| 1 | subroutine improvedCO2clouds(ngrid,nlay,ptimestep, |
|---|
| 2 | & pplay,pzlev,pt,pdt, |
|---|
| 3 | & pq,pdq,pdqcloudco2,pdtcloudco2, |
|---|
| 4 | & nq,tauscaling, |
|---|
| 5 | & memdMMccn,memdMMh2o,memdNNccn) |
|---|
| 6 | ! to use 'getin' |
|---|
| 7 | USE comcstfi_h |
|---|
| 8 | USE ioipsl_getincom |
|---|
| 9 | USE updaterad |
|---|
| 10 | use tracer_mod |
|---|
| 11 | !, only: rho_ice_co2, nuiceco2_sed, igcm_co2, |
|---|
| 12 | ! & rho_ice,igcm_h2o_ice, igcm_ccn_number, |
|---|
| 13 | ! & igcm_co2_ice, igcm_dust_mass, |
|---|
| 14 | ! & igcm_dust_number, igcm_ccnco2_mass, |
|---|
| 15 | ! & igcm_ccnco2_number |
|---|
| 16 | use conc_mod, only: mmean |
|---|
| 17 | |
|---|
| 18 | implicit none |
|---|
| 19 | |
|---|
| 20 | c------------------------------------------------------------------ |
|---|
| 21 | c This routine is used to form CO2 clouds when a parcel of the GCM is |
|---|
| 22 | c saturated. It includes the ability to have supersaturation, a |
|---|
| 23 | c computation of the nucleation rates, growthrates and the |
|---|
| 24 | c scavenging of dust particles by clouds. |
|---|
| 25 | c It is worth noting that the amount of dust is computed using the |
|---|
| 26 | c dust optical depth computed in aeropacity.F. That's why |
|---|
| 27 | c the variable called "tauscaling" is used to convert |
|---|
| 28 | c pq(dust_mass) and pq(dust_number), which are relative |
|---|
| 29 | c quantities, to absolute and realistic quantities stored in zq. |
|---|
| 30 | c This has to be done to convert the inputs into absolute |
|---|
| 31 | c values, but also to convert the outputs back into relative |
|---|
| 32 | c values which are then used by the sedimentation and advection |
|---|
| 33 | c schemes. |
|---|
| 34 | c CO2 ice particles can nucleate on both dust and on water ice particles |
|---|
| 35 | c When CO2 ice is deposited onto a water ice particles, the particle is |
|---|
| 36 | c removed from the water tracers. |
|---|
| 37 | cWARNING: no sedimentation of the water ice origin is performed |
|---|
| 38 | c in the microphysical timestep in co2cloud.F. |
|---|
| 39 | |
|---|
| 40 | c Authors of the water ice clouds microphysics |
|---|
| 41 | c J.-B. Madeleine, based on the work by Franck Montmessin |
|---|
| 42 | c (October 2011) |
|---|
| 43 | c T. Navarro, debug,correction, new scheme (October-April 2011) |
|---|
| 44 | c A. Spiga, optimization (February 2012) |
|---|
| 45 | c Adaptation for CO2 clouds by Joachim Audouard (09/16), based on the work |
|---|
| 46 | c of Constantino Listowski |
|---|
| 47 | c------------------------------------------------------------------ |
|---|
| 48 | !#include "dimensions.h" |
|---|
| 49 | !#include "dimphys.h" |
|---|
| 50 | #include "callkeys.h" |
|---|
| 51 | !#include "tracer.h" |
|---|
| 52 | !#include "comgeomfi.h" |
|---|
| 53 | !#include "dimradmars.h" |
|---|
| 54 | #include "microphys.h" |
|---|
| 55 | #include "datafile.h" |
|---|
| 56 | !#include "microphysCO2.h" |
|---|
| 57 | !#include "conc.h" |
|---|
| 58 | c------------------------------------------------------------------ |
|---|
| 59 | c Inputs: |
|---|
| 60 | |
|---|
| 61 | INTEGER ngrid,nlay |
|---|
| 62 | integer nq ! nombre de traceurs |
|---|
| 63 | REAL ptimestep ! pas de temps physique (s) |
|---|
| 64 | REAL pplay(ngrid,nlay) ! pression au milieu des couches (Pa) |
|---|
| 65 | REAL pzlev(ngrid,nlay) ! altitude au milieu des couches () |
|---|
| 66 | |
|---|
| 67 | REAL pt(ngrid,nlay) ! temperature at the middle of the |
|---|
| 68 | ! layers (K) |
|---|
