[358] | 1 | subroutine improvedclouds(ngrid,nlay,ptimestep, |
---|
[633] | 2 | & pplay,pt,pdt, |
---|
[520] | 3 | & pq,pdq,pdqcloud,pdtcloud, |
---|
[633] | 4 | & nq,tauscaling) |
---|
[520] | 5 | ! to use 'getin' |
---|
| 6 | USE ioipsl_getincom |
---|
[740] | 7 | USE updaterad |
---|
[1036] | 8 | use tracer_mod, only: rho_ice, nuice_sed, igcm_h2o_vap, |
---|
| 9 | & igcm_h2o_ice, igcm_dust_mass, |
---|
| 10 | & igcm_dust_number, igcm_ccn_mass, |
---|
| 11 | & igcm_ccn_number |
---|
[1047] | 12 | use conc_mod, only: mmean |
---|
[1226] | 13 | USE comcstfi_h |
---|
[358] | 14 | implicit none |
---|
[633] | 15 | |
---|
| 16 | |
---|
[358] | 17 | c------------------------------------------------------------------ |
---|
| 18 | c This routine is used to form clouds when a parcel of the GCM is |
---|
| 19 | c saturated. It includes the ability to have supersaturation, a |
---|
| 20 | c computation of the nucleation rates, growthrates and the |
---|
| 21 | c scavenging of dust particles by clouds. |
---|
| 22 | c It is worth noting that the amount of dust is computed using the |
---|
| 23 | c dust optical depth computed in aeropacity.F. That's why |
---|
| 24 | c the variable called "tauscaling" is used to convert |
---|
| 25 | c pq(dust_mass) and pq(dust_number), which are relative |
---|
| 26 | c quantities, to absolute and realistic quantities stored in zq. |
---|
| 27 | c This has to be done to convert the inputs into absolute |
---|
| 28 | c values, but also to convert the outputs back into relative |
---|
| 29 | c values which are then used by the sedimentation and advection |
---|
| 30 | c schemes. |
---|
| 31 | |
---|
| 32 | c Authors: J.-B. Madeleine, based on the work by Franck Montmessin |
---|
| 33 | c (October 2011) |
---|
[626] | 34 | c T. Navarro, debug,correction, new scheme (October-April 2011) |
---|
[530] | 35 | c A. Spiga, optimization (February 2012) |
---|
[358] | 36 | c------------------------------------------------------------------ |
---|
[1047] | 37 | !#include "dimensions.h" |
---|
| 38 | !#include "dimphys.h" |
---|
[358] | 39 | #include "callkeys.h" |
---|
[1036] | 40 | !#include "tracer.h" |
---|
[1047] | 41 | !#include "comgeomfi.h" |
---|
| 42 | !#include "dimradmars.h" |
---|
[358] | 43 | #include "microphys.h" |
---|
[1047] | 44 | !#include "conc.h" |
---|
[358] | 45 | c------------------------------------------------------------------ |
---|
| 46 | c Inputs: |
---|
| 47 | |
---|
| 48 | INTEGER ngrid,nlay |
---|
| 49 | integer nq ! nombre de traceurs |
---|
| 50 | REAL ptimestep ! pas de temps physique (s) |
---|
[520] | 51 | REAL pplay(ngrid,nlay) ! pression au milieu des couches (Pa) |
---|
| 52 | |
---|
[358] | 53 | REAL pt(ngrid,nlay) ! temperature at the middle of the |
---|
| 54 | ! layers (K) |
---|
| 55 | REAL pdt(ngrid,nlay) ! tendance temperature des autres |
---|
| 56 | ! param. |
---|
| 57 | REAL pq(ngrid,nlay,nq) ! traceur (kg/kg) |
---|
| 58 | REAL pdq(ngrid,nlay,nq) ! tendance avant condensation |
---|
| 59 | ! (kg/kg.s-1) |
---|
[1047] | 60 | REAL tauscaling(ngrid) ! Convertion factor for qdust and Ndust |
---|
[358] | 61 | |
---|
| 62 | c Outputs: |
---|
| 63 | REAL pdqcloud(ngrid,nlay,nq) ! tendance de la condensation |
---|
| 64 | ! H2O(kg/kg.s-1) |
---|
| 65 | REAL pdtcloud(ngrid,nlay) ! tendance temperature due |
---|
| 66 | ! a la chaleur latente |
---|
| 67 | |
---|
