[358] | 1 | subroutine improvedclouds(ngrid,nlay,ptimestep, |
---|
| 2 | & pplay,pt,pdt, |
---|
| 3 | & pq,pdq,pdqcloud,pdqscloud,pdtcloud, |
---|
| 4 | & nq,tauscaling,rdust,rice,nuice, |
---|
| 5 | & rsedcloud,rhocloud) |
---|
| 6 | implicit none |
---|
| 7 | c------------------------------------------------------------------ |
---|
| 8 | c This routine is used to form clouds when a parcel of the GCM is |
---|
| 9 | c saturated. It includes the ability to have supersaturation, a |
---|
| 10 | c computation of the nucleation rates, growthrates and the |
---|
| 11 | c scavenging of dust particles by clouds. |
---|
| 12 | c It is worth noting that the amount of dust is computed using the |
---|
| 13 | c dust optical depth computed in aeropacity.F. That's why |
---|
| 14 | c the variable called "tauscaling" is used to convert |
---|
| 15 | c pq(dust_mass) and pq(dust_number), which are relative |
---|
| 16 | c quantities, to absolute and realistic quantities stored in zq. |
---|
| 17 | c This has to be done to convert the inputs into absolute |
---|
| 18 | c values, but also to convert the outputs back into relative |
---|
| 19 | c values which are then used by the sedimentation and advection |
---|
| 20 | c schemes. |
---|
| 21 | |
---|
| 22 | c Authors: J.-B. Madeleine, based on the work by Franck Montmessin |
---|
| 23 | c (October 2011) |
---|
| 24 | c------------------------------------------------------------------ |
---|
| 25 | #include "dimensions.h" |
---|
| 26 | #include "dimphys.h" |
---|
| 27 | #include "comcstfi.h" |
---|
| 28 | #include "callkeys.h" |
---|
| 29 | #include "tracer.h" |
---|
| 30 | #include "comgeomfi.h" |
---|
| 31 | #include "dimradmars.h" |
---|
| 32 | #include "microphys.h" |
---|
| 33 | c------------------------------------------------------------------ |
---|
| 34 | c Inputs: |
---|
| 35 | |
---|
| 36 | INTEGER ngrid,nlay |
---|
| 37 | integer nq ! nombre de traceurs |
---|
| 38 | REAL ptimestep ! pas de temps physique (s) |
---|
| 39 | REAL pplay(ngrid,nlay) ! pression au milieu des couches (Pa) |
---|
| 40 | REAL pt(ngrid,nlay) ! temperature at the middle of the |
---|
| 41 | ! layers (K) |
---|
| 42 | REAL pdt(ngrid,nlay) ! tendance temperature des autres |
---|
| 43 | ! param. |
---|
| 44 | REAL pq(ngrid,nlay,nq) ! traceur (kg/kg) |
---|
| 45 | REAL pdq(ngrid,nlay,nq) ! tendance avant condensation |
---|
| 46 | ! (kg/kg.s-1) |
---|
| 47 | REAL tauscaling(ngridmx) ! Convertion factor for qdust and Ndust |
---|
| 48 | REAL rdust(ngridmx,nlayermx) ! Dust geometric mean radius (m) |
---|
| 49 | |
---|
| 50 | c Outputs: |
---|
| 51 | REAL rice(ngrid,nlay) ! Ice mass mean radius (m) |
---|
| 52 | ! (r_c in montmessin_2004) |
---|
| 53 | REAL nuice(ngrid,nlay) ! Estimated effective variance |
---|
| 54 | ! of the size distribution |
---|
| 55 | REAL rsedcloud(ngridmx,nlayermx) ! Cloud sedimentation radius |
---|
| 56 | REAL rhocloud(ngridmx,nlayermx) ! Cloud density (kg.m-3) |
---|
| 57 | REAL pdqcloud(ngrid,nlay,nq) ! tendance de la condensation |
---|
| 58 | ! H2O(kg/kg.s-1) |
---|
| 59 | REAL pdqscloud(ngrid,nq) ! flux en surface (kg.m-2.s-1) |
---|
| 60 | REAL pdtcloud(ngrid,nlay) ! tendance temperature due |
---|
| 61 | ! a la chaleur latente |
---|
| 62 | |
---|
| 63 | c------------------------------------------------------------------ |
---|