| 69 | REAL pdt(ngrid,nlay) ! tendance temperature des autres |
|---|
| 70 | ! param. |
|---|
| 71 | REAL pq(ngrid,nlay,nq) ! traceur (kg/kg) |
|---|
| 72 | REAL pdq(ngrid,nlay,nq) ! tendance avant condensation |
|---|
| 73 | ! (kg/kg.s-1) |
|---|
| 74 | REAL tauscaling(ngrid) ! Convertion factor for qdust and Ndust |
|---|
| 75 | |
|---|
| 76 | REAL rice(ngrid,nlay) ! Water Ice mass mean radius (m) |
|---|
| 77 | ! used for nucleation of CO2 on ice-coated ccns |
|---|
| 78 | REAL rccnh2o(ngrid,nlay) ! Water Ice mass mean radius (m) |
|---|
| 79 | |
|---|
| 80 | c Outputs: |
|---|
| 81 | REAL pdqcloudco2(ngrid,nlay,nq) ! tendance de la condensation |
|---|
| 82 | ! CO2 (kg/kg.s-1) |
|---|
| 83 | ! condensation si igcm_co2_ice |
|---|
| 84 | REAL pdtcloudco2(ngrid,nlay) ! tendance temperature due |
|---|
| 85 | ! a la chaleur latente |
|---|
| 86 | |
|---|
| 87 | c------------------------------------------------------------------ |
|---|
| 88 | c Local variables: |
|---|
| 89 | |
|---|
| 90 | LOGICAL firstcall |
|---|
| 91 | DATA firstcall/.true./ |
|---|
| 92 | SAVE firstcall |
|---|
| 93 | |
|---|
| 94 | REAL*8 derf ! Error function |
|---|
| 95 | !external derf |
|---|
| 96 | |
|---|
| 97 | !REAL*8 massflowrateCO2 |
|---|
| 98 | !external massflowrateCO2 |
|---|
| 99 | |
|---|
| 100 | INTEGER ig,l,i,flag_pourri |
|---|
| 101 | |
|---|
| 102 | REAL zq(ngrid,nlay,nq) ! local value of tracers |
|---|
| 103 | REAL zq0(ngrid,nlay,nq) ! local initial value of tracers |
|---|
| 104 | REAL zt(ngrid,nlay) ! local value of temperature |
|---|
| 105 | REAL zqsat(ngrid,nlay) ! saturation vapor pressure for CO2 |
|---|
| 106 | REAL lw !Latent heat of sublimation (J.kg-1) |
|---|
| 107 | REAL,save :: l0,l1,l2,l3,l4 |
|---|
| 108 | REAL cste |
|---|
| 109 | DOUBLE PRECISION dMice ! mass of condensed ice |
|---|
| 110 | DOUBLE PRECISION sumcheck |
|---|
| 111 | DOUBLE PRECISION pco2 ! Co2 vapor partial pressure (Pa) |
|---|
| 112 | DOUBLE PRECISION satu ! Co2 vapor saturation ratio over ice |
|---|
| 113 | DOUBLE PRECISION Mo,No |
|---|
| 114 | DOUBLE PRECISION Rn, Rm, dev2,dev3, n_derf, m_derf |
|---|
| 115 | DOUBLE PRECISION memdMMccn(ngrid,nlay) |
|---|
| 116 | DOUBLE PRECISION memdMMh2o(ngrid,nlay) |
|---|
| 117 | DOUBLE PRECISION memdNNccn(ngrid,nlay) |
|---|
| 118 | |
|---|
| 119 | ! Radius used by the microphysical scheme (m) |
|---|
| 120 | DOUBLE PRECISION n_aer(nbinco2_cld) ! number concentration volume-1 of particle/each size bin |
|---|
| 121 | DOUBLE PRECISION m_aer(nbinco2_cld) ! mass mixing ratio of particle/each size bin |
|---|
| 122 | DOUBLE PRECISION m_aer2(nbinco2_cld) ! mass mixing ratio of particle/each size bin |
|---|
| 123 | DOUBLE PRECISION m_aer_h2oice2(nbinco2_cld) ! mass mixing ratio of particle/each size bin |
|---|
| 124 | |
|---|
| 125 | DOUBLE PRECISION n_aer_h2oice(nbinco2_cld) ! Same - for CO2 nucleation |
|---|
| 126 | DOUBLE PRECISION m_aer_h2oice(nbinco2_cld) ! Same - for CO2 nucleation |
|---|
| 127 | DOUBLE PRECISION rad_h2oice(nbinco2_cld) |
|---|
| 128 | |
|---|
| 129 | c REAL*8 sigco2 ! Co2-ice/air surface tension (N.m) |
|---|
| 130 | c EXTERNAL sigco2 |
|---|
| 131 | |
|---|
| 132 | DOUBLE PRECISION dN,dM, dNh2o, dMh2o, dNN,dMM,dNNh2o,dMMh2o |
|---|
| 133 | DOUBLE PRECISION dMh2o_ice,dMh2o_ccn |
|---|
| 134 | |
|---|
| 135 | DOUBLE PRECISION rate(nbinco2_cld) ! nucleation rate |
|---|
| 136 | DOUBLE PRECISION rateh2o(nbinco2_cld) ! nucleation rate |
|---|
| 137 | REAL seq |
|---|
| 138 | DOUBLE PRECISION rho_ice_co2T(ngrid,nlay) |
|---|