| 68 | c------------------------------------------------------------------ |
---|
| 69 | c Local variables: |
---|
| 70 | |
---|
| 71 | LOGICAL firstcall |
---|
| 72 | DATA firstcall/.true./ |
---|
| 73 | SAVE firstcall |
---|
| 74 | |
---|
| 75 | REAL*8 derf ! Error function |
---|
| 76 | !external derf |
---|
[740] | 77 | |
---|
[358] | 78 | INTEGER ig,l,i |
---|
[520] | 79 | |
---|
[1047] | 80 | REAL zq(ngrid,nlay,nq) ! local value of tracers |
---|
| 81 | REAL zq0(ngrid,nlay,nq) ! local initial value of tracers |
---|
| 82 | REAL zt(ngrid,nlay) ! local value of temperature |
---|
| 83 | REAL zqsat(ngrid,nlay) ! saturation |
---|
[358] | 84 | REAL lw !Latent heat of sublimation (J.kg-1) |
---|
[633] | 85 | REAL cste |
---|
| 86 | REAL dMice ! mass of condensed ice |
---|
| 87 | ! REAL sumcheck |
---|
[358] | 88 | REAL*8 ph2o ! Water vapor partial pressure (Pa) |
---|
| 89 | REAL*8 satu ! Water vapor saturation ratio over ice |
---|
| 90 | REAL*8 Mo,No |
---|
[633] | 91 | REAL*8 Rn, Rm, dev2, n_derf, m_derf |
---|
[358] | 92 | REAL*8 n_aer(nbin_cld) ! number conc. of particle/each size bin |
---|
| 93 | REAL*8 m_aer(nbin_cld) ! mass mixing ratio of particle/each size bin |
---|
[633] | 94 | |
---|
[358] | 95 | REAL*8 sig ! Water-ice/air surface tension (N.m) |
---|
| 96 | EXTERNAL sig |
---|
| 97 | |
---|
[633] | 98 | REAL dN,dM |
---|
| 99 | REAL rate(nbin_cld) ! nucleation rate |
---|
| 100 | REAL seq |
---|
| 101 | |
---|
| 102 | REAL rice(ngrid,nlay) ! Ice mass mean radius (m) |
---|
| 103 | ! (r_c in montmessin_2004) |
---|
[1047] | 104 | REAL rhocloud(ngrid,nlay) ! Cloud density (kg.m-3) |
---|
| 105 | REAL rdust(ngrid,nlay) ! Dust geometric mean radius (m) |
---|
[633] | 106 | |
---|
| 107 | REAL res ! Resistance growth |
---|
[740] | 108 | |
---|
[633] | 109 | |
---|
[358] | 110 | c Parameters of the size discretization |
---|
| 111 | c used by the microphysical scheme |
---|
| 112 | DOUBLE PRECISION, PARAMETER :: rmin_cld = 0.1e-6 ! Minimum radius (m) |
---|
| 113 | DOUBLE PRECISION, PARAMETER :: rmax_cld = 10.e-6 ! Maximum radius (m) |
---|
| 114 | DOUBLE PRECISION, PARAMETER :: rbmin_cld = 0.0001e-6 |
---|
| 115 | ! Minimum boundary radius (m) |
---|
| 116 | DOUBLE PRECISION, PARAMETER :: rbmax_cld = 1.e-2 ! Maximum boundary radius (m) |
---|
| 117 | DOUBLE PRECISION vrat_cld ! Volume ratio |
---|
| 118 | DOUBLE PRECISION rb_cld(nbin_cld+1)! boundary values of each rad_cld bin (m) |
---|
| 119 | SAVE rb_cld |
---|
[520] | 120 | DOUBLE PRECISION dr_cld(nbin_cld) ! width of each rad_cld bin (m) |
---|
| 121 | DOUBLE PRECISION vol_cld(nbin_cld) ! particle volume for each bin (m3) |
---|
[358] | 122 | |
---|
[633] | 123 | |
---|
[358] | 124 | REAL sigma_ice ! Variance of the ice and CCN distributions |
---|
| 125 | SAVE sigma_ice |
---|
[633] | 126 | |
---|
| 127 | |
---|
[520] | 128 | |
---|
[420] | 129 | c---------------------------------- |
---|
[633] | 130 | c TESTS |
---|
| 131 | |
---|
| 132 | INTEGER countcells |
---|
[420] | 133 | |
---|
[626] | 134 | LOGICAL test_flag ! flag for test/debuging outputs |
---|
[740] | 135 | SAVE test_flag |
---|
| 136 | |
---|
| 137 | |
---|
| 138 | REAL satubf(ngrid,nlay),satuaf(ngrid,nlay) |
---|
| 139 | REAL res_out(ngrid,nlay) |
---|
[633] | 140 | |
---|
[358] | 141 | |
---|
| 142 | c------------------------------------------------------------------ |
---|
| 143 | |
---|
