[358] | 1 | subroutine improvedclouds(ngrid,nlay,ptimestep, |
---|
[633] | 2 | & pplay,pt,pdt, |
---|
[520] | 3 | & pq,pdq,pdqcloud,pdtcloud, |
---|
[633] | 4 | & nq,tauscaling) |
---|
[520] | 5 | ! to use 'getin' |
---|
| 6 | USE ioipsl_getincom |
---|
[740] | 7 | USE updaterad |
---|
[358] | 8 | implicit none |
---|
[633] | 9 | |
---|
| 10 | |
---|
[358] | 11 | c------------------------------------------------------------------ |
---|
| 12 | c This routine is used to form clouds when a parcel of the GCM is |
---|
| 13 | c saturated. It includes the ability to have supersaturation, a |
---|
| 14 | c computation of the nucleation rates, growthrates and the |
---|
| 15 | c scavenging of dust particles by clouds. |
---|
| 16 | c It is worth noting that the amount of dust is computed using the |
---|
| 17 | c dust optical depth computed in aeropacity.F. That's why |
---|
| 18 | c the variable called "tauscaling" is used to convert |
---|
| 19 | c pq(dust_mass) and pq(dust_number), which are relative |
---|
| 20 | c quantities, to absolute and realistic quantities stored in zq. |
---|
| 21 | c This has to be done to convert the inputs into absolute |
---|
| 22 | c values, but also to convert the outputs back into relative |
---|
| 23 | c values which are then used by the sedimentation and advection |
---|
| 24 | c schemes. |
---|
| 25 | |
---|
| 26 | c Authors: J.-B. Madeleine, based on the work by Franck Montmessin |
---|
| 27 | c (October 2011) |
---|
[626] | 28 | c T. Navarro, debug,correction, new scheme (October-April 2011) |
---|
[530] | 29 | c A. Spiga, optimization (February 2012) |
---|
[358] | 30 | c------------------------------------------------------------------ |
---|
| 31 | #include "dimensions.h" |
---|
| 32 | #include "dimphys.h" |
---|
| 33 | #include "comcstfi.h" |
---|
| 34 | #include "callkeys.h" |
---|
| 35 | #include "tracer.h" |
---|
| 36 | #include "comgeomfi.h" |
---|
| 37 | #include "dimradmars.h" |
---|
| 38 | #include "microphys.h" |
---|
[663] | 39 | #include "conc.h" |
---|
[358] | 40 | c------------------------------------------------------------------ |
---|
| 41 | c Inputs: |
---|
| 42 | |
---|
| 43 | INTEGER ngrid,nlay |
---|
| 44 | integer nq ! nombre de traceurs |
---|
| 45 | REAL ptimestep ! pas de temps physique (s) |
---|
[520] | 46 | REAL pplay(ngrid,nlay) ! pression au milieu des couches (Pa) |
---|
| 47 | |
---|
[358] | 48 | REAL pt(ngrid,nlay) ! temperature at the middle of the |
---|
| 49 | ! layers (K) |
---|
| 50 | REAL pdt(ngrid,nlay) ! tendance temperature des autres |
---|
| 51 | ! param. |
---|
| 52 | REAL pq(ngrid,nlay,nq) ! traceur (kg/kg) |
---|
| 53 | REAL pdq(ngrid,nlay,nq) ! tendance avant condensation |
---|
| 54 | ! (kg/kg.s-1) |
---|
| 55 | REAL tauscaling(ngridmx) ! Convertion factor for qdust and Ndust |
---|
| 56 | |
---|
| 57 | c Outputs: |
---|
| 58 | REAL pdqcloud(ngrid,nlay,nq) ! tendance de la condensation |
---|
| 59 | ! H2O(kg/kg.s-1) |
---|
| 60 | REAL pdtcloud(ngrid,nlay) ! tendance temperature due |
---|
| 61 | ! a la chaleur latente |
---|
| 62 | |
---|
| 63 | c------------------------------------------------------------------ |
---|
| 64 | c Local variables: |
---|
| 65 | |
---|
| 66 | LOGICAL firstcall |
---|
| 67 | DATA firstcall/.true./ |
---|
| 68 | SAVE firstcall |
---|
| 69 | |
---|