| 64 | c Local variables: |
---|
| 65 | |
---|
| 66 | LOGICAL firstcall |
---|
| 67 | DATA firstcall/.true./ |
---|
| 68 | SAVE firstcall |
---|
| 69 | |
---|
| 70 | REAL*8 derf ! Error function |
---|
| 71 | !external derf |
---|
| 72 | |
---|
| 73 | REAL CBRT |
---|
| 74 | EXTERNAL CBRT |
---|
| 75 | |
---|
| 76 | INTEGER ig,l,i |
---|
| 77 | |
---|
| 78 | REAL zq(ngridmx,nlayermx,nqmx) ! local value of tracers |
---|
| 79 | REAL zq0(ngridmx,nlayermx,nqmx) ! local initial value of tracers |
---|
| 80 | REAL zt(ngridmx,nlayermx) ! local value of temperature |
---|
| 81 | REAL zqsat(ngridmx,nlayermx) ! saturation |
---|
| 82 | REAL lw !Latent heat of sublimation (J.kg-1) |
---|
| 83 | REAL Cste |
---|
| 84 | REAL dMice ! mass of condensated ice |
---|
| 85 | REAL sumcheck |
---|
| 86 | REAL*8 ph2o ! Water vapor partial pressure (Pa) |
---|
| 87 | REAL*8 satu ! Water vapor saturation ratio over ice |
---|
| 88 | REAL*8 Mo,No |
---|
| 89 | REAL*8 dN,dM,newvap |
---|
| 90 | REAL*8 Rn, Rm, dev2 |
---|
| 91 | REAL*8 n_aer(nbin_cld) ! number conc. of particle/each size bin |
---|
| 92 | REAL*8 m_aer(nbin_cld) ! mass mixing ratio of particle/each size bin |
---|
| 93 | REAL*8 rate(nbin_cld) ! nucleation rate |
---|
| 94 | REAL*8 up,dwn,Ctot,gr,seq |
---|
| 95 | REAL*8 sig ! Water-ice/air surface tension (N.m) |
---|
| 96 | EXTERNAL sig |
---|
| 97 | |
---|
| 98 | c Parameters of the size discretization |
---|
| 99 | c used by the microphysical scheme |
---|
| 100 | DOUBLE PRECISION, PARAMETER :: rmin_cld = 0.1e-6 ! Minimum radius (m) |
---|
| 101 | DOUBLE PRECISION, PARAMETER :: rmax_cld = 10.e-6 ! Maximum radius (m) |
---|
| 102 | DOUBLE PRECISION, PARAMETER :: rbmin_cld = 0.0001e-6 |
---|
| 103 | ! Minimum boundary radius (m) |
---|
| 104 | DOUBLE PRECISION, PARAMETER :: rbmax_cld = 1.e-2 ! Maximum boundary radius (m) |
---|
| 105 | DOUBLE PRECISION vrat_cld ! Volume ratio |
---|
| 106 | DOUBLE PRECISION rb_cld(nbin_cld+1)! boundary values of each rad_cld bin (m) |
---|
| 107 | SAVE rb_cld |
---|
| 108 | DOUBLE PRECISION dr_cld(nbin_cld)! width of each rad_cld bin (m) |
---|
| 109 | DOUBLE PRECISION vol_cld(nbin_cld) ! particle volume for each bin (m3) |
---|
| 110 | |
---|
| 111 | REAL sigma_ice ! Variance of the ice and CCN distributions |
---|
| 112 | SAVE sigma_ice |
---|
| 113 | |
---|
| 114 | c some outputs for 1D |
---|
| 115 | REAL satu_out(ngridmx,nlayermx) ! satu ratio for output |
---|
| 116 | REAL dN_out(ngridmx,nlayermx) ! mass variation for output |
---|
| 117 | REAL dM_out(ngridmx,nlayermx) ! number variation for output |
---|
| 118 | REAL Mcon_out(ngridmx,nlayermx) ! mass to be condensed (not dMice !!) |
---|
| 119 | REAL gr_out(ngridmx,nlayermx) ! for 1d output |
---|
| 120 | REAL newvap_out(ngridmx,nlayermx) ! for 1d output |
---|
| 121 | |
---|
| 122 | c------------------------------------------------------------------ |
---|
| 123 | |
---|
| 124 | IF (firstcall) THEN |
---|
| 125 | |
---|
| 126 | c Definition of the size grid |
---|
| 127 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 128 | c rad_cld is the primary radius grid used for microphysics computation. |
---|
| 129 | c The grid spacing is computed assuming a constant volume ratio |
---|
| 130 | c between two consecutive bins; i.e. vrat_cld. |
---|
| 131 | c vrat_cld is determined from the boundary values of the size grid: |