| 144 | IF (firstcall) THEN |
---|
[626] | 145 | !============================================================= |
---|
| 146 | ! 0. Definition of the size grid |
---|
| 147 | !============================================================= |
---|
[358] | 148 | c rad_cld is the primary radius grid used for microphysics computation. |
---|
| 149 | c The grid spacing is computed assuming a constant volume ratio |
---|
| 150 | c between two consecutive bins; i.e. vrat_cld. |
---|
| 151 | c vrat_cld is determined from the boundary values of the size grid: |
---|
| 152 | c rmin_cld and rmax_cld. |
---|
| 153 | c The rb_cld array contains the boundary values of each rad_cld bin. |
---|
| 154 | c dr_cld is the width of each rad_cld bin. |
---|
| 155 | |
---|
| 156 | c Volume ratio between two adjacent bins |
---|
[633] | 157 | ! vrat_cld = log(rmax_cld/rmin_cld) / float(nbin_cld-1) *3. |
---|
| 158 | ! vrat_cld = exp(vrat_cld) |
---|
[358] | 159 | vrat_cld = dlog(rmax_cld/rmin_cld) / float(nbin_cld-1) *3. |
---|
| 160 | vrat_cld = dexp(vrat_cld) |
---|
| 161 | write(*,*) "vrat_cld", vrat_cld |
---|
| 162 | |
---|
| 163 | rb_cld(1) = rbmin_cld |
---|
| 164 | rad_cld(1) = rmin_cld |
---|
[530] | 165 | vol_cld(1) = 4./3. * dble(pi) * rmin_cld*rmin_cld*rmin_cld |
---|
[633] | 166 | ! vol_cld(1) = 4./3. * pi * rmin_cld*rmin_cld*rmin_cld |
---|
[358] | 167 | |
---|
| 168 | do i=1,nbin_cld-1 |
---|
[531] | 169 | rad_cld(i+1) = rad_cld(i) * vrat_cld**(1./3.) |
---|
[358] | 170 | vol_cld(i+1) = vol_cld(i) * vrat_cld |
---|
| 171 | enddo |
---|
| 172 | |
---|
| 173 | do i=1,nbin_cld |
---|
[531] | 174 | rb_cld(i+1)= ( (2.*vrat_cld) / (vrat_cld+1.) )**(1./3.) * |
---|
[358] | 175 | & rad_cld(i) |
---|
| 176 | dr_cld(i) = rb_cld(i+1) - rb_cld(i) |
---|
| 177 | enddo |
---|
| 178 | rb_cld(nbin_cld+1) = rbmax_cld |
---|
| 179 | dr_cld(nbin_cld) = rb_cld(nbin_cld+1) - rb_cld(nbin_cld) |
---|
| 180 | |
---|
| 181 | print*, ' ' |
---|
| 182 | print*,'Microphysics: size bin information:' |
---|
| 183 | print*,'i,rb_cld(i), rad_cld(i),dr_cld(i)' |
---|
| 184 | print*,'-----------------------------------' |
---|
| 185 | do i=1,nbin_cld |
---|
| 186 | write(*,'(i2,3x,3(e12.6,4x))') i,rb_cld(i), rad_cld(i), |
---|
| 187 | & dr_cld(i) |
---|
| 188 | enddo |
---|
| 189 | write(*,'(i2,3x,e12.6)') nbin_cld+1,rb_cld(nbin_cld+1) |
---|
| 190 | print*,'-----------------------------------' |
---|
| 191 | |
---|
[541] | 192 | do i=1,nbin_cld+1 |
---|
[740] | 193 | ! rb_cld(i) = log(rb_cld(i)) |
---|
[541] | 194 | rb_cld(i) = dlog(rb_cld(i)) !! we save that so that it is not computed |
---|
| 195 | !! at each timestep and gridpoint |
---|
| 196 | enddo |
---|
| 197 | |
---|
[358] | 198 | c Contact parameter of water ice on dust ( m=cos(theta) ) |
---|
| 199 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 200 | ! mteta = 0.95 |
---|
| 201 | write(*,*) 'water_param contact parameter:', mteta |
---|
| 202 | |
---|
| 203 | c Volume of a water molecule (m3) |
---|
| 204 | vo1 = mh2o / dble(rho_ice) |
---|
| 205 | c Variance of the ice and CCN distributions |
---|
| 206 | sigma_ice = sqrt(log(1.+nuice_sed)) |
---|
[633] | 207 | |
---|
| 208 | |
---|
[358] | 209 | write(*,*) 'Variance of ice & CCN distribs :', sigma_ice |
---|
[455] | 210 | write(*,*) 'nuice for sedimentation:', nuice_sed |
---|
[358] | 211 | write(*,*) 'Volume of a water molecule:', vo1 |
---|