| 139 | DOUBLE PRECISION riceco2(ngrid,nlay) ! CO2Ice mean radius (m) |
|---|
| 140 | REAL rhocloud(ngrid,nlay) ! Cloud density (kg.m-3) |
|---|
| 141 | |
|---|
| 142 | REAL rhocloudco2(ngrid,nlay) ! Cloud density (kg.m-3) |
|---|
| 143 | REAL rdust(ngrid,nlay) ! Dust geometric mean radius (m) |
|---|
| 144 | |
|---|
| 145 | c REAL res ! Resistance growth |
|---|
| 146 | DOUBLE PRECISION Ic_rice ! Mass transfer rate CO2 ice crystal |
|---|
| 147 | DOUBLE PRECISION ratioh2o_ccn |
|---|
| 148 | DOUBLE PRECISION vo2co2 |
|---|
| 149 | c Parameters of the size discretization |
|---|
| 150 | c used by the microphysical scheme |
|---|
| 151 | DOUBLE PRECISION, PARAMETER :: rmin_cld = 1.e-11 ! Minimum radius (m) |
|---|
| 152 | DOUBLE PRECISION, PARAMETER :: rmax_cld = 3.e-6 ! Maximum radius (m) |
|---|
| 153 | DOUBLE PRECISION, PARAMETER :: rbmin_cld =1.e-12 |
|---|
| 154 | ! Minimum bounary radius (m) |
|---|
| 155 | DOUBLE PRECISION, PARAMETER :: rbmax_cld = 5.e-6 ! Maximum boundary radius (m) |
|---|
| 156 | DOUBLE PRECISION vrat_cld ! Volume ratio |
|---|
| 157 | DOUBLE PRECISION rb_cldco2(nbinco2_cld+1) ! boundary values of each rad_cldco2 bin (m) |
|---|
| 158 | SAVE rb_cldco2 |
|---|
| 159 | |
|---|
| 160 | DOUBLE PRECISION dr_cld(nbinco2_cld) ! width of each rad_cldco2 bin (m) |
|---|
| 161 | DOUBLE PRECISION vol_cld(nbinco2_cld) ! particle volume for each bin (m3) |
|---|
| 162 | |
|---|
| 163 | DOUBLE PRECISION Proba,Masse_atm,drsurdt,reff,Probah2o |
|---|
| 164 | REAL sigma_iceco2 ! Variance of the ice and CCN distributions |
|---|
| 165 | SAVE sigma_iceco2 |
|---|
| 166 | |
|---|
| 167 | |
|---|
| 168 | REAL sigma_ice ! Variance of the ice and CCN distributions |
|---|
| 169 | SAVE sigma_ice |
|---|
| 170 | |
|---|
| 171 | DOUBLE PRECISION Niceco2,Qccnco2,Nccnco2 |
|---|
| 172 | |
|---|
| 173 | integer coeffh2o |
|---|
| 174 | !Variables for the meteoritic flux |
|---|
| 175 | |
|---|
| 176 | double precision meteo_ccn(ngrid,nlay,100) !100=nbinco2_cld !!! |
|---|
| 177 | double precision,save :: meteo(130,100) |
|---|
| 178 | double precision mtemp(100) |
|---|
| 179 | logical file_ok |
|---|
| 180 | integer altitudes_meteo(130),nelem,lebon1,lebon2 |
|---|
| 181 | double precision :: ltemp1(130),ltemp2(130) |
|---|
| 182 | integer ibin,uMeteo,j |
|---|
| 183 | c---------------------------------- |
|---|
| 184 | c TESTS |
|---|
| 185 | |
|---|
| 186 | |
|---|
| 187 | |
|---|
| 188 | REAL satubf(ngrid,nlay),satuaf(ngrid,nlay) |
|---|
| 189 | REAL res_out(ngrid,nlay) |
|---|
| 190 | |
|---|
| 191 | |
|---|
| 192 | c------------------------------------------------------------------ |
|---|
| 193 | |
|---|
| 194 | IF (firstcall) THEN |
|---|
| 195 | !============================================================= |
|---|
| 196 | ! 0. Definition of the size grid |
|---|
| 197 | !============================================================= |
|---|
| 198 | c rad_cldco2 is the primary radius grid used for microphysics computation. |
|---|
| 199 | c The grid spacing is computed assuming a constant volume ratio |
|---|
| 200 | c between two consecutive bins; i.e. vrat_cld. |
|---|
| 201 | c vrat_cld is determined from the boundary values of the size grid: |
|---|
| 202 | c rmin_cld and rmax_cld. |
|---|
| 203 | c The rb_cldco2 array contains the boundary values of each rad_cldco2 bin. |
|---|
| 204 | c dr_cld is the width of each rad_cldco2 bin. |
|---|
| 205 | |
|---|
| 206 | c Volume ratio between two adjacent bins |
|---|
| 207 | ! vrat_cld = log(rmax_cld/rmin_cld) / float(nbinco2_cld-1) *3. |
|---|
| 208 | ! vrat_cld = exp(vrat_cld) |