---|
| 132 | c rmin_cld and rmax_cld. |
---|
| 133 | c The rb_cld array contains the boundary values of each rad_cld bin. |
---|
| 134 | c dr_cld is the width of each rad_cld bin. |
---|
| 135 | |
---|
| 136 | c Volume ratio between two adjacent bins |
---|
| 137 | vrat_cld = dlog(rmax_cld/rmin_cld) / float(nbin_cld-1) *3. |
---|
| 138 | vrat_cld = dexp(vrat_cld) |
---|
| 139 | write(*,*) "vrat_cld", vrat_cld |
---|
| 140 | |
---|
| 141 | rb_cld(1) = rbmin_cld |
---|
| 142 | rad_cld(1) = rmin_cld |
---|
| 143 | vol_cld(1) = 4./3. * dble(pi) * rmin_cld**3. |
---|
| 144 | |
---|
| 145 | do i=1,nbin_cld-1 |
---|
| 146 | rad_cld(i+1) = rad_cld(i) * vrat_cld**(1./3.) |
---|
| 147 | vol_cld(i+1) = vol_cld(i) * vrat_cld |
---|
| 148 | enddo |
---|
| 149 | |
---|
| 150 | do i=1,nbin_cld |
---|
| 151 | rb_cld(i+1)= ( (2.*vrat_cld) / (vrat_cld+1.) )**(1./3.) * |
---|
| 152 | & rad_cld(i) |
---|
| 153 | dr_cld(i) = rb_cld(i+1) - rb_cld(i) |
---|
| 154 | enddo |
---|
| 155 | rb_cld(nbin_cld+1) = rbmax_cld |
---|
| 156 | dr_cld(nbin_cld) = rb_cld(nbin_cld+1) - rb_cld(nbin_cld) |
---|
| 157 | |
---|
| 158 | print*, ' ' |
---|
| 159 | print*,'Microphysics: size bin information:' |
---|
| 160 | print*,'i,rb_cld(i), rad_cld(i),dr_cld(i)' |
---|
| 161 | print*,'-----------------------------------' |
---|
| 162 | do i=1,nbin_cld |
---|
| 163 | write(*,'(i2,3x,3(e12.6,4x))') i,rb_cld(i), rad_cld(i), |
---|
| 164 | & dr_cld(i) |
---|
| 165 | enddo |
---|
| 166 | write(*,'(i2,3x,e12.6)') nbin_cld+1,rb_cld(nbin_cld+1) |
---|
| 167 | print*,'-----------------------------------' |
---|
| 168 | |
---|
| 169 | c Contact parameter of water ice on dust ( m=cos(theta) ) |
---|
| 170 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 171 | ! mteta = 0.95 |
---|
| 172 | write(*,*) 'water_param contact parameter:', mteta |
---|
| 173 | |
---|
| 174 | c Volume of a water molecule (m3) |
---|
| 175 | vo1 = mh2o / dble(rho_ice) |
---|
| 176 | c Variance of the ice and CCN distributions |
---|
| 177 | sigma_ice = sqrt(log(1.+nuice_sed)) |
---|
| 178 | |
---|
| 179 | write(*,*) 'Variance of ice & CCN distribs :', sigma_ice |
---|
| 180 | write(*,*) 'Volume of a water molecule:', vo1 |
---|
| 181 | |
---|
| 182 | firstcall=.false. |
---|
| 183 | END IF |
---|
| 184 | |
---|
| 185 | c----------------------------------------------------------------------- |
---|
| 186 | c 1. Initialization |
---|
| 187 | c----------------------------------------------------------------------- |
---|
| 188 | c Update the needed variables |
---|
| 189 | |
---|
| 190 | c write(*,*) "tauscaling", tauscaling |
---|
| 191 | |
---|
| 192 | !write(*,*) "pq ccn_mass", pq(ig,:,igcm_ccn_mass) |
---|
| 193 | !write(*,*) "pdq ccn_mass", pdq(ig,:,igcm_ccn_mass) |
---|
| 194 | !write(*,*) "pq ccn_number", pq(ig,:,igcm_ccn_number) |
---|
| 195 | !write(*,*) "pdq ccn_number", pdq(ig,:,igcm_ccn_number) |
---|
| 196 | |
---|
| 197 | ! print*, "improvedcloud debut pdq", |
---|
| 198 | ! & pdq(:,:,igcm_ccn_number)*ptimestep |
---|
| 199 | ! print*, "improvedcloud debut pq", pq(:,:,igcm_ccn_number) |
---|
| 200 | |
---|
| 201 | |
---|
| 202 | do l=1,nlay |
---|
| 203 | do ig=1,ngrid |
---|
| 204 | c Temperature |
---|
| 205 | zt(ig,l)=pt(ig,l)+ pdt(ig,l)*ptimestep |
---|
| 206 | c Dust mass mixing ratio |
---|
| 207 | c (converted to the true value using tauscaling) |