| 212 | |
---|
[633] | 213 | |
---|
| 214 | test_flag = .false. |
---|
| 215 | |
---|
[358] | 216 | firstcall=.false. |
---|
| 217 | END IF |
---|
| 218 | |
---|
[633] | 219 | |
---|
[626] | 220 | !============================================================= |
---|
| 221 | ! 1. Initialisation |
---|
| 222 | !============================================================= |
---|
[633] | 223 | cste = 4*pi*rho_ice*ptimestep |
---|
[626] | 224 | |
---|
[740] | 225 | res_out(:,:) = 0 |
---|
| 226 | rice(:,:) = 1.e-8 |
---|
| 227 | |
---|
[411] | 228 | c Initialize the tendencies |
---|
| 229 | pdqcloud(1:ngrid,1:nlay,1:nq)=0 |
---|
| 230 | pdtcloud(1:ngrid,1:nlay)=0 |
---|
[633] | 231 | |
---|
| 232 | c Initialize the tendencies |
---|
| 233 | pdqcloud(1:ngrid,1:nlay,1:nq)=0 |
---|
| 234 | pdtcloud(1:ngrid,1:nlay)=0 |
---|
[411] | 235 | |
---|
[633] | 236 | c Initialize the tendencies |
---|
| 237 | pdqcloud(1:ngrid,1:nlay,1:nq)=0 |
---|
| 238 | pdtcloud(1:ngrid,1:nlay)=0 |
---|
| 239 | |
---|
| 240 | |
---|
| 241 | zt(1:ngrid,1:nlay) = |
---|
| 242 | & pt(1:ngrid,1:nlay) + |
---|
| 243 | & pdt(1:ngrid,1:nlay) * ptimestep |
---|
[358] | 244 | |
---|
[633] | 245 | zq(1:ngrid,1:nlay,1:nq) = |
---|
| 246 | & pq(1:ngrid,1:nlay,1:nq) + |
---|
| 247 | & pdq(1:ngrid,1:nlay,1:nq) * ptimestep |
---|
| 248 | |
---|
| 249 | |
---|
| 250 | WHERE( zq(1:ngrid,1:nlay,1:nq) < 1.e-30 ) |
---|
| 251 | & zq(1:ngrid,1:nlay,1:nq) = 1.e-30 |
---|
[768] | 252 | |
---|
| 253 | zq0(1:ngrid,1:nlay,1:nq) = zq(1:ngrid,1:nlay,1:nq) |
---|
[633] | 254 | |
---|
[626] | 255 | !============================================================= |
---|
| 256 | ! 2. Compute saturation |
---|
| 257 | !============================================================= |
---|
[358] | 258 | |
---|
[633] | 259 | |
---|
[541] | 260 | dev2 = 1. / ( sqrt(2.) * sigma_ice ) |
---|
[358] | 261 | |
---|
[1047] | 262 | call watersat(ngrid*nlay,zt,pplay,zqsat) |
---|
[358] | 263 | |
---|
[633] | 264 | countcells = 0 |
---|
[358] | 265 | |
---|
| 266 | c Main loop over the GCM's grid |
---|
| 267 | DO l=1,nlay |
---|
| 268 | DO ig=1,ngrid |
---|
| 269 | |
---|
| 270 | c Get the partial pressure of water vapor and its saturation ratio |
---|
[663] | 271 | ph2o = zq(ig,l,igcm_h2o_vap) * (mmean(ig,l)/18.) * pplay(ig,l) |
---|
[689] | 272 | satu = zq(ig,l,igcm_h2o_vap) / zqsat(ig,l) |
---|
[358] | 273 | |
---|
[626] | 274 | !============================================================= |
---|
| 275 | ! 3. Nucleation |
---|
| 276 | !============================================================= |
---|
| 277 | |
---|
[633] | 278 | IF ( satu .ge. 1. ) THEN ! if there is condensation |
---|
| 279 | |
---|
[740] | 280 | call updaterccn(zq(ig,l,igcm_dust_mass), |
---|
| 281 | & zq(ig,l,igcm_dust_number),rdust(ig,l),tauscaling(ig)) |
---|
[633] | 282 | |
---|
| 283 | |
---|
[358] | 284 | c Expand the dust moments into a binned distribution |
---|
[633] | 285 | Mo = zq(ig,l,igcm_dust_mass)* tauscaling(ig) + 1.e-30 |
---|
[626] | 286 | No = zq(ig,l,igcm_dust_number)* tauscaling(ig) + 1.e-30 |
---|
[358] | 287 | Rn = rdust(ig,l) |
---|
[530] | 288 | Rn = -dlog(Rn) |
---|
| 289 | Rm = Rn - 3. * sigma_ice*sigma_ice |
---|
[626] | 290 | n_derf = derf( (rb_cld(1)+Rn) *dev2) |
---|
| 291 | m_derf = derf( (rb_cld(1)+Rm) *dev2) |
---|
[358] | 292 | do i = 1, nbin_cld |
---|