| 70 | REAL*8 derf ! Error function |
---|
| 71 | !external derf |
---|
[740] | 72 | |
---|
[358] | 73 | INTEGER ig,l,i |
---|
[520] | 74 | |
---|
[358] | 75 | REAL zq(ngridmx,nlayermx,nqmx) ! local value of tracers |
---|
| 76 | REAL zq0(ngridmx,nlayermx,nqmx) ! local initial value of tracers |
---|
| 77 | REAL zt(ngridmx,nlayermx) ! local value of temperature |
---|
| 78 | REAL zqsat(ngridmx,nlayermx) ! saturation |
---|
| 79 | REAL lw !Latent heat of sublimation (J.kg-1) |
---|
[633] | 80 | REAL cste |
---|
| 81 | REAL dMice ! mass of condensed ice |
---|
| 82 | ! REAL sumcheck |
---|
[358] | 83 | REAL*8 ph2o ! Water vapor partial pressure (Pa) |
---|
| 84 | REAL*8 satu ! Water vapor saturation ratio over ice |
---|
| 85 | REAL*8 Mo,No |
---|
[633] | 86 | REAL*8 Rn, Rm, dev2, n_derf, m_derf |
---|
[358] | 87 | REAL*8 n_aer(nbin_cld) ! number conc. of particle/each size bin |
---|
| 88 | REAL*8 m_aer(nbin_cld) ! mass mixing ratio of particle/each size bin |
---|
[633] | 89 | |
---|
[358] | 90 | REAL*8 sig ! Water-ice/air surface tension (N.m) |
---|
| 91 | EXTERNAL sig |
---|
| 92 | |
---|
[633] | 93 | REAL dN,dM |
---|
| 94 | REAL rate(nbin_cld) ! nucleation rate |
---|
| 95 | REAL seq |
---|
| 96 | |
---|
| 97 | REAL rice(ngrid,nlay) ! Ice mass mean radius (m) |
---|
| 98 | ! (r_c in montmessin_2004) |
---|
| 99 | REAL rhocloud(ngridmx,nlayermx) ! Cloud density (kg.m-3) |
---|
| 100 | REAL rdust(ngridmx,nlayermx) ! Dust geometric mean radius (m) |
---|
| 101 | |
---|
| 102 | REAL res ! Resistance growth |
---|
[740] | 103 | |
---|
[633] | 104 | |
---|
[358] | 105 | c Parameters of the size discretization |
---|
| 106 | c used by the microphysical scheme |
---|
| 107 | DOUBLE PRECISION, PARAMETER :: rmin_cld = 0.1e-6 ! Minimum radius (m) |
---|
| 108 | DOUBLE PRECISION, PARAMETER :: rmax_cld = 10.e-6 ! Maximum radius (m) |
---|
| 109 | DOUBLE PRECISION, PARAMETER :: rbmin_cld = 0.0001e-6 |
---|
| 110 | ! Minimum boundary radius (m) |
---|
| 111 | DOUBLE PRECISION, PARAMETER :: rbmax_cld = 1.e-2 ! Maximum boundary radius (m) |
---|
| 112 | DOUBLE PRECISION vrat_cld ! Volume ratio |
---|
| 113 | DOUBLE PRECISION rb_cld(nbin_cld+1)! boundary values of each rad_cld bin (m) |
---|
| 114 | SAVE rb_cld |
---|
[520] | 115 | DOUBLE PRECISION dr_cld(nbin_cld) ! width of each rad_cld bin (m) |
---|
| 116 | DOUBLE PRECISION vol_cld(nbin_cld) ! particle volume for each bin (m3) |
---|
[358] | 117 | |
---|
[633] | 118 | |
---|
[358] | 119 | REAL sigma_ice ! Variance of the ice and CCN distributions |
---|
| 120 | SAVE sigma_ice |
---|
[633] | 121 | |
---|
| 122 | |
---|
[520] | 123 | |
---|
[420] | 124 | c---------------------------------- |
---|
[633] | 125 | c TESTS |
---|
| 126 | |
---|
| 127 | INTEGER countcells |
---|
[420] | 128 | |
---|
[626] | 129 | LOGICAL test_flag ! flag for test/debuging outputs |
---|
[740] | 130 | SAVE test_flag |
---|
| 131 | |
---|
| 132 | |
---|
| 133 | REAL satubf(ngrid,nlay),satuaf(ngrid,nlay) |
---|
| 134 | REAL res_out(ngrid,nlay) |
---|
[633] | 135 | |
---|
[358] | 136 | |
---|
| 137 | c------------------------------------------------------------------ |
---|
| 138 | |
---|
| 139 | IF (firstcall) THEN |
---|
[626] | 140 | !============================================================= |
---|
| 141 | ! 0. Definition of the size grid |