|---|
| 209 | vrat_cld = log(rmax_cld/rmin_cld) / float(nbinco2_cld-1) *3. |
|---|
| 210 | vrat_cld = exp(vrat_cld) |
|---|
| 211 | c write(*,*) "vrat_cld", vrat_cld |
|---|
| 212 | |
|---|
| 213 | rb_cldco2(1) = rbmin_cld |
|---|
| 214 | rad_cldco2(1) = rmin_cld |
|---|
| 215 | vol_cld(1) = 4./3. * dble(pi) * rmin_cld*rmin_cld*rmin_cld |
|---|
| 216 | ! vol_cld(1) = 4./3. * pi * rmin_cld*rmin_cld*rmin_cld |
|---|
| 217 | |
|---|
| 218 | do i=1,nbinco2_cld-1 |
|---|
| 219 | rad_cldco2(i+1) = rad_cldco2(i) * vrat_cld**(1./3.) |
|---|
| 220 | vol_cld(i+1) = vol_cld(i) * vrat_cld |
|---|
| 221 | enddo |
|---|
| 222 | |
|---|
| 223 | do i=1,nbinco2_cld |
|---|
| 224 | rb_cldco2(i+1)= ( (2.*vrat_cld) / (vrat_cld+1.) )**(1./3.) * |
|---|
| 225 | & rad_cldco2(i) |
|---|
| 226 | dr_cld(i) = rb_cldco2(i+1) - rb_cldco2(i) |
|---|
| 227 | enddo |
|---|
| 228 | rb_cldco2(nbinco2_cld+1) = rbmax_cld |
|---|
| 229 | dr_cld(nbinco2_cld) = rb_cldco2(nbinco2_cld+1) - |
|---|
| 230 | & rb_cldco2(nbinco2_cld) |
|---|
| 231 | |
|---|
| 232 | print*, ' ' |
|---|
| 233 | print*,'Microphysics co2: size bin information:' |
|---|
| 234 | print*,'i,rb_cldco2(i), rad_cldco2(i),dr_cld(i)' |
|---|
| 235 | print*,'-----------------------------------' |
|---|
| 236 | do i=1,nbinco2_cld |
|---|
| 237 | write(*,'(i3,3x,3(e12.6,4x))') i,rb_cldco2(i), rad_cldco2(i), |
|---|
| 238 | & dr_cld(i) |
|---|
| 239 | enddo |
|---|
| 240 | write(*,'(i3,3x,e12.6)') nbinco2_cld+1,rb_cldco2(nbinco2_cld+1) |
|---|
| 241 | print*,'-----------------------------------' |
|---|
| 242 | |
|---|
| 243 | do i=1,nbinco2_cld+1 |
|---|
| 244 | rb_cldco2(i) = log(rb_cldco2(i)) !! we save that so that it is not computed |
|---|
| 245 | !! at each timestep and gridpoint |
|---|
| 246 | enddo |
|---|
| 247 | c Contact parameter of co2 ice on dst ( m=cos(theta) ) |
|---|
| 248 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 249 | c mteta = 0.952 |
|---|
| 250 | c mtetaco2 = 0.952 |
|---|
| 251 | write(*,*) 'co2_param contact parameter:', mtetaco2 |
|---|
| 252 | |
|---|
| 253 | c Volume of a co2 molecule (m3) |
|---|
| 254 | vo1 = m0co2 / dble(rho_ice_co2) ! m0co2 et non mco2 |
|---|
| 255 | vo1co2=vo1 ! AJOUT JA |
|---|
| 256 | c Variance of the ice and CCN distributions |
|---|
| 257 | sigma_iceco2 = sqrt(log(1.+nuiceco2_sed)) |
|---|
| 258 | sigma_ice = sqrt(log(1.+nuice_sed)) |
|---|
| 259 | |
|---|
| 260 | |
|---|
| 261 | c write(*,*) 'Variance of ice & CCN distribs :', sigma_iceco2 |
|---|
| 262 | c write(*,*) 'nuice for sedimentation:', nuiceco2_sed |
|---|
| 263 | c write(*,*) 'Volume of a co2 molecule:', vo1co2 |
|---|
| 264 | |
|---|
| 265 | write(*,*) 'Variance of ice & CCN CO2 distribs :', sigma_iceco2 |
|---|
| 266 | write(*,*) 'nuice for co2 ice sedimentation:', nuiceco2_sed |
|---|
| 267 | write(*,*) 'Volume of a co2 molecule:', vo1co2 |
|---|
| 268 | |
|---|
| 269 | coeffh2o=0 |
|---|
| 270 | if (co2useh2o) then |
|---|
| 271 | write(*,*) |
|---|
| 272 | write(*,*) "co2useh2o=.true. in callphys.def" |
|---|
| 273 | write(*,*) "This means water ice particles can " |
|---|
| 274 | write(*,*) "serve as CCN for CO2 microphysics" |
|---|
| 275 | coeffh2o=1 |
|---|
| 276 | endif |
|---|
| 277 | meteo_ccn(:,:,:)=0. |
|---|
| 278 | |
|---|
| 279 | if (meteo_flux) then |
|---|
| 280 | write(*,*) |
|---|
| 281 | write(*,*) "meteo_flux=.true. in callphys.def" |
|---|
| 282 | write(*,*) "meteoritic dust particles are available" |
|---|
| 283 | write(*,*) "for co2 ice nucleation! " |
|---|
| 284 | write(*,*) "Flux given by J. Plane (altitude,size bins)" |