[626] | 293 | n_aer(i) = -0.5 * No * n_derf !! this ith previously computed |
---|
| 294 | m_aer(i) = -0.5 * Mo * m_derf !! this ith previously computed |
---|
| 295 | n_derf = derf( (rb_cld(i+1)+Rn) *dev2) |
---|
| 296 | m_derf = derf( (rb_cld(i+1)+Rm) *dev2) |
---|
| 297 | n_aer(i) = n_aer(i) + 0.5 * No * n_derf |
---|
| 298 | m_aer(i) = m_aer(i) + 0.5 * Mo * m_derf |
---|
[358] | 299 | enddo |
---|
[530] | 300 | |
---|
[358] | 301 | ! sumcheck = 0 |
---|
| 302 | ! do i = 1, nbin_cld |
---|
| 303 | ! sumcheck = sumcheck + n_aer(i) |
---|
| 304 | ! enddo |
---|
| 305 | ! sumcheck = abs(sumcheck/No - 1) |
---|
| 306 | ! if ((sumcheck .gt. 1e-5).and. (1./Rn .gt. rmin_cld)) then |
---|
| 307 | ! print*, "WARNING, No sumcheck PROBLEM" |
---|
| 308 | ! print*, "sumcheck, No",sumcheck, No |
---|
| 309 | ! print*, "min radius, Rn, ig, l", rmin_cld, 1./Rn, ig, l |
---|
| 310 | ! print*, "Dust binned distribution", n_aer |
---|
| 311 | ! endif |
---|
| 312 | ! |
---|
| 313 | ! sumcheck = 0 |
---|
| 314 | ! do i = 1, nbin_cld |
---|
[411] | 315 | ! sumcheck = sumcheck + m_aer(i) |
---|
[358] | 316 | ! enddo |
---|
| 317 | ! sumcheck = abs(sumcheck/Mo - 1) |
---|
| 318 | ! if ((sumcheck .gt. 1e-5) .and. (1./Rn .gt. rmin_cld)) then |
---|
| 319 | ! print*, "WARNING, Mo sumcheck PROBLEM" |
---|
[411] | 320 | ! print*, "sumcheck, Mo",sumcheck, Mo |
---|
[358] | 321 | ! print*, "min radius, Rm, ig, l", rmin_cld, 1./Rm, ig, l |
---|
| 322 | ! print*, "Dust binned distribution", m_aer |
---|
| 323 | ! endif |
---|
[633] | 324 | |
---|
| 325 | |
---|
[358] | 326 | c Get the rates of nucleation |
---|
| 327 | call nuclea(ph2o,zt(ig,l),satu,n_aer,rate) |
---|
[411] | 328 | |
---|
[358] | 329 | dN = 0. |
---|
| 330 | dM = 0. |
---|
| 331 | do i = 1, nbin_cld |
---|
[633] | 332 | n_aer(i) = n_aer(i)/( 1. + rate(i)*ptimestep) |
---|
| 333 | m_aer(i) = m_aer(i)/( 1. + rate(i)*ptimestep) |
---|
[358] | 334 | dN = dN + n_aer(i) * rate(i) * ptimestep |
---|
| 335 | dM = dM + m_aer(i) * rate(i) * ptimestep |
---|
| 336 | enddo |
---|
| 337 | |
---|
[633] | 338 | |
---|
| 339 | c Update Dust particles |
---|
[626] | 340 | zq(ig,l,igcm_dust_mass) = |
---|
[740] | 341 | & zq(ig,l,igcm_dust_mass) - dM/ tauscaling(ig) !max(tauscaling(ig),1.e-10) |
---|
[626] | 342 | zq(ig,l,igcm_dust_number) = |
---|
[740] | 343 | & zq(ig,l,igcm_dust_number) - dN/ tauscaling(ig) !max(tauscaling(ig),1.e-10) |
---|
[633] | 344 | c Update CCNs |
---|
[626] | 345 | zq(ig,l,igcm_ccn_mass) = |
---|
[740] | 346 | & zq(ig,l,igcm_ccn_mass) + dM/ tauscaling(ig) !max(tauscaling(ig),1.e-10) |
---|
[626] | 347 | zq(ig,l,igcm_ccn_number) = |
---|
[740] | 348 | & zq(ig,l,igcm_ccn_number) + dN/ tauscaling(ig) !max(tauscaling(ig),1.e-10) |
---|
[626] | 349 | |
---|
[633] | 350 | ENDIF ! of is satu >1 |
---|
[626] | 351 | |
---|
| 352 | !============================================================= |
---|
| 353 | ! 4. Ice growth: scheme for radius evolution |
---|
| 354 | !============================================================= |
---|
| 355 | |
---|
[633] | 356 | c We trigger crystal growth if and only if there is at least one nuclei (N>1). |
---|
| 357 | c Indeed, if we are supersaturated and still don't have at least one nuclei, we should better wait |
---|
| 358 | c to avoid unrealistic value for nuclei radius and so on for cases that remain negligible. |
---|
| 359 | |
---|