---|
| 142 | !============================================================= |
---|
[358] | 143 | c rad_cld is the primary radius grid used for microphysics computation. |
---|
| 144 | c The grid spacing is computed assuming a constant volume ratio |
---|
| 145 | c between two consecutive bins; i.e. vrat_cld. |
---|
| 146 | c vrat_cld is determined from the boundary values of the size grid: |
---|
| 147 | c rmin_cld and rmax_cld. |
---|
| 148 | c The rb_cld array contains the boundary values of each rad_cld bin. |
---|
| 149 | c dr_cld is the width of each rad_cld bin. |
---|
| 150 | |
---|
| 151 | c Volume ratio between two adjacent bins |
---|
[633] | 152 | ! vrat_cld = log(rmax_cld/rmin_cld) / float(nbin_cld-1) *3. |
---|
| 153 | ! vrat_cld = exp(vrat_cld) |
---|
[358] | 154 | vrat_cld = dlog(rmax_cld/rmin_cld) / float(nbin_cld-1) *3. |
---|
| 155 | vrat_cld = dexp(vrat_cld) |
---|
| 156 | write(*,*) "vrat_cld", vrat_cld |
---|
| 157 | |
---|
| 158 | rb_cld(1) = rbmin_cld |
---|
| 159 | rad_cld(1) = rmin_cld |
---|
[530] | 160 | vol_cld(1) = 4./3. * dble(pi) * rmin_cld*rmin_cld*rmin_cld |
---|
[633] | 161 | ! vol_cld(1) = 4./3. * pi * rmin_cld*rmin_cld*rmin_cld |
---|
[358] | 162 | |
---|
| 163 | do i=1,nbin_cld-1 |
---|
[531] | 164 | rad_cld(i+1) = rad_cld(i) * vrat_cld**(1./3.) |
---|
[358] | 165 | vol_cld(i+1) = vol_cld(i) * vrat_cld |
---|
| 166 | enddo |
---|
| 167 | |
---|
| 168 | do i=1,nbin_cld |
---|
[531] | 169 | rb_cld(i+1)= ( (2.*vrat_cld) / (vrat_cld+1.) )**(1./3.) * |
---|
[358] | 170 | & rad_cld(i) |
---|
| 171 | dr_cld(i) = rb_cld(i+1) - rb_cld(i) |
---|
| 172 | enddo |
---|
| 173 | rb_cld(nbin_cld+1) = rbmax_cld |
---|
| 174 | dr_cld(nbin_cld) = rb_cld(nbin_cld+1) - rb_cld(nbin_cld) |
---|
| 175 | |
---|
| 176 | print*, ' ' |
---|
| 177 | print*,'Microphysics: size bin information:' |
---|
| 178 | print*,'i,rb_cld(i), rad_cld(i),dr_cld(i)' |
---|
| 179 | print*,'-----------------------------------' |
---|
| 180 | do i=1,nbin_cld |
---|
| 181 | write(*,'(i2,3x,3(e12.6,4x))') i,rb_cld(i), rad_cld(i), |
---|
| 182 | & dr_cld(i) |
---|
| 183 | enddo |
---|
| 184 | write(*,'(i2,3x,e12.6)') nbin_cld+1,rb_cld(nbin_cld+1) |
---|
| 185 | print*,'-----------------------------------' |
---|
| 186 | |
---|
[541] | 187 | do i=1,nbin_cld+1 |
---|
[740] | 188 | ! rb_cld(i) = log(rb_cld(i)) |
---|
[541] | 189 | rb_cld(i) = dlog(rb_cld(i)) !! we save that so that it is not computed |
---|
| 190 | !! at each timestep and gridpoint |
---|
| 191 | enddo |
---|
| 192 | |
---|
[358] | 193 | c Contact parameter of water ice on dust ( m=cos(theta) ) |
---|
| 194 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 195 | ! mteta = 0.95 |
---|
| 196 | write(*,*) 'water_param contact parameter:', mteta |
---|
| 197 | |
---|
| 198 | c Volume of a water molecule (m3) |
---|
| 199 | vo1 = mh2o / dble(rho_ice) |
---|
| 200 | c Variance of the ice and CCN distributions |
---|
| 201 | sigma_ice = sqrt(log(1.+nuice_sed)) |
---|
[633] | 202 | |
---|
| 203 | |
---|
[358] | 204 | write(*,*) 'Variance of ice & CCN distribs :', sigma_ice |
---|
[455] | 205 | write(*,*) 'nuice for sedimentation:', nuice_sed |
---|
[358] | 206 | write(*,*) 'Volume of a water molecule:', vo1 |
---|
| 207 | |
---|
[633] | 208 | |
---|
| 209 | test_flag = .false. |
---|
| 210 | |
---|
[358] | 211 | firstcall=.false. |