|---|
| 285 | ! Initialisation of the flux: it is constant and is it saved |
|---|
| 286 | !We must interpolate the table to the GCM altitudes |
|---|
| 287 | INQUIRE(FILE=datafile(1:LEN_TRIM(datafile))// |
|---|
| 288 | & '/Meteo_flux_Plane.dat', EXIST=file_ok) |
|---|
| 289 | IF (.not. file_ok) THEN |
|---|
| 290 | write(*,*) 'file Meteo_flux_Plane.dat should be in ' |
|---|
| 291 | & ,datafile |
|---|
| 292 | STOP |
|---|
| 293 | endif |
|---|
| 294 | !used Variables |
|---|
| 295 | open(newunit=uMeteo,file=trim(datafile)// |
|---|
| 296 | & '/Meteo_flux_Plane.dat' |
|---|
| 297 | & ,FORM='formatted') |
|---|
| 298 | !13000 records (130 altitudes x 100 bin sizes) |
|---|
| 299 | do i=1,130 |
|---|
| 300 | do j=1,100 ! les mêmes 100 bins size que la distri nuclea: on touche pas |
|---|
| 301 | read(uMeteo,'(F12.6)') meteo(i,j) |
|---|
| 302 | enddo |
|---|
| 303 | altitudes_meteo(i)=i ! On doit maintenant réinterpoler le tableau(130,100) sur les altitudes du GCM (nlay,100) |
|---|
| 304 | enddo |
|---|
| 305 | close(uMeteo) |
|---|
| 306 | endif !of if meteo_flux |
|---|
| 307 | |
|---|
| 308 | l0=595594d0 |
|---|
| 309 | l1=903.111d0 |
|---|
| 310 | l2=-11.5959d0 |
|---|
| 311 | l3=0.0528288d0 |
|---|
| 312 | l4=-0.000103183d0 |
|---|
| 313 | firstcall=.false. |
|---|
| 314 | |
|---|
| 315 | |
|---|
| 316 | END IF |
|---|
| 317 | c write(*,*) "max memdNN =",maxval(memdNNccn) |
|---|
| 318 | !============================================================= |
|---|
| 319 | ! 1. Initialisation |
|---|
| 320 | !============================================================= |
|---|
| 321 | !cste = 4*pi*rho_ice*ptimestep !not used for co2 |
|---|
| 322 | flag_pourri=0 |
|---|
| 323 | |
|---|
| 324 | res_out(:,:) = 0 |
|---|
| 325 | rice(:,:) = 1.e-8 |
|---|
| 326 | riceco2(:,:) = 1.e-11 |
|---|
| 327 | |
|---|
| 328 | c Initialize the tendencies |
|---|
| 329 | pdqcloudco2(1:ngrid,1:nlay,1:nq)=0. |
|---|
| 330 | pdtcloudco2(1:ngrid,1:nlay)=0. |
|---|
| 331 | |
|---|
| 332 | c pt temperature layer; pdt dT.s-1 |
|---|
| 333 | c pq traceur kg/kg; pdq tendance idem .s-1 |
|---|
| 334 | zt(1:ngrid,1:nlay) = |
|---|
| 335 | & pt(1:ngrid,1:nlay) + |
|---|
| 336 | & pdt(1:ngrid,1:nlay) * ptimestep |
|---|
| 337 | c call WRITEDIAGFI(ngrid,"Ztclouds", |
|---|
| 338 | c & "Ztclouds",'K',3,zt) |
|---|
| 339 | c call WRITEDIAGFI(ngrid,"pdtclouds", |
|---|
| 340 | c & "pdtclouds",'K',3,pdt*ptimestep) |
|---|
| 341 | |
|---|
| 342 | zq(1:ngrid,1:nlay,1:nq) = |
|---|
| 343 | & pq(1:ngrid,1:nlay,1:nq) + |
|---|
| 344 | & pdq(1:ngrid,1:nlay,1:nq) * ptimestep |
|---|
| 345 | |
|---|
| 346 | |
|---|
| 347 | WHERE( zq(1:ngrid,1:nlay,1:nq) < 1.e-30 ) |
|---|
| 348 | & zq(1:ngrid,1:nlay,1:nq) = 1.e-30 |
|---|
| 349 | |
|---|
| 350 | zq0(1:ngrid,1:nlay,1:nq) = zq(1:ngrid,1:nlay,1:nq) |
|---|
| 351 | |
|---|
| 352 | !============================================================= |
|---|
| 353 | ! 2. Compute saturation |
|---|
| 354 | !============================================================= |
|---|
| 355 | |
|---|
| 356 | |
|---|
| 357 | |
|---|
| 358 | dev2 = 1. / ( sqrt(2.) * sigma_iceco2 ) |
|---|
| 359 | dev3 = 1. / ( sqrt(2.) * sigma_ice ) |
|---|
| 360 | |
|---|
| 361 | call co2sat(ngrid*nlay,zt,pplay,zqsat) !zqsat is psat(co2) |
|---|
| 362 | |
|---|
| 363 | |
|---|
| 364 | !============================================================= |
|---|
| 365 | ! Bonus: additional meteoritic particles for nucleation |
|---|
| 366 | !============================================================= |