---|
| 208 | zq(ig,l,igcm_dust_mass) = |
---|
| 209 | & pq(ig,l,igcm_dust_mass) + |
---|
| 210 | & pdq(ig,l,igcm_dust_mass) * ptimestep |
---|
| 211 | zq(ig,l,igcm_dust_mass) = |
---|
| 212 | & zq(ig,l,igcm_dust_mass) * tauscaling(ig) |
---|
| 213 | zq(ig,l,igcm_dust_mass)=max(zq(ig,l,igcm_dust_mass),1.E-30) |
---|
| 214 | zq0(ig,l,igcm_dust_mass)=zq(ig,l,igcm_dust_mass) |
---|
| 215 | c Dust particle number |
---|
| 216 | c (converted to the true value using rdust and tauscaling) |
---|
| 217 | ! zq(ig,l,igcm_dust_number) = |
---|
| 218 | ! & pq(ig,l,igcm_dust_number) + |
---|
| 219 | ! & pdq(ig,l,igcm_dust_number) * ptimestep |
---|
| 220 | zq(ig,l,igcm_dust_number) = |
---|
| 221 | & (1.e0/rdust(ig,l))**3. * r3n_q * zq(ig,l,igcm_dust_mass) |
---|
| 222 | zq(ig,l,igcm_dust_number)= |
---|
| 223 | & max(zq(ig,l,igcm_dust_number),1.E-30) |
---|
| 224 | zq0(ig,l,igcm_dust_number)=zq(ig,l,igcm_dust_number) |
---|
| 225 | c CCN mass mixing ratio |
---|
| 226 | zq(ig,l,igcm_ccn_mass)= |
---|
| 227 | & pq(ig,l,igcm_ccn_mass)+pdq(ig,l,igcm_ccn_mass)*ptimestep |
---|
| 228 | zq(ig,l,igcm_ccn_mass)=max(zq(ig,l,igcm_ccn_mass),1.E-30) |
---|
| 229 | zq0(ig,l,igcm_ccn_mass)=zq(ig,l,igcm_ccn_mass) |
---|
| 230 | c write(*,*) "pq,zq ccn_mass", pq(ig,l,igcm_ccn_mass), |
---|
| 231 | c & zq(ig,l,igcm_ccn_mass) |
---|
| 232 | c CCN particle number |
---|
| 233 | zq(ig,l,igcm_ccn_number)= |
---|
| 234 | & pq(ig,l,igcm_ccn_number)+pdq(ig,l,igcm_ccn_number)*ptimestep |
---|
| 235 | zq(ig,l,igcm_ccn_number)=max(zq(ig,l,igcm_ccn_number),1.E-30) |
---|
| 236 | zq0(ig,l,igcm_ccn_number)=zq(ig,l,igcm_ccn_number) |
---|
| 237 | c write(*,*) "pq,zq ccn_number", pq(ig,l,igcm_ccn_number), |
---|
| 238 | c & zq(ig,l,igcm_ccn_number) |
---|
| 239 | c Water vapor |
---|
| 240 | zq(ig,l,igcm_h2o_vap)= |
---|
| 241 | & pq(ig,l,igcm_h2o_vap)+pdq(ig,l,igcm_h2o_vap)*ptimestep |
---|
| 242 | zq(ig,l,igcm_h2o_vap)=max(zq(ig,l,igcm_h2o_vap),1.E-30) ! FF 12/2004 |
---|
| 243 | zq0(ig,l,igcm_h2o_vap)=zq(ig,l,igcm_h2o_vap) |
---|
| 244 | c Water ice |
---|
| 245 | zq(ig,l,igcm_h2o_ice)= |
---|
| 246 | & pq(ig,l,igcm_h2o_ice)+pdq(ig,l,igcm_h2o_ice)*ptimestep |
---|
| 247 | zq(ig,l,igcm_h2o_ice)=max(zq(ig,l,igcm_h2o_ice),0.) ! FF 12/2004 |
---|
| 248 | zq0(ig,l,igcm_h2o_ice)=zq(ig,l,igcm_h2o_ice) |
---|
| 249 | enddo |
---|
| 250 | enddo |
---|
| 251 | |
---|
| 252 | !print*, "improvedcloud debut pq", pq(1,:,igcm_dust_number) |
---|
| 253 | |
---|
| 254 | c------------------------------------------------------------------ |
---|
| 255 | c Cloud microphysical scheme |
---|
| 256 | c------------------------------------------------------------------ |
---|
| 257 | |
---|
| 258 | Cste = ptimestep * 4. * pi * rho_ice |
---|
| 259 | |
---|
| 260 | call watersat(ngridmx*nlayermx,zt,pplay,zqsat) |
---|
| 261 | |
---|
| 262 | c write(*,*) "ccn_number avant loop phy", |
---|
| 263 | c & zq(ig,:,igcm_ccn_number) |
---|
| 264 | c write(*,*) "ccn_mass avant loop phy", |
---|
| 265 | c & zq(ig,:,igcm_ccn_mass) |
---|
| 266 | |
---|
| 267 | c Main loop over the GCM's grid |
---|
| 268 | DO l=1,nlay |
---|
| 269 | !ig = 1 |
---|
| 270 | DO ig=1,ngrid |
---|
| 271 | |
---|
| 272 | c Get the partial pressure of water vapor and its saturation ratio |
---|
| 273 | ph2o = zq(ig,l,igcm_h2o_vap) * (44./18.) * pplay(ig,l) |
---|