---|
| 212 | END IF |
---|
| 213 | |
---|
[633] | 214 | |
---|
[626] | 215 | !============================================================= |
---|
| 216 | ! 1. Initialisation |
---|
| 217 | !============================================================= |
---|
[633] | 218 | cste = 4*pi*rho_ice*ptimestep |
---|
[626] | 219 | |
---|
[740] | 220 | res_out(:,:) = 0 |
---|
| 221 | rice(:,:) = 1.e-8 |
---|
| 222 | |
---|
[411] | 223 | c Initialize the tendencies |
---|
| 224 | pdqcloud(1:ngrid,1:nlay,1:nq)=0 |
---|
| 225 | pdtcloud(1:ngrid,1:nlay)=0 |
---|
[633] | 226 | |
---|
| 227 | c Initialize the tendencies |
---|
| 228 | pdqcloud(1:ngrid,1:nlay,1:nq)=0 |
---|
| 229 | pdtcloud(1:ngrid,1:nlay)=0 |
---|
[411] | 230 | |
---|
[633] | 231 | c Initialize the tendencies |
---|
| 232 | pdqcloud(1:ngrid,1:nlay,1:nq)=0 |
---|
| 233 | pdtcloud(1:ngrid,1:nlay)=0 |
---|
| 234 | |
---|
| 235 | |
---|
| 236 | zt(1:ngrid,1:nlay) = |
---|
| 237 | & pt(1:ngrid,1:nlay) + |
---|
| 238 | & pdt(1:ngrid,1:nlay) * ptimestep |
---|
[358] | 239 | |
---|
[633] | 240 | zq(1:ngrid,1:nlay,1:nq) = |
---|
| 241 | & pq(1:ngrid,1:nlay,1:nq) + |
---|
| 242 | & pdq(1:ngrid,1:nlay,1:nq) * ptimestep |
---|
| 243 | |
---|
| 244 | zq0(1:ngrid,1:nlay,1:nq) = zq(1:ngrid,1:nlay,1:nq) |
---|
| 245 | |
---|
| 246 | WHERE( zq(1:ngrid,1:nlay,1:nq) < 1.e-30 ) |
---|
| 247 | & zq(1:ngrid,1:nlay,1:nq) = 1.e-30 |
---|
| 248 | |
---|
[626] | 249 | !============================================================= |
---|
| 250 | ! 2. Compute saturation |
---|
| 251 | !============================================================= |
---|
[358] | 252 | |
---|
[633] | 253 | |
---|
[541] | 254 | dev2 = 1. / ( sqrt(2.) * sigma_ice ) |
---|
[358] | 255 | |
---|
| 256 | call watersat(ngridmx*nlayermx,zt,pplay,zqsat) |
---|
| 257 | |
---|
[633] | 258 | countcells = 0 |
---|
[358] | 259 | |
---|
| 260 | c Main loop over the GCM's grid |
---|
| 261 | DO l=1,nlay |
---|
| 262 | DO ig=1,ngrid |
---|
| 263 | |
---|
| 264 | c Get the partial pressure of water vapor and its saturation ratio |
---|
[663] | 265 | ph2o = zq(ig,l,igcm_h2o_vap) * (mmean(ig,l)/18.) * pplay(ig,l) |
---|
[689] | 266 | satu = zq(ig,l,igcm_h2o_vap) / zqsat(ig,l) |
---|
[358] | 267 | |
---|
[626] | 268 | !============================================================= |
---|
| 269 | ! 3. Nucleation |
---|
| 270 | !============================================================= |
---|
| 271 | |
---|
[633] | 272 | IF ( satu .ge. 1. ) THEN ! if there is condensation |
---|
| 273 | |
---|
[740] | 274 | call updaterccn(zq(ig,l,igcm_dust_mass), |
---|
| 275 | & zq(ig,l,igcm_dust_number),rdust(ig,l),tauscaling(ig)) |
---|
[633] | 276 | |
---|
| 277 | |
---|
[358] | 278 | c Expand the dust moments into a binned distribution |
---|
[633] | 279 | Mo = zq(ig,l,igcm_dust_mass)* tauscaling(ig) + 1.e-30 |
---|
[626] | 280 | No = zq(ig,l,igcm_dust_number)* tauscaling(ig) + 1.e-30 |
---|
[358] | 281 | Rn = rdust(ig,l) |
---|
[530] | 282 | Rn = -dlog(Rn) |
---|
| 283 | Rm = Rn - 3. * sigma_ice*sigma_ice |
---|
[626] | 284 | n_derf = derf( (rb_cld(1)+Rn) *dev2) |
---|
| 285 | m_derf = derf( (rb_cld(1)+Rm) *dev2) |
---|
[358] | 286 | do i = 1, nbin_cld |
---|
[626] | 287 | n_aer(i) = -0.5 * No * n_derf !! this ith previously computed |
---|