|---|
| 367 | if (meteo_flux) then |
|---|
| 368 | !altitude_meteo(130) |
|---|
| 369 | !pzlev(ngrid,nlay) |
|---|
| 370 | !meteo(130,100) |
|---|
| 371 | !resultat: meteo_ccn(ngrid,nlay,100) |
|---|
| 372 | do l=1,nlay |
|---|
| 373 | do ig=1,ngrid |
|---|
| 374 | ltemp1=abs(altitudes_meteo(:)-pzlev(ig,l)) |
|---|
| 375 | ltemp2=abs(altitudes_meteo(:)-pzlev(ig,l+1)) |
|---|
| 376 | lebon1=minloc(ltemp1,DIM=1) |
|---|
| 377 | lebon2=minloc(ltemp2,DIM=1) |
|---|
| 378 | nelem=lebon2-lebon1+1. |
|---|
| 379 | mtemp(:)=0d0 !mtemp(100) : valeurs pour les 100bins |
|---|
| 380 | do ibin=1,100 |
|---|
| 381 | mtemp(ibin)=sum(meteo(lebon1:lebon2,ibin)) |
|---|
| 382 | enddo |
|---|
| 383 | meteo_ccn(ig,l,:)=mtemp(:)/nelem |
|---|
| 384 | enddo |
|---|
| 385 | enddo |
|---|
| 386 | endif |
|---|
| 387 | |
|---|
| 388 | c Main loop over the GCM's grid |
|---|
| 389 | DO l=1,nlay |
|---|
| 390 | DO ig=1,ngrid |
|---|
| 391 | c Get the partial pressure of co2 vapor and its saturation ratio |
|---|
| 392 | pco2 = zq(ig,l,igcm_co2) * (mmean(ig,l)/44.01) * pplay(ig,l) |
|---|
| 393 | c satu = zq(ig,l,igcm_co2) / zqsat(ig,l) |
|---|
| 394 | satu = pco2 / zqsat(ig,l) |
|---|
| 395 | !============================================================= |
|---|
| 396 | ! 3. Nucleation |
|---|
| 397 | !============================================================= |
|---|
| 398 | rho_ice_co2T(ig,l)=1000.*(1.72391-2.53e-4*zt(ig,l) |
|---|
| 399 | & -2.87e-6*zt(ig,l)*zt(ig,l)) |
|---|
| 400 | vo2co2 = m0co2 / dble(rho_ice_co2T(ig,l)) |
|---|
| 401 | rho_ice_co2=rho_ice_co2T(ig,l) |
|---|
| 402 | |
|---|
| 403 | IF ( satu .ge. 1d0 ) THEN ! if there is condensation |
|---|
| 404 | |
|---|
| 405 | rdust(ig,l)= zq(ig,l,igcm_dust_mass) |
|---|
| 406 | & *0.75/pi/rho_dust |
|---|
| 407 | & / zq(ig,l,igcm_dust_number) |
|---|
| 408 | rdust(ig,l)= rdust(ig,l)**(1./3.) |
|---|
| 409 | c write(*,*) "Improved2, l,Rdust = ",l,rdust(ig,l) |
|---|
| 410 | rdust(ig,l)=max(1.e-9,rdust(ig,l)) |
|---|
| 411 | c rdust(ig,l)=min(1.e-5,rdust(ig,l)) |
|---|
| 412 | ! write(*,*) "Improved3,Rdust = ",rdust(ig,l) |
|---|
| 413 | |
|---|
| 414 | c Expand the dust moments into a binned distribution |
|---|
| 415 | Mo = zq(ig,l,igcm_dust_mass)* tauscaling(ig)+1.e-30 |
|---|
| 416 | No = zq(ig,l,igcm_dust_number)* tauscaling(ig)+1.e-30 |
|---|
| 417 | Rn = rdust(ig,l) |
|---|
| 418 | Rn = -log(Rn) |
|---|
| 419 | Rm = Rn - 3. * sigma_iceco2*sigma_iceco2 |
|---|
| 420 | n_derf = erf( (rb_cldco2(1)+Rn) *dev2) |
|---|
| 421 | m_derf = erf( (rb_cldco2(1)+Rm) *dev2) |
|---|
| 422 | |
|---|
| 423 | do i = 1, nbinco2_cld |
|---|
| 424 | n_aer(i) = -0.5 * No * n_derf !! this ith previously computed |
|---|
| 425 | m_aer(i) = -0.5 * Mo * m_derf !! this ith previously computed |
|---|
| 426 | n_derf = derf((rb_cldco2(i+1)+Rn) *dev2) |
|---|
| 427 | m_derf = derf((rb_cldco2(i+1)+Rm) *dev2) |
|---|
| 428 | n_aer(i) = n_aer(i) + 0.5 * No * n_derf + |
|---|
| 429 | & meteo_ccn(ig,l,i) !Ajout meteo_ccn |
|---|
| 430 | m_aer(i) = m_aer(i) + 0.5 * Mo * m_derf |
|---|
| 431 | m_aer2(i)=4./3.*pi*rho_dust |
|---|
| 432 | & *n_aer(i)*rad_cldco2(i)*rad_cldco2(i) |
|---|
| 433 | & *rad_cldco2(i) |
|---|
| 434 | c write(*,*) "diff =",rad_cldco2(i),m_aer(i),m_aer2(i) |
|---|
| 435 | enddo |
|---|
| 436 | c write(*,*) "Bilan =",sum(m_aer),sum(m_aer2) |
|---|
| 437 | |
|---|
| 438 | c sumcheck = 0 |
|---|
| 439 | c do i = 1, nbinco2_cld |
|---|
| 440 | c sumcheck = sumcheck + n_aer(i) |
|---|
| 441 | c enddo |
|---|
| 442 | c sumcheck = abs(sumcheck/No - 1) |
|---|
