2oice after","kg/kg",1,
495     &                    zq(1,1,igcm_h2o_ice))
496         call WRITEdiagfi(ngrid,"ccnbf","ccn before","/kg",1,
497     &                    zq0(1,1,igcm_ccn_number))
498         call WRITEdiagfi(ngrid,"ccnaf","ccn after","/kg",1,
499     &                    zq(1,1,igcm_ccn_number))
500c         call WRITEDIAGFI(ngrid,"growthrate","growth rate","m^2/s",1,
501c     &                    gr_out)
502c         call WRITEDIAGFI(ngrid,"nuclearate","nucleation rate","",1,
503c     &                    rate_out)
504c         call WRITEDIAGFI(ngrid,"dM","ccn variation","kg",1,
505c     &                    dM_out)
506c         call WRITEDIAGFI(ngrid,"dN","ccn variation","#",1,
507c     &                    dN_out)
508         call WRITEdiagfi(ngrid,"zqsat","p vap sat","kg/kg",1,
509     &                    zqsat)
510!         call WRITEDIAGFI(ngrid,"satu","ratio saturation","",1,
511!     &                    satu_out)
512         call WRITEdiagfi(ngrid,"rice","ice radius","m",1,
513     &                    rice)
514!         call WRITEDIAGFI(ngrid,"rdust_sca","rdust","m",1,
515!     &                    rdust)
516!         call WRITEDIAGFI(ngrid,"rsedcloud","rsedcloud","m",1,
517!     &                    rsedcloud)
518!         call WRITEDIAGFI(ngrid,"rhocloud","rhocloud","kg.m-3",1,
519!     &                    rhocloud)
520!      ENDIF
521#endif
522     
523      ENDIF ! endif test_flag
524!!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS
525!!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS
526!!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS
527
528      return
529      end
530     
531     
532     
533cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc     
534cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc     
535c The so -called "phi" function is such as phi(r) - phi(r0) = t - t0
536c It is an analytical solution to the ice radius growth equation,
537c with the approximation of a constant 'reduced' cunningham correction factor
538c (lambda in growthrate.F) taken at radius req instead of rice   
539cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc     
540cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
541
542c      subroutine phi(rice,req,coeff1,coeff2,time)
543c     
544c      implicit none
545c     
546c      ! inputs
547c      real rice ! ice radius
548c      real req  ! ice radius at equilibirum
549c      real coeff1  ! coeff for the log
550c      real coeff2  ! coeff for the arctan
551c
552c      ! output     
553c      real time
554c     
555c      !local
556c      real var
557c     
558c      ! 1.73205 is sqrt(3)
559c     
560c      var = max(
561c     &  abs(rice-req) / sqrt(rice*rice + rice*req  + req*req),1e-30)
562c           
563c       time =
564c     &   coeff1 *
565c     &   log( var )
566c     & + coeff2 * 1.73205 *
567c     &   atan( (2*rice+req) / (1.73205*req) )
568c     
569c      return
570c      end
571     
572     
573     
Note: See TracBrowser for help on using the repository browser.