| 288 | m_aer(i) = -0.5 * Mo * m_derf !! this ith previously computed |
---|
| 289 | n_derf = derf( (rb_cld(i+1)+Rn) *dev2) |
---|
| 290 | m_derf = derf( (rb_cld(i+1)+Rm) *dev2) |
---|
| 291 | n_aer(i) = n_aer(i) + 0.5 * No * n_derf |
---|
| 292 | m_aer(i) = m_aer(i) + 0.5 * Mo * m_derf |
---|
[358] | 293 | enddo |
---|
[530] | 294 | |
---|
[358] | 295 | ! sumcheck = 0 |
---|
| 296 | ! do i = 1, nbin_cld |
---|
| 297 | ! sumcheck = sumcheck + n_aer(i) |
---|
| 298 | ! enddo |
---|
| 299 | ! sumcheck = abs(sumcheck/No - 1) |
---|
| 300 | ! if ((sumcheck .gt. 1e-5).and. (1./Rn .gt. rmin_cld)) then |
---|
| 301 | ! print*, "WARNING, No sumcheck PROBLEM" |
---|
| 302 | ! print*, "sumcheck, No",sumcheck, No |
---|
| 303 | ! print*, "min radius, Rn, ig, l", rmin_cld, 1./Rn, ig, l |
---|
| 304 | ! print*, "Dust binned distribution", n_aer |
---|
| 305 | ! endif |
---|
| 306 | ! |
---|
| 307 | ! sumcheck = 0 |
---|
| 308 | ! do i = 1, nbin_cld |
---|
[411] | 309 | ! sumcheck = sumcheck + m_aer(i) |
---|
[358] | 310 | ! enddo |
---|
| 311 | ! sumcheck = abs(sumcheck/Mo - 1) |
---|
| 312 | ! if ((sumcheck .gt. 1e-5) .and. (1./Rn .gt. rmin_cld)) then |
---|
| 313 | ! print*, "WARNING, Mo sumcheck PROBLEM" |
---|
[411] | 314 | ! print*, "sumcheck, Mo",sumcheck, Mo |
---|
[358] | 315 | ! print*, "min radius, Rm, ig, l", rmin_cld, 1./Rm, ig, l |
---|
| 316 | ! print*, "Dust binned distribution", m_aer |
---|
| 317 | ! endif |
---|
[633] | 318 | |
---|
| 319 | |
---|
[358] | 320 | c Get the rates of nucleation |
---|
| 321 | call nuclea(ph2o,zt(ig,l),satu,n_aer,rate) |
---|
[411] | 322 | |
---|
[358] | 323 | dN = 0. |
---|
| 324 | dM = 0. |
---|
| 325 | do i = 1, nbin_cld |
---|
[633] | 326 | n_aer(i) = n_aer(i)/( 1. + rate(i)*ptimestep) |
---|
| 327 | m_aer(i) = m_aer(i)/( 1. + rate(i)*ptimestep) |
---|
[358] | 328 | dN = dN + n_aer(i) * rate(i) * ptimestep |
---|
| 329 | dM = dM + m_aer(i) * rate(i) * ptimestep |
---|
| 330 | enddo |
---|
| 331 | |
---|
[633] | 332 | |
---|
| 333 | c Update Dust particles |
---|
[626] | 334 | zq(ig,l,igcm_dust_mass) = |
---|
[740] | 335 | & zq(ig,l,igcm_dust_mass) - dM/ tauscaling(ig) !max(tauscaling(ig),1.e-10) |
---|
[626] | 336 | zq(ig,l,igcm_dust_number) = |
---|
[740] | 337 | & zq(ig,l,igcm_dust_number) - dN/ tauscaling(ig) !max(tauscaling(ig),1.e-10) |
---|
[633] | 338 | c Update CCNs |
---|
[626] | 339 | zq(ig,l,igcm_ccn_mass) = |
---|
[740] | 340 | & zq(ig,l,igcm_ccn_mass) + dM/ tauscaling(ig) !max(tauscaling(ig),1.e-10) |
---|
[626] | 341 | zq(ig,l,igcm_ccn_number) = |
---|
[740] | 342 | & zq(ig,l,igcm_ccn_number) + dN/ tauscaling(ig) !max(tauscaling(ig),1.e-10) |
---|
[626] | 343 | |
---|
[633] | 344 | ENDIF ! of is satu >1 |
---|
[626] | 345 | |
---|
| 346 | !============================================================= |
---|
| 347 | ! 4. Ice growth: scheme for radius evolution |
---|
| 348 | !============================================================= |
---|
| 349 | |
---|
[633] | 350 | c We trigger crystal growth if and only if there is at least one nuclei (N>1). |
---|
| 351 | c Indeed, if we are supersaturated and still don't have at least one nuclei, we should better wait |
---|
| 352 | c to avoid unrealistic value for nuclei radius and so on for cases that remain negligible. |
---|
| 353 | |
---|
| 354 | IF ( zq(ig,l,igcm_ccn_number)*tauscaling(ig).ge. 1.) THEN ! we trigger crystal growth |