| 360 | IF ( zq(ig,l,igcm_ccn_number)*tauscaling(ig).ge. 1.) THEN ! we trigger crystal growth |
---|
| 361 | |
---|
[740] | 362 | |
---|
| 363 | call updaterice_micro(zq(ig,l,igcm_h2o_ice), |
---|
| 364 | & zq(ig,l,igcm_ccn_mass),zq(ig,l,igcm_ccn_number), |
---|
| 365 | & tauscaling(ig),rice(ig,l),rhocloud(ig,l)) |
---|
[633] | 366 | |
---|
| 367 | No = zq(ig,l,igcm_ccn_number)* tauscaling(ig) + 1.e-30 |
---|
[626] | 368 | |
---|
| 369 | c saturation at equilibrium |
---|
[740] | 370 | c rice should not be too small, otherwise seq value is not valid |
---|
| 371 | seq = exp(2.*sig(zt(ig,l))*mh2o / (rho_ice*rgp*zt(ig,l)* |
---|
| 372 | & max(rice(ig,l),1.e-7))) |
---|
| 373 | |
---|
[633] | 374 | c get resistance growth |
---|
| 375 | call growthrate(zt(ig,l),pplay(ig,l), |
---|
| 376 | & real(ph2o/satu),rice(ig,l),res) |
---|
[358] | 377 | |
---|
[740] | 378 | res_out(ig,l) = res |
---|
[626] | 379 | |
---|
[633] | 380 | ccccccc implicit scheme of mass growth |
---|
[626] | 381 | |
---|
[633] | 382 | dMice = |
---|
| 383 | & (zq(ig,l,igcm_h2o_vap)-seq*zqsat(ig,l)) |
---|
| 384 | & /(res*zqsat(ig,l)/(cste*No*rice(ig,l)) + 1.) |
---|
[358] | 385 | |
---|
[626] | 386 | |
---|
[633] | 387 | ! With the above scheme, dMice cannot be bigger than vapor, |
---|
| 388 | ! but can be bigger than all available ice. |
---|
| 389 | dMice = max(dMice,-zq(ig,l,igcm_h2o_ice)) |
---|
| 390 | dMice = min(dMice,zq(ig,l,igcm_h2o_vap)) ! this should be useless... |
---|
| 391 | |
---|
| 392 | zq(ig,l,igcm_h2o_ice) = zq(ig,l,igcm_h2o_ice)+dMice |
---|
| 393 | zq(ig,l,igcm_h2o_vap) = zq(ig,l,igcm_h2o_vap)-dMice |
---|
| 394 | |
---|
| 395 | |
---|
| 396 | countcells = countcells + 1 |
---|
| 397 | |
---|
| 398 | ! latent heat release |
---|
| 399 | lw=(2834.3-0.28*(zt(ig,l)-To)- |
---|
| 400 | & 0.004*(zt(ig,l)-To)*(zt(ig,l)-To))*1.e+3 |
---|
| 401 | pdtcloud(ig,l)= dMice*lw/cpp/ptimestep |
---|
[358] | 402 | |
---|
[626] | 403 | |
---|
[358] | 404 | |
---|
[626] | 405 | !============================================================= |
---|
| 406 | ! 5. Dust cores released, tendancies, latent heat, etc ... |
---|
| 407 | !============================================================= |
---|
| 408 | |
---|
[358] | 409 | c If all the ice particles sublimate, all the condensation |
---|
[626] | 410 | c nuclei are released: |
---|
[633] | 411 | if (zq(ig,l,igcm_h2o_ice).le.1.e-8) then |
---|
| 412 | |
---|
[626] | 413 | c Water |
---|
| 414 | zq(ig,l,igcm_h2o_vap) = zq(ig,l,igcm_h2o_vap) |
---|
| 415 | & + zq(ig,l,igcm_h2o_ice) |
---|
[358] | 416 | zq(ig,l,igcm_h2o_ice) = 0. |
---|
| 417 | c Dust particles |
---|
[626] | 418 | zq(ig,l,igcm_dust_mass) = zq(ig,l,igcm_dust_mass) |
---|
| 419 | & + zq(ig,l,igcm_ccn_mass) |
---|
| 420 | zq(ig,l,igcm_dust_number) = zq(ig,l,igcm_dust_number) |
---|
| 421 | & + zq(ig,l,igcm_ccn_number) |
---|
[358] | 422 | c CCNs |
---|
| 423 | zq(ig,l,igcm_ccn_mass) = 0. |
---|
| 424 | zq(ig,l,igcm_ccn_number) = 0. |
---|
[633] | 425 | |
---|
[358] | 426 | endif |
---|
[411] | 427 | |
---|
[633] | 428 | ENDIF !of if Nccn>1 |
---|
| 429 | |
---|
[626] | 430 | ENDDO ! of ig loop |
---|
| 431 | ENDDO ! of nlayer loop |
---|
[520] | 432 | |
---|
[633] | 433 | |
---|
| 434 | ! Get cloud tendencies |
---|
[740] | 435 | pdqcloud(1:ngrid,1:nlay,igcm_h2o_vap) = |
---|
| 436 | & (zq(1:ngrid,1:nlay,igcm_h2o_vap) - |
---|
| 437 | & zq0(1:ngrid,1:nlay,igcm_h2o_vap))/ptimestep |