| 443 | c if ((sumcheck .gt. 1e-5).and. (1./Rn .gt. rmin_cld)) then |
|---|
| 444 | c print*, "WARNING, No sumcheck PROBLEM" |
|---|
| 445 | c print*, "sumcheck, No, rdust",sumcheck, No,rdust(ig,l) |
|---|
| 446 | c print*, "min radius, Rn, ig, l", rmin_cld, 1./Rn, ig, l |
|---|
| 447 | c print*, "Dust binned distribution", n_aer |
|---|
| 448 | c STOP |
|---|
| 449 | c endif |
|---|
| 450 | |
|---|
| 451 | c sumcheck = 0 |
|---|
| 452 | c do i = 1, nbinco2_cld |
|---|
| 453 | c sumcheck = sumcheck + m_aer(i) |
|---|
| 454 | c enddo |
|---|
| 455 | c sumcheck = abs(sumcheck/Mo - 1) |
|---|
| 456 | c if ((sumcheck .gt. 1e-5) .and. (1./Rn .gt. rmin_cld)) |
|---|
| 457 | c & then |
|---|
| 458 | c print*, "WARNING, Mo sumcheck PROBLEM" |
|---|
| 459 | c print*, "sumcheck, Mo",sumcheck, Mo |
|---|
| 460 | c print*, "min radius, Rm, ig, l", rmin_cld, 1./Rm, ig,l |
|---|
| 461 | c print*, "Dust binned distribution", m_aer |
|---|
| 462 | c STOP |
|---|
| 463 | c endif |
|---|
| 464 | m_aer(:)=m_aer2(:) |
|---|
| 465 | |
|---|
| 466 | |
|---|
| 467 | rccnh2o(ig,l)= zq(ig,l,igcm_ccn_mass) |
|---|
| 468 | & *0.75/pi/rho_dust |
|---|
| 469 | & / zq(ig,l,igcm_ccn_number) |
|---|
| 470 | |
|---|
| 471 | rice(ig,l)=( zq(ig,l,igcm_h2o_ice)*3.0/ |
|---|
| 472 | & (4.0*rho_ice_co2*zq(ig,l,igcm_ccn_number) |
|---|
| 473 | & *pi*tauscaling(ig)) +rccnh2o(ig,l)*rccnh2o(ig,l) |
|---|
| 474 | & *rccnh2o(ig,l) )**(1.0/3.0) |
|---|
| 475 | rhocloud(ig,l)=( zq(ig,l,igcm_h2o_ice)*rho_ice |
|---|
| 476 | & +zq(ig,l,igcm_ccn_mass) *tauscaling(ig)*rho_dust) |
|---|
| 477 | & / (zq(ig,l,igcm_h2o_ice)+zq(ig,l,igcm_ccn_mass) |
|---|
| 478 | & *tauscaling(ig)) |
|---|
| 479 | c call updaterice_micro( |
|---|
| 480 | c & zq(ig,l,igcm_h2o_ice), ! ice mass |
|---|
| 481 | c & zq(ig,l,igcm_ccn_mass), ! ccn mass |
|---|
| 482 | c & zq(ig,l,igcm_ccn_number), ! ccn number |
|---|
| 483 | c & tauscaling(ig),rice(ig,l),rhocloud(ig,l)) |
|---|
| 484 | ! rice radius of CCN + H20 crystal |
|---|
| 485 | c write(*,*) "Improved1 Rice=",rice(ig,l) |
|---|
| 486 | rice(ig,l)=max(1.e-10,rice(ig,l)) |
|---|
| 487 | c rice(ig,l)=min(1.e-5,rice(ig,l)) |
|---|
| 488 | !write(*,*) "Improved2 Rice=",rice(ig,l) |
|---|
| 489 | Mo = zq(ig,l,igcm_h2o_ice) + |
|---|
| 490 | & zq(ig,l,igcm_ccn_mass)*tauscaling(ig)+1.e-30!*tauscaling(ig) |
|---|
| 491 | ! & + 1.e-30 !Total mass of H20 crystals,CCN included |
|---|
| 492 | No = zq(ig,l,igcm_ccn_number)* tauscaling(ig) + 1.e-30 |
|---|
| 493 | Rn = rice(ig,l) |
|---|
| 494 | Rn = -log(Rn) |
|---|
| 495 | Rm = Rn - 3. * sigma_ice*sigma_ice |
|---|
| 496 | n_derf = erf( (rb_cldco2(1)+Rn) *dev3) |
|---|
| 497 | m_derf = erf( (rb_cldco2(1)+Rm) *dev3) |
|---|
| 498 | do i = 1, nbinco2_cld |
|---|
| 499 | n_aer_h2oice(i) = -0.5 * No * n_derf |
|---|
| 500 | m_aer_h2oice(i) = -0.5 * Mo * m_derf |
|---|
| 501 | n_derf = derf( (rb_cldco2(i+1)+Rn) *dev3) |
|---|
| 502 | m_derf = derf( (rb_cldco2(i+1)+Rm) *dev3) |
|---|
| 503 | n_aer_h2oice(i) = n_aer_h2oice(i) + 0.5 * No * n_derf |
|---|
| 504 | m_aer_h2oice(i) = m_aer_h2oice(i) + 0.5 * Mo * m_derf |
|---|
| 505 | rad_h2oice(i) = rad_cldco2(i) |
|---|
| 506 | m_aer_h2oice2(i)=4./3.*pi*rhocloud(ig,l) |
|---|
| 507 | & *n_aer_h2oice(i)*rad_h2oice(i)*rad_h2oice(i) |
|---|
| 508 | & *rad_h2oice(i) |
|---|
| 509 | |
|---|
| 510 | |
|---|
| 511 | c write(*,*) "before nuc, i,rad_h2o(i)= ",i,rad_cldco2(i) |
|---|
| 512 | c & ,m_aer_h2oice(i),n_aer_h2oice(i) |
|---|
| 513 | enddo |
|---|
| 514 | c sumcheck = 0 |
|---|
| 515 | c do i = 1, nbinco2_cld |
|---|