| 274 | satu = zq(ig,l,igcm_h2o_vap) / zqsat(ig,l) |
---|
| 275 | satu_out(ig,l) = satu |
---|
| 276 | !write(*,*) "l | h2o_vap | zqsat | satu | ph2o" |
---|
| 277 | !write(*,*) l,zq(ig,l,igcm_h2o_vap), zqsat(ig,l), satu, ph2o |
---|
| 278 | |
---|
| 279 | c Expand the dust moments into a binned distribution |
---|
| 280 | Mo = zq(ig,l,igcm_dust_mass) |
---|
| 281 | No = zq(ig,l,igcm_dust_number)+ 1.e-30 |
---|
| 282 | Rn = rdust(ig,l) |
---|
| 283 | Rm = Rn * exp( 3. * sigma_ice**2. ) |
---|
| 284 | Rn = 1. / Rn |
---|
| 285 | Rm = 1. / Rm |
---|
| 286 | dev2 = 1. / ( sqrt(2.) * sigma_ice ) |
---|
| 287 | do i = 1, nbin_cld |
---|
| 288 | n_aer(i) = 0.5 * No * ( derf( dlog(rb_cld(i+1)*Rn) * dev2 ) |
---|
| 289 | & -derf( dlog(rb_cld(i) * Rn) * dev2 ) ) |
---|
| 290 | m_aer(i) = 0.5 * Mo * ( derf( dlog(rb_cld(i+1)*Rm) * dev2 ) |
---|
| 291 | & -derf( dlog(rb_cld(i) * Rm) * dev2 ) ) |
---|
| 292 | enddo |
---|
| 293 | |
---|
| 294 | ! sumcheck = 0 |
---|
| 295 | ! do i = 1, nbin_cld |
---|
| 296 | ! sumcheck = sumcheck + n_aer(i) |
---|
| 297 | ! enddo |
---|
| 298 | ! sumcheck = abs(sumcheck/No - 1) |
---|
| 299 | ! if ((sumcheck .gt. 1e-5).and. (1./Rn .gt. rmin_cld)) then |
---|
| 300 | ! print*, "WARNING, No sumcheck PROBLEM" |
---|
| 301 | ! print*, "sumcheck, No",sumcheck, No |
---|
| 302 | ! print*, "min radius, Rn, ig, l", rmin_cld, 1./Rn, ig, l |
---|
| 303 | ! print*, "Dust binned distribution", n_aer |
---|
| 304 | ! endif |
---|
| 305 | ! |
---|
| 306 | ! sumcheck = 0 |
---|
| 307 | ! do i = 1, nbin_cld |
---|
| 308 | ! sumcheck = sumcheck + M_aer(i) |
---|
| 309 | ! enddo |
---|
| 310 | ! sumcheck = abs(sumcheck/Mo - 1) |
---|
| 311 | ! if ((sumcheck .gt. 1e-5) .and. (1./Rn .gt. rmin_cld)) then |
---|
| 312 | ! print*, "WARNING, Mo sumcheck PROBLEM" |
---|
| 313 | ! print*, "sumcheck, No",sumcheck, No |
---|
| 314 | ! print*, "min radius, Rm, ig, l", rmin_cld, 1./Rm, ig, l |
---|
| 315 | ! print*, "Dust binned distribution", m_aer |
---|
| 316 | ! endif |
---|
| 317 | |
---|
| 318 | c Get the rates of nucleation |
---|
| 319 | call nuclea(ph2o,zt(ig,l),satu,n_aer,rate) |
---|
| 320 | |
---|
| 321 | dN = 0. |
---|
| 322 | dM = 0. |
---|
| 323 | do i = 1, nbin_cld |
---|
| 324 | n_aer(i) = n_aer(i) / ( 1. + rate(i)*ptimestep ) |
---|
| 325 | m_aer(i) = m_aer(i) / ( 1. + rate(i)*ptimestep ) |
---|
| 326 | dN = dN + n_aer(i) * rate(i) * ptimestep |
---|
| 327 | dM = dM + m_aer(i) * rate(i) * ptimestep |
---|
| 328 | enddo |
---|
| 329 | |
---|
| 330 | ! dN = min( max(dN,-zq(ig,l,igcm_ccn_number) ), |
---|
| 331 | ! & zq(ig,l,igcm_dust_number) ) |
---|
| 332 | ! |
---|
| 333 | ! dM = min( max(dM,-zq(ig,l,igcm_ccn_mass) ), |
---|
| 334 | ! & zq(ig,l,igcm_dust_mass) ) |
---|
| 335 | |
---|
| 336 | |
---|
| 337 | c IF (zq(ig,l,igcm_ccn_number).ge.1.e-20) THEN |
---|
| 338 | |
---|
| 339 | Mo = zq0(ig,l,igcm_h2o_ice) + |
---|
| 340 | & zq0(ig,l,igcm_ccn_mass) + 1.e-30 |
---|
| 341 | No = zq0(ig,l,igcm_ccn_number) |
---|
| 342 | !write(*,*) "l,cloud particles,cloud mass",l, No, Mo |
---|
| 343 | rhocloud(ig,l) = zq0(ig,l,igcm_h2o_ice) / Mo * rho_ice |
---|
| 344 | & +zq0(ig,l,igcm_ccn_mass) / Mo * rho_dust |
---|
| 345 | rhocloud(ig,l) = min(max(rhocloud(ig,l),rho_ice),rho_dust) |
---|
| 346 | rice(ig,l) = |
---|
| 347 | & ( Mo / No * 0.75 / pi / rhocloud(ig,l) ) **(1./3.) |
---|