---|
| 355 | |
---|
[740] | 356 | |
---|
| 357 | call updaterice_micro(zq(ig,l,igcm_h2o_ice), |
---|
| 358 | & zq(ig,l,igcm_ccn_mass),zq(ig,l,igcm_ccn_number), |
---|
| 359 | & tauscaling(ig),rice(ig,l),rhocloud(ig,l)) |
---|
[633] | 360 | |
---|
| 361 | No = zq(ig,l,igcm_ccn_number)* tauscaling(ig) + 1.e-30 |
---|
[626] | 362 | |
---|
| 363 | c saturation at equilibrium |
---|
[740] | 364 | c rice should not be too small, otherwise seq value is not valid |
---|
| 365 | seq = exp(2.*sig(zt(ig,l))*mh2o / (rho_ice*rgp*zt(ig,l)* |
---|
| 366 | & max(rice(ig,l),1.e-7))) |
---|
| 367 | |
---|
[633] | 368 | c get resistance growth |
---|
| 369 | call growthrate(zt(ig,l),pplay(ig,l), |
---|
| 370 | & real(ph2o/satu),rice(ig,l),res) |
---|
[358] | 371 | |
---|
[740] | 372 | res_out(ig,l) = res |
---|
[626] | 373 | |
---|
[633] | 374 | ccccccc implicit scheme of mass growth |
---|
[626] | 375 | |
---|
[633] | 376 | dMice = |
---|
| 377 | & (zq(ig,l,igcm_h2o_vap)-seq*zqsat(ig,l)) |
---|
| 378 | & /(res*zqsat(ig,l)/(cste*No*rice(ig,l)) + 1.) |
---|
[358] | 379 | |
---|
[626] | 380 | |
---|
[633] | 381 | ! With the above scheme, dMice cannot be bigger than vapor, |
---|
| 382 | ! but can be bigger than all available ice. |
---|
| 383 | dMice = max(dMice,-zq(ig,l,igcm_h2o_ice)) |
---|
| 384 | dMice = min(dMice,zq(ig,l,igcm_h2o_vap)) ! this should be useless... |
---|
| 385 | |
---|
| 386 | zq(ig,l,igcm_h2o_ice) = zq(ig,l,igcm_h2o_ice)+dMice |
---|
| 387 | zq(ig,l,igcm_h2o_vap) = zq(ig,l,igcm_h2o_vap)-dMice |
---|
| 388 | |
---|
| 389 | |
---|
| 390 | countcells = countcells + 1 |
---|
| 391 | |
---|
| 392 | ! latent heat release |
---|
| 393 | lw=(2834.3-0.28*(zt(ig,l)-To)- |
---|
| 394 | & 0.004*(zt(ig,l)-To)*(zt(ig,l)-To))*1.e+3 |
---|
| 395 | pdtcloud(ig,l)= dMice*lw/cpp/ptimestep |
---|
[358] | 396 | |
---|
[626] | 397 | |
---|
[358] | 398 | |
---|
[626] | 399 | !============================================================= |
---|
| 400 | ! 5. Dust cores released, tendancies, latent heat, etc ... |
---|
| 401 | !============================================================= |
---|
| 402 | |
---|
[358] | 403 | c If all the ice particles sublimate, all the condensation |
---|
[626] | 404 | c nuclei are released: |
---|
[633] | 405 | if (zq(ig,l,igcm_h2o_ice).le.1.e-8) then |
---|
| 406 | |
---|
[626] | 407 | c Water |
---|
| 408 | zq(ig,l,igcm_h2o_vap) = zq(ig,l,igcm_h2o_vap) |
---|
| 409 | & + zq(ig,l,igcm_h2o_ice) |
---|
[358] | 410 | zq(ig,l,igcm_h2o_ice) = 0. |
---|
| 411 | c Dust particles |
---|
[626] | 412 | zq(ig,l,igcm_dust_mass) = zq(ig,l,igcm_dust_mass) |
---|
| 413 | & + zq(ig,l,igcm_ccn_mass) |
---|
| 414 | zq(ig,l,igcm_dust_number) = zq(ig,l,igcm_dust_number) |
---|
| 415 | & + zq(ig,l,igcm_ccn_number) |
---|
[358] | 416 | c CCNs |
---|
| 417 | zq(ig,l,igcm_ccn_mass) = 0. |
---|
| 418 | zq(ig,l,igcm_ccn_number) = 0. |
---|
[633] | 419 | |
---|
[358] | 420 | endif |
---|
[411] | 421 | |
---|
[633] | 422 | ENDIF !of if Nccn>1 |
---|
| 423 | |
---|
[626] | 424 | ENDDO ! of ig loop |
---|
| 425 | ENDDO ! of nlayer loop |
---|
[520] | 426 | |
---|
[633] | 427 | |
---|
| 428 | ! Get cloud tendencies |
---|
[740] | 429 | pdqcloud(1:ngrid,1:nlay,igcm_h2o_vap) = |
---|
| 430 | & (zq(1:ngrid,1:nlay,igcm_h2o_vap) - |
---|