---|
| 438 | pdqcloud(1:ngrid,1:nlay,igcm_h2o_ice) = |
---|
| 439 | & (zq(1:ngrid,1:nlay,igcm_h2o_ice) - |
---|
| 440 | & zq0(1:ngrid,1:nlay,igcm_h2o_ice))/ptimestep |
---|
| 441 | pdqcloud(1:ngrid,1:nlay,igcm_ccn_mass) = |
---|
| 442 | & (zq(1:ngrid,1:nlay,igcm_ccn_mass) - |
---|
| 443 | & zq0(1:ngrid,1:nlay,igcm_ccn_mass))/ptimestep |
---|
| 444 | pdqcloud(1:ngrid,1:nlay,igcm_ccn_number) = |
---|
| 445 | & (zq(1:ngrid,1:nlay,igcm_ccn_number) - |
---|
| 446 | & zq0(1:ngrid,1:nlay,igcm_ccn_number))/ptimestep |
---|
[411] | 447 | |
---|
[740] | 448 | if (scavenging) then |
---|
[633] | 449 | |
---|
[740] | 450 | pdqcloud(1:ngrid,1:nlay,igcm_dust_mass) = |
---|
| 451 | & (zq(1:ngrid,1:nlay,igcm_dust_mass) - |
---|
| 452 | & zq0(1:ngrid,1:nlay,igcm_dust_mass))/ptimestep |
---|
| 453 | pdqcloud(1:ngrid,1:nlay,igcm_dust_number) = |
---|
| 454 | & (zq(1:ngrid,1:nlay,igcm_dust_number) - |
---|
| 455 | & zq0(1:ngrid,1:nlay,igcm_dust_number))/ptimestep |
---|
| 456 | |
---|
| 457 | endif |
---|
[633] | 458 | |
---|
[740] | 459 | |
---|
| 460 | |
---|
[626] | 461 | !!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS |
---|
| 462 | !!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS |
---|
[740] | 463 | !!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS |
---|
[626] | 464 | IF (test_flag) then |
---|
| 465 | |
---|
[633] | 466 | ! error2d(:) = 0. |
---|
[740] | 467 | DO l=1,nlay |
---|
| 468 | DO ig=1,ngrid |
---|
[633] | 469 | ! error2d(ig) = max(abs(error_out(ig,l)),error2d(ig)) |
---|
[740] | 470 | satubf(ig,l) = zq0(ig,l,igcm_h2o_vap)/zqsat(ig,l) |
---|
| 471 | satuaf(ig,l) = zq(ig,l,igcm_h2o_vap)/zqsat(ig,l) |
---|
| 472 | ENDDO |
---|
| 473 | ENDDO |
---|
[420] | 474 | |
---|
[633] | 475 | print*, 'count is ',countcells, ' i.e. ', |
---|
| 476 | & countcells*100/(nlay*ngrid), '% for microphys computation' |
---|
[358] | 477 | |
---|
[1212] | 478 | #ifndef MESOSCALE |
---|
[633] | 479 | ! IF (ngrid.ne.1) THEN ! 3D |
---|
[626] | 480 | ! call WRITEDIAGFI(ngrid,"satu","ratio saturation","",3, |
---|
| 481 | ! & satu_out) |
---|
| 482 | ! call WRITEDIAGFI(ngrid,"dM","ccn variation","kg/kg",3, |
---|
| 483 | ! & dM_out) |
---|
| 484 | ! call WRITEDIAGFI(ngrid,"dN","ccn variation","#",3, |
---|
| 485 | ! & dN_out) |
---|
[633] | 486 | ! call WRITEDIAGFI(ngrid,"error","dichotomy max error","%",2, |
---|
| 487 | ! & error2d) |
---|
[626] | 488 | ! call WRITEDIAGFI(ngrid,"zqsat","zqsat","kg",3, |
---|
| 489 | ! & zqsat) |
---|
[633] | 490 | ! ENDIF |
---|
[358] | 491 | |
---|
[633] | 492 | ! IF (ngrid.eq.1) THEN ! 1D |
---|
| 493 | ! call WRITEDIAGFI(ngrid,"error","incertitude sur glace","%",1, |
---|
| 494 | ! & error_out) |
---|
[740] | 495 | call WRITEdiagfi(ngrid,"resist","resistance","s/m2",1, |
---|
| 496 | & res_out) |
---|
| 497 | call WRITEdiagfi(ngrid,"satu_bf","satu before","kg/kg",1, |
---|
| 498 | & satubf) |
---|
| 499 | call WRITEdiagfi(ngrid,"satu_af","satu after","kg/kg",1, |
---|
| 500 | & satuaf) |
---|
| 501 | call WRITEdiagfi(ngrid,"vapbf","h2ovap before","kg/kg",1, |
---|
[1020] | 502 | & zq0(1,1,igcm_h2o_vap)) |
---|
[740] | 503 | call WRITEdiagfi(ngrid,"vapaf","h2ovap after","kg/kg",1, |
---|
[1020] | 504 | & zq(1,1,igcm_h2o_vap)) |
---|
[740] | 505 | call WRITEdiagfi(ngrid,"icebf","h2oice before","kg/kg",1, |
---|
[1020] | 506 | & zq0(1,1,igcm_h2o_ice)) |
---|