| 348 | nuice(ig,l)=nuice_ref ! used for rad. transfer calculations |
---|
| 349 | if (Mo.lt.1.e-20) rice(ig,l) = 1.e-8 |
---|
| 350 | seq = exp( 2.*sig(zt(ig,l))*mh2o / |
---|
| 351 | & (rho_ice*rgp*zt(ig,l)*rice(ig,l)) ) |
---|
| 352 | |
---|
| 353 | call growthrate(ptimestep,zt(ig,l),pplay(ig,l), |
---|
| 354 | & ph2o,ph2o/satu,seq,rice(ig,l),gr) |
---|
| 355 | |
---|
| 356 | up = Cste * gr * rice(ig,l) * No * seq + |
---|
| 357 | & zq(ig,l,igcm_h2o_vap) |
---|
| 358 | dwn = Cste * gr * rice(ig,l) * No / zqsat(ig,l)+ 1. |
---|
| 359 | |
---|
| 360 | Ctot = zq0(ig,l,igcm_h2o_ice) + zq(ig,l,igcm_h2o_vap) |
---|
| 361 | |
---|
| 362 | newvap = min(up/dwn,Ctot) |
---|
| 363 | |
---|
| 364 | gr = gr * ( newvap/zqsat(ig,l) - seq ) |
---|
| 365 | |
---|
| 366 | |
---|
| 367 | dMice = min( max(Cste * No * rice(ig,l) * gr, |
---|
| 368 | & -zq(ig,l,igcm_h2o_ice) ), |
---|
| 369 | & zq(ig,l,igcm_h2o_vap) ) |
---|
| 370 | |
---|
| 371 | c----------- TESTS 1D output --------- |
---|
| 372 | if (ngrid.eq.1) then |
---|
| 373 | Mcon_out(ig,l) = dMice |
---|
| 374 | newvap_out(ig,l) = newvap |
---|
| 375 | gr_out(ig,l) = gr |
---|
| 376 | dN_out(ig,l) = dN |
---|
| 377 | dM_out(ig,l) = dM |
---|
| 378 | endif |
---|
| 379 | c------------------------------------- |
---|
| 380 | |
---|
| 381 | c Water ice |
---|
| 382 | zq(ig,l,igcm_h2o_ice) = zq0(ig,l,igcm_h2o_ice) + |
---|
| 383 | & dMice |
---|
| 384 | |
---|
| 385 | c Water vapor |
---|
| 386 | zq(ig,l,igcm_h2o_vap) = zq0(ig,l,igcm_h2o_vap) - |
---|
| 387 | & dMice |
---|
| 388 | |
---|
| 389 | |
---|
| 390 | c If all the ice particles sublimate, all the condensation |
---|
| 391 | c nuclei are released: |
---|
| 392 | if (zq(ig,l,igcm_h2o_ice).le.1e-30) then |
---|
| 393 | c Water ice particles |
---|
| 394 | zq(ig,l,igcm_h2o_ice) = 0. |
---|
| 395 | c Dust particles |
---|
| 396 | zq(ig,l,igcm_dust_mass ) = zq0(ig,l,igcm_dust_mass) + |
---|
| 397 | & zq0(ig,l,igcm_ccn_mass) |
---|
| 398 | zq(ig,l,igcm_dust_number ) = zq0(ig,l,igcm_dust_number) + |
---|
| 399 | & zq0(ig,l,igcm_ccn_number) |
---|
| 400 | c CCNs |
---|
| 401 | zq(ig,l,igcm_ccn_mass) = 0. |
---|
| 402 | zq(ig,l,igcm_ccn_number) = 0. |
---|
| 403 | c for coherence |
---|
| 404 | dM = 0 |
---|
| 405 | dN = 0 |
---|
| 406 | endif |
---|
| 407 | c ELSE |
---|
| 408 | cc Initialize rhocloud and rice to avoid divisions by 0 |
---|
| 409 | c rhocloud(ig,l) = 1.e-10 |
---|
| 410 | c rice(ig,l) = 1.e-8 |
---|
| 411 | c dM = 0 |
---|
| 412 | c dN = 0 |
---|
| 413 | c ENDIF ! of if (zq(ig,l,igcm_ccn_number).ge.1.e-20) |
---|
| 414 | |
---|
| 415 | c Dust particles |
---|
| 416 | zq(ig,l,igcm_dust_mass ) = zq(ig,l,igcm_dust_mass ) - dM |
---|
| 417 | zq(ig,l,igcm_dust_number ) = zq(ig,l,igcm_dust_number ) - dN |
---|
| 418 | c CCNs |
---|
| 419 | zq(ig,l,igcm_ccn_mass) = zq(ig,l,igcm_ccn_mass) + dM |
---|
| 420 | zq(ig,l,igcm_ccn_number) = zq(ig,l,igcm_ccn_number) + dN |
---|
| 421 | |
---|
| 422 | ENDDO |
---|
| 423 | ENDDO |
---|
| 424 | |
---|
| 425 | |
---|
| 426 | ! print*, "improvedclouds zq0 abs.", zq0(:,:,igcm_ccn_number) |
---|
| 427 | ! print*, "improvedclouds zq abs.", zq(:,:,igcm_ccn_number) |
---|
| 428 | c------------------------------------------------------------------ |
---|
| 429 | c Convert the initial values back into relative values |
---|
| 430 | c (has to be done before updating rdust!) |