| 431 | & zq0(1:ngrid,1:nlay,igcm_h2o_vap))/ptimestep |
---|
| 432 | pdqcloud(1:ngrid,1:nlay,igcm_h2o_ice) = |
---|
| 433 | & (zq(1:ngrid,1:nlay,igcm_h2o_ice) - |
---|
| 434 | & zq0(1:ngrid,1:nlay,igcm_h2o_ice))/ptimestep |
---|
| 435 | pdqcloud(1:ngrid,1:nlay,igcm_ccn_mass) = |
---|
| 436 | & (zq(1:ngrid,1:nlay,igcm_ccn_mass) - |
---|
| 437 | & zq0(1:ngrid,1:nlay,igcm_ccn_mass))/ptimestep |
---|
| 438 | pdqcloud(1:ngrid,1:nlay,igcm_ccn_number) = |
---|
| 439 | & (zq(1:ngrid,1:nlay,igcm_ccn_number) - |
---|
| 440 | & zq0(1:ngrid,1:nlay,igcm_ccn_number))/ptimestep |
---|
[411] | 441 | |
---|
[740] | 442 | if (scavenging) then |
---|
[633] | 443 | |
---|
[740] | 444 | pdqcloud(1:ngrid,1:nlay,igcm_dust_mass) = |
---|
| 445 | & (zq(1:ngrid,1:nlay,igcm_dust_mass) - |
---|
| 446 | & zq0(1:ngrid,1:nlay,igcm_dust_mass))/ptimestep |
---|
| 447 | pdqcloud(1:ngrid,1:nlay,igcm_dust_number) = |
---|
| 448 | & (zq(1:ngrid,1:nlay,igcm_dust_number) - |
---|
| 449 | & zq0(1:ngrid,1:nlay,igcm_dust_number))/ptimestep |
---|
| 450 | |
---|
| 451 | endif |
---|
[633] | 452 | |
---|
[740] | 453 | |
---|
| 454 | |
---|
[626] | 455 | !!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS |
---|
| 456 | !!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS |
---|
[740] | 457 | !!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS |
---|
[626] | 458 | IF (test_flag) then |
---|
| 459 | |
---|
[633] | 460 | ! error2d(:) = 0. |
---|
[740] | 461 | DO l=1,nlay |
---|
| 462 | DO ig=1,ngrid |
---|
[633] | 463 | ! error2d(ig) = max(abs(error_out(ig,l)),error2d(ig)) |
---|
[740] | 464 | satubf(ig,l) = zq0(ig,l,igcm_h2o_vap)/zqsat(ig,l) |
---|
| 465 | satuaf(ig,l) = zq(ig,l,igcm_h2o_vap)/zqsat(ig,l) |
---|
| 466 | ENDDO |
---|
| 467 | ENDDO |
---|
[420] | 468 | |
---|
[633] | 469 | print*, 'count is ',countcells, ' i.e. ', |
---|
| 470 | & countcells*100/(nlay*ngrid), '% for microphys computation' |
---|
[358] | 471 | |
---|
[633] | 472 | ! IF (ngrid.ne.1) THEN ! 3D |
---|
[626] | 473 | ! call WRITEDIAGFI(ngrid,"satu","ratio saturation","",3, |
---|
| 474 | ! & satu_out) |
---|
| 475 | ! call WRITEDIAGFI(ngrid,"dM","ccn variation","kg/kg",3, |
---|
| 476 | ! & dM_out) |
---|
| 477 | ! call WRITEDIAGFI(ngrid,"dN","ccn variation","#",3, |
---|
| 478 | ! & dN_out) |
---|
[633] | 479 | ! call WRITEDIAGFI(ngrid,"error","dichotomy max error","%",2, |
---|
| 480 | ! & error2d) |
---|
[626] | 481 | ! call WRITEDIAGFI(ngrid,"zqsat","zqsat","kg",3, |
---|
| 482 | ! & zqsat) |
---|
[633] | 483 | ! ENDIF |
---|
[358] | 484 | |
---|
[633] | 485 | ! IF (ngrid.eq.1) THEN ! 1D |
---|
| 486 | ! call WRITEDIAGFI(ngrid,"error","incertitude sur glace","%",1, |
---|
| 487 | ! & error_out) |
---|
[740] | 488 | call WRITEdiagfi(ngrid,"resist","resistance","s/m2",1, |
---|
| 489 | & res_out) |
---|
| 490 | call WRITEdiagfi(ngrid,"satu_bf","satu before","kg/kg",1, |
---|
| 491 | & satubf) |
---|
| 492 | call WRITEdiagfi(ngrid,"satu_af","satu after","kg/kg",1, |
---|
| 493 | & satuaf) |
---|
| 494 | call WRITEdiagfi(ngrid,"vapbf","h2ovap before","kg/kg",1, |
---|
| 495 | & zq0(1,:,igcm_h2o_vap)) |
---|
| 496 | call WRITEdiagfi(ngrid,"vapaf","h2ovap after","kg/kg",1, |
---|
| 497 | & zq(1,:,igcm_h2o_vap)) |
---|
| 498 | call WRITEdiagfi(ngrid,"icebf","h2oice before","kg/kg",1, |
---|
| 499 | & zq0(1,:,igcm_h2o_ice)) |