[740] | 507 | call WRITEdiagfi(ngrid,"iceaf","h2oice after","kg/kg",1, |
---|
[1020] | 508 | & zq(1,1,igcm_h2o_ice)) |
---|
[740] | 509 | call WRITEdiagfi(ngrid,"ccnbf","ccn before","/kg",1, |
---|
[1020] | 510 | & zq0(1,1,igcm_ccn_number)) |
---|
[740] | 511 | call WRITEdiagfi(ngrid,"ccnaf","ccn after","/kg",1, |
---|
[1020] | 512 | & zq(1,1,igcm_ccn_number)) |
---|
[626] | 513 | c call WRITEDIAGFI(ngrid,"growthrate","growth rate","m^2/s",1, |
---|
| 514 | c & gr_out) |
---|
| 515 | c call WRITEDIAGFI(ngrid,"nuclearate","nucleation rate","",1, |
---|
| 516 | c & rate_out) |
---|
| 517 | c call WRITEDIAGFI(ngrid,"dM","ccn variation","kg",1, |
---|
| 518 | c & dM_out) |
---|
| 519 | c call WRITEDIAGFI(ngrid,"dN","ccn variation","#",1, |
---|
| 520 | c & dN_out) |
---|
[740] | 521 | call WRITEdiagfi(ngrid,"zqsat","p vap sat","kg/kg",1, |
---|
| 522 | & zqsat) |
---|
[633] | 523 | ! call WRITEDIAGFI(ngrid,"satu","ratio saturation","",1, |
---|
| 524 | ! & satu_out) |
---|
[740] | 525 | call WRITEdiagfi(ngrid,"rice","ice radius","m",1, |
---|
| 526 | & rice) |
---|
[633] | 527 | ! call WRITEDIAGFI(ngrid,"rdust_sca","rdust","m",1, |
---|
| 528 | ! & rdust) |
---|
| 529 | ! call WRITEDIAGFI(ngrid,"rsedcloud","rsedcloud","m",1, |
---|
| 530 | ! & rsedcloud) |
---|
| 531 | ! call WRITEDIAGFI(ngrid,"rhocloud","rhocloud","kg.m-3",1, |
---|
| 532 | ! & rhocloud) |
---|
| 533 | ! ENDIF |
---|
[1212] | 534 | #endif |
---|
[626] | 535 | |
---|
| 536 | ENDIF ! endif test_flag |
---|
| 537 | !!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS |
---|
| 538 | !!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS |
---|
| 539 | !!!!!!!!!!!!!! TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS TESTS OUTPUTS |
---|
| 540 | |
---|
[358] | 541 | return |
---|
| 542 | end |
---|
[626] | 543 | |
---|
| 544 | |
---|
| 545 | |
---|
| 546 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 547 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 548 | c The so -called "phi" function is such as phi(r) - phi(r0) = t - t0 |
---|
| 549 | c It is an analytical solution to the ice radius growth equation, |
---|
| 550 | c with the approximation of a constant 'reduced' cunningham correction factor |
---|
| 551 | c (lambda in growthrate.F) taken at radius req instead of rice |
---|
| 552 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 553 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 554 | |
---|
[633] | 555 | c subroutine phi(rice,req,coeff1,coeff2,time) |
---|
| 556 | c |
---|
| 557 | c implicit none |
---|
| 558 | c |
---|
| 559 | c ! inputs |
---|
| 560 | c real rice ! ice radius |
---|
| 561 | c real req ! ice radius at equilibirum |
---|
| 562 | c real coeff1 ! coeff for the log |
---|
| 563 | c real coeff2 ! coeff for the arctan |
---|
| 564 | c |
---|
| 565 | c ! output |
---|
| 566 | c real time |
---|
| 567 | c |
---|
| 568 | c !local |
---|
| 569 | c real var |
---|
| 570 | c |
---|
| 571 | c ! 1.73205 is sqrt(3) |
---|
| 572 | c |
---|
| 573 | c var = max( |
---|
| 574 | c & abs(rice-req) / sqrt(rice*rice + rice*req + req*req),1e-30) |
---|
| 575 | c |
---|
| 576 | c time = |
---|
| 577 | c & coeff1 * |
---|
| 578 | c & log( var ) |
---|
| 579 | c & + coeff2 * 1.73205 * |
---|
| 580 | c & atan( (2*rice+req) / (1.73205*req) ) |
---|
| 581 | c |
---|
| 582 | c return |
---|
| 583 | c end |
---|
[626] | 584 | |
---|
| 585 | |
---|
| 586 | |
---|