---|
| 431 | c------------------------------------------------------------------ |
---|
| 432 | |
---|
| 433 | do l=1, nlay |
---|
| 434 | do ig=1,ngrid |
---|
| 435 | zq0(ig,l,igcm_dust_mass) = |
---|
| 436 | & zq0(ig,l,igcm_dust_mass) / tauscaling(ig) |
---|
| 437 | zq0(ig,l,igcm_dust_number) = |
---|
| 438 | & (1.e0/rdust(ig,l))**3. * r3n_q * |
---|
| 439 | & zq0(ig,l,igcm_dust_mass) |
---|
| 440 | enddo ! of do ig=1,ngrid |
---|
| 441 | enddo ! of do l=1,nlay |
---|
| 442 | |
---|
| 443 | c------------------------------------------------------------------ |
---|
| 444 | c Update the dust radius |
---|
| 445 | c------------------------------------------------------------------ |
---|
| 446 | |
---|
| 447 | DO l=1,nlay |
---|
| 448 | DO ig=1,ngrid |
---|
| 449 | rdust(ig,l)= |
---|
| 450 | & CBRT(r3n_q*zq(ig,l,igcm_dust_mass)/ |
---|
| 451 | & max(zq(ig,l,igcm_dust_number),0.01)) |
---|
| 452 | rdust(ig,l)=min(max(rdust(ig,l),1.e-10),500.e-6) |
---|
| 453 | ENDDO |
---|
| 454 | ENDDO |
---|
| 455 | |
---|
| 456 | c------------------------------------------------------------------ |
---|
| 457 | c Convert zq back into relative values (only applies to dust) |
---|
| 458 | c------------------------------------------------------------------ |
---|
| 459 | |
---|
| 460 | do l=1, nlay |
---|
| 461 | do ig=1,ngrid |
---|
| 462 | c Dust mass mixing ratio |
---|
| 463 | c (converted back into relative value using tauscaling) |
---|
| 464 | zq(ig,l,igcm_dust_mass) = |
---|
| 465 | & zq(ig,l,igcm_dust_mass) / tauscaling(ig) |
---|
| 466 | zq(ig,l,igcm_dust_mass)=max(zq(ig,l,igcm_dust_mass),1.E-30) |
---|
| 467 | c Dust particle number |
---|
| 468 | c (converted back into relative value) |
---|
| 469 | zq(ig,l,igcm_dust_number) = |
---|
| 470 | & (1.e0/rdust(ig,l))**3. * r3n_q * zq(ig,l,igcm_dust_mass) |
---|
| 471 | zq(ig,l,igcm_dust_number)= |
---|
| 472 | & max(zq(ig,l,igcm_dust_number),1.E-30) |
---|
| 473 | enddo ! of do ig=1,ngrid |
---|
| 474 | enddo ! of do l=1,nlay |
---|
| 475 | |
---|
| 476 | ! print*, "improvedclouds zq0 rel.", zq0(1,:,igcm_ccn_number) |
---|
| 477 | ! print*, "improvedclouds zq rel.", zq(1,:,igcm_ccn_number) |
---|
| 478 | |
---|
| 479 | c------------------------------------------------------------------ |
---|
| 480 | c Compute the sedimentation radius |
---|
| 481 | c------------------------------------------------------------------ |
---|
| 482 | |
---|
| 483 | do l=1, nlay |
---|
| 484 | do ig=1,ngrid |
---|
| 485 | rsedcloud(ig,l)=max( rice(ig,l)*(1.+nuice_sed)**3., |
---|
| 486 | & rdust(ig,l) ) |
---|
| 487 | rsedcloud(ig,l)=min(rsedcloud(ig,l),1.e-4) |
---|
| 488 | enddo ! of do ig=1,ngrid |
---|
| 489 | enddo ! of do l=1,nlay |
---|
| 490 | |
---|
| 491 | c------------------------------------------------------------------ |
---|
| 492 | c Force positive values |
---|
| 493 | c------------------------------------------------------------------ |
---|
| 494 | |
---|
| 495 | ! do l=1, nlay |
---|
| 496 | ! do ig=1,ngrid |
---|
| 497 | ! zq(ig,l,igcm_ccn_mass)= |
---|
| 498 | ! & max(zq(ig,l,igcm_ccn_mass),1e-30) |
---|
| 499 | ! zq(ig,l,igcm_ccn_number)= |
---|
| 500 | ! & max(zq(ig,l,igcm_ccn_number),1e-30) |
---|
| 501 | ! zq(ig,l,igcm_h2o_vap)= |
---|
| 502 | ! & max(zq(ig,l,igcm_h2o_vap),1e-30) |
---|
| 503 | ! zq(ig,l,igcm_h2o_ice)= |