---|
| 500 | call WRITEdiagfi(ngrid,"iceaf","h2oice after","kg/kg",1, |
---|
| 501 | & zq(1,:,igcm_h2o_ice)) |
---|
| 502 | call WRITEdiagfi(ngrid,"ccnbf","ccn before","/kg",1, |
---|
| 503 | & zq0(1,:,igcm_ccn_number)) |
---|
| 504 | call WRITEdiagfi(ngrid,"ccnaf","ccn after","/kg",1, |
---|
| 505 | & zq(1,:,igcm_ccn_number)) |
---|
[626] | 506 | c call WRITEDIAGFI(ngrid,"growthrate","growth rate","m^2/s",1, |
---|
| 507 | c & gr_out) |
---|
| 508 | c call WRITEDIAGFI(ngrid,"nuclearate","nucleation rate","",1, |
---|
| 509 | c & rate_out) |
---|
| 510 | c call WRITEDIAGFI(ngrid,"dM","ccn variation","kg",1, |
---|
| 511 | c & dM_out) |
---|
| 512 | c call WRITEDIAGFI(ngrid,"dN","ccn variation","#",1, |
---|
| 513 | c & dN_out) |
---|
[740] | 514 | call WRITEdiagfi(ngrid,"zqsat","p vap sat","kg/kg",1, |
---|
| 515 | & zqsat) |
---|
[633] | 516 | ! call WRITEDIAGFI(ngrid,"satu","ratio saturation","",1, |
---|
| 517 | ! & satu_out) |
---|
[740] | 518 | call WRITEdiagfi(ngrid,"rice","ice radius","m",1, |
---|
| 519 | & rice) |
---|
[633] | 520 | ! call WRITEDIAGFI(ngrid,"rdust_sca","rdust","m",1, |
---|
| 521 | ! & rdust) |
---|
| 522 | ! call WRITEDIAGFI(ngrid,"rsedcloud","rsedcloud","m",1, |
---|
| 523 | ! & rsedcloud) |
---|
| 524 | ! call WRITEDIAGFI(ngrid,"rhocloud","rhocloud","kg.m-3",1, |
---|
| 525 | ! & rhocloud) |
---|
| 526 | ! ENDIF |
---|
[626] | 527 | |
---|
| 528 | ENDIF ! endif test_flag |
---|
| 529 | !!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS |
---|
| 530 | !!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS |
---|
| 531 | !!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS |
---|
| 532 | |
---|
[358] | 533 | return |
---|
| 534 | end |
---|
[626] | 535 | |
---|
| 536 | |
---|
| 537 | |
---|
| 538 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 539 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 540 | c The so -called "phi" function is such as phi(r) - phi(r0) = t - t0 |
---|
| 541 | c It is an analytical solution to the ice radius growth equation, |
---|
| 542 | c with the approximation of a constant 'reduced' cunningham correction factor |
---|
| 543 | c (lambda in growthrate.F) taken at radius req instead of rice |
---|
| 544 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 545 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 546 | |
---|
[633] | 547 | c subroutine phi(rice,req,coeff1,coeff2,time) |
---|
| 548 | c |
---|
| 549 | c implicit none |
---|
| 550 | c |
---|
| 551 | c ! inputs |
---|
| 552 | c real rice ! ice radius |
---|
| 553 | c real req ! ice radius at equilibirum |
---|
| 554 | c real coeff1 ! coeff for the log |
---|
| 555 | c real coeff2 ! coeff for the arctan |
---|
| 556 | c |
---|
| 557 | c ! output |
---|
| 558 | c real time |
---|
| 559 | c |
---|
| 560 | c !local |
---|
| 561 | c real var |
---|
| 562 | c |
---|
| 563 | c ! 1.73205 is sqrt(3) |
---|
| 564 | c |
---|
| 565 | c var = max( |
---|
| 566 | c & abs(rice-req) / sqrt(rice*rice + rice*req + req*req),1e-30) |
---|
| 567 | c |
---|
| 568 | c time = |
---|
| 569 | c & coeff1 * |
---|
| 570 | c & log( var ) |
---|
| 571 | c & + coeff2 * 1.73205 * |
---|
| 572 | c & atan( (2*rice+req) / (1.73205*req) ) |
---|
| 573 | c |
---|
| 574 | c return |
---|
| 575 | c end |
---|
[626] | 576 | |
---|
| 577 | |
---|
| 578 | |
---|