---|
| 504 | ! & max(zq(ig,l,igcm_h2o_ice),1e-30) |
---|
| 505 | ! enddo ! of do ig=1,ngrid |
---|
| 506 | ! enddo ! of do l=1,nlay |
---|
| 507 | |
---|
| 508 | |
---|
| 509 | c------------------------------------------------------------------ |
---|
| 510 | c Compute the final tendencies |
---|
| 511 | c------------------------------------------------------------------ |
---|
| 512 | |
---|
| 513 | c Initialize the tendencies |
---|
| 514 | pdqscloud(1:ngrid,1:nq)=0 |
---|
| 515 | pdqcloud(1:ngrid,1:nlay,1:nq)=0 |
---|
| 516 | pdtcloud(1:ngrid,1:nlay)=0 |
---|
| 517 | |
---|
| 518 | c Update the tendencies |
---|
| 519 | do l=1, nlay |
---|
| 520 | do ig=1,ngrid |
---|
| 521 | pdqcloud(ig,l,igcm_dust_mass)=(zq(ig,l,igcm_dust_mass) |
---|
| 522 | & -zq0(ig,l,igcm_dust_mass))/ptimestep |
---|
| 523 | pdqcloud(ig,l,igcm_dust_number)=(zq(ig,l,igcm_dust_number) |
---|
| 524 | & -pq(ig,l,igcm_dust_number))/ptimestep |
---|
| 525 | & - pdq(ig,l,igcm_dust_number) !!! AJOUT TN |
---|
| 526 | pdqcloud(ig,l,igcm_ccn_mass)=(zq(ig,l,igcm_ccn_mass) |
---|
| 527 | & -zq0(ig,l,igcm_ccn_mass))/ptimestep |
---|
| 528 | pdqcloud(ig,l,igcm_ccn_number)=(zq(ig,l,igcm_ccn_number) |
---|
| 529 | & -zq0(ig,l,igcm_ccn_number))/ptimestep |
---|
| 530 | pdqcloud(ig,l,igcm_h2o_vap)=(zq(ig,l,igcm_h2o_vap) |
---|
| 531 | & -zq0(ig,l,igcm_h2o_vap))/ptimestep |
---|
| 532 | pdqcloud(ig,l,igcm_h2o_ice)=(zq(ig,l,igcm_h2o_ice) |
---|
| 533 | & -zq0(ig,l,igcm_h2o_ice))/ptimestep |
---|
| 534 | lw=(2834.3-0.28*(zt(ig,l)-To)-0.004*(zt(ig,l)-To)**2)*1.e+3 |
---|
| 535 | pdtcloud(ig,l)=-pdqcloud(ig,l,igcm_h2o_vap)*lw/cpp |
---|
| 536 | end do |
---|
| 537 | end do |
---|
| 538 | ! call WRITEDIAGFI(ngrid,"satu","ratio saturation","",3, |
---|
| 539 | ! & satu_out) |
---|
| 540 | |
---|
| 541 | ! print*, "improvedclouds pdq*dt", |
---|
| 542 | ! & pdqcloud(:,:,igcm_ccn_number)*ptimestep |
---|
| 543 | |
---|
| 544 | |
---|
| 545 | c------------------------------------------------------------------ |
---|
| 546 | c TEST_JBM |
---|
| 547 | IF (ngrid.eq.1) THEN |
---|
| 548 | c call WRITEDIAGFI(ngrid,"tausca","tauscaling","",0, |
---|
| 549 | c & tauscaling) |
---|
| 550 | call WRITEDIAGFI(ngrid,"newvap","h2o newvap","kg",1, |
---|
| 551 | & newvap_out) |
---|
| 552 | call WRITEDIAGFI(ngrid,"growthrate","growth rate","m^2/s",1, |
---|
| 553 | & gr_out) |
---|
| 554 | call WRITEDIAGFI(ngrid,"dM","ccn variation","kg",1, |
---|
| 555 | & dM_out) |
---|
| 556 | call WRITEDIAGFI(ngrid,"dN","ccn variation","#",1, |
---|
| 557 | & dN_out) |
---|
| 558 | call WRITEDIAGFI(ngrid,"mcond","h2o condensed mass","kg",1, |
---|
| 559 | & Mcon_out) |
---|
| 560 | call WRITEDIAGFI(ngrid,"zqsat","p vap sat","kg/kg",1, |
---|
| 561 | & zqsat) |
---|
| 562 | call WRITEDIAGFI(ngrid,"satu","ratio saturation","",1, |
---|
| 563 | & satu_out) |
---|
| 564 | call WRITEDIAGFI(ngrid,"rice","ice radius","m",1, |
---|
| 565 | & rice) |
---|
| 566 | call WRITEDIAGFI(ngrid,"rdust","rdust","m",1, |
---|
| 567 | & rdust) |
---|
| 568 | call WRITEDIAGFI(ngrid,"rsedcloud","rsedcloud","m",1, |
---|
| 569 | & rsedcloud) |
---|
| 570 | call WRITEDIAGFI(ngrid,"rhocloud","rhocloud","kg.m-3",1, |
---|
| 571 | & rhocloud) |
---|
| 572 | ENDIF |
---|
| 573 | c------------------------------------------------------------------ |
---|
| 574 | return |
---|
| 575 | end |
---|