| 516 | c sumcheck = sumcheck + n_aer_h2oice(i) |
|---|
| 517 | c enddo |
|---|
| 518 | c sumcheck = abs(sumcheck/No - 1) |
|---|
| 519 | c if ((sumcheck .gt. 1e-5).and. (1./Rn .gt. rmin_cld)) then |
|---|
| 520 | c print*, "WARNING, Noh2o sumcheck PROBLEM" |
|---|
| 521 | c print*, "sumcheck, No, rice",sumcheck, No,rice(ig,l) |
|---|
| 522 | c print*, "min radius, Rn, ig, l", rmin_cld, 1./Rn, ig, l |
|---|
| 523 | c print*, "Dust binned distribution", n_aer_h2oice |
|---|
| 524 | c STOP |
|---|
| 525 | c endif |
|---|
| 526 | |
|---|
| 527 | c sumcheck = 0 |
|---|
| 528 | c do i = 1, nbinco2_cld |
|---|
| 529 | c sumcheck = sumcheck + m_aer_h2oice(i) |
|---|
| 530 | c enddo |
|---|
| 531 | c sumcheck = abs(sumcheck/Mo - 1) |
|---|
| 532 | c if ((sumcheck .gt. 1e-5) .and. (1./Rn .gt. rmin_cld)) |
|---|
| 533 | c & then |
|---|
| 534 | c print*, "WARNING, Moh2o sumcheck PROBLEM" |
|---|
| 535 | c print*, "sumcheck, Mo",sumcheck, Mo |
|---|
| 536 | c print*, "min radius, Rm, ig, l", rmin_cld, 1./Rm, ig,l |
|---|
| 537 | c print*, "Dust binned distribution", m_aer_h2oice |
|---|
| 538 | c STOP |
|---|
| 539 | c endif |
|---|
| 540 | c Get the rates of nucleation |
|---|
| 541 | |
|---|
| 542 | call nucleaCO2(dble(pco2),zt(ig,l),dble(satu) |
|---|
| 543 | & ,n_aer,rate,n_aer_h2oice |
|---|
| 544 | & ,rad_h2oice,rateh2o,vo2co2) |
|---|
| 545 | m_aer_h2oice(:)=m_aer_h2oice2(:) |
|---|
| 546 | dN = 0. |
|---|
| 547 | dM = 0. |
|---|
| 548 | dNh2o = 0. |
|---|
| 549 | dMh2o = 0. |
|---|
| 550 | do i = 1, nbinco2_cld |
|---|
| 551 | Proba=1.0-dexp(-1.*ptimestep*rate(i)) |
|---|
| 552 | Probah2o=coeffh2o*(1.0-dexp(-1.*ptimestep*rateh2o(i))) |
|---|
| 553 | dNh2o = dNh2o + n_aer_h2oice(i) * Probah2o |
|---|
| 554 | dMh2o = dMh2o + m_aer_h2oice(i) * Probah2o |
|---|
| 555 | dN = dN + n_aer(i) * Proba |
|---|
| 556 | dM = dM + m_aer(i) * Proba |
|---|
| 557 | |
|---|
| 558 | enddo |
|---|
| 559 | ! dM masse activée (kg) et dN nb particules par kg d'air |
|---|
| 560 | |
|---|
| 561 | dNN= dN/tauscaling(ig) |
|---|
| 562 | dMM= dM/tauscaling(ig) |
|---|
| 563 | dNN=min(dNN,zq(ig,l,igcm_dust_number)) |
|---|
| 564 | dMM=min(dMM,zq(ig,l,igcm_dust_mass)) |
|---|
| 565 | ! if (dNN .gt. 0) then |
|---|
| 566 | ! write(*,*) "Nuclea dNN crees=",dNN |
|---|
| 567 | ! write(*,*) "Nuclea dMM crees=",dMM |
|---|
| 568 | ! endif |
|---|
| 569 | dNNh2o=dNh2o/tauscaling(ig) |
|---|
| 570 | dNNh2o=min(dNNh2o,zq(ig,l,igcm_ccn_number)) |
|---|
| 571 | |
|---|
| 572 | ratioh2o_ccn=1./(zq(ig,l,igcm_h2o_ice) |
|---|
| 573 | & +zq(ig,l,igcm_ccn_mass)*tauscaling(ig)) |
|---|
| 574 | |
|---|
| 575 | dMh2o_ice=dMh2o*zq(ig,l,igcm_h2o_ice)*ratioh2o_ccn |
|---|
| 576 | dMh2o_ccn=dMh2o*zq(ig,l,igcm_ccn_mass)* |
|---|
| 577 | & tauscaling(ig)*ratioh2o_ccn |
|---|
| 578 | |
|---|
| 579 | dMh2o_ccn=dMh2o_ccn/tauscaling(ig) |
|---|
| 580 | dMh2o_ccn=min(dMh2o_ccn,zq(ig,l,igcm_ccn_mass)) |
|---|
| 581 | dMh2o_ice=min(dMh2o_ice,zq(ig,l,igcm_h2o_ice)) |
|---|
| 582 | |
|---|
| 583 | zq(ig,l,igcm_ccnco2_mass) = |
|---|
| 584 | & zq(ig,l,igcm_ccnco2_mass) + dMM |
|---|
| 585 | zq(ig,l,igcm_ccnco2_number) = |
|---|
| 586 | & zq(ig,l,igcm_ccnco2_number) + dNN |
|---|
| 587 | |
|---|
| 588 | zq(ig,l,igcm_dust_mass)= zq(ig,l,igcm_dust_mass)-dMM |
|---|
| 589 | zq(ig,l,igcm_dust_number)=zq(ig,l,igcm_dust_number)-dNN |
|---|
| 590 | |
|---|
| 591 | c Update CCN for CO2 nucleating on H2O CCN : |
|---|
| 592 | ! Warning: must keep memory of it |
|---|
| 593 | zq(ig,l,igcm_ccnco2_mass) = |
|---|
| 594 | & zq(ig,l,igcm_ccnco2_mass) + dMh2o_ice+dMh2o_ccn |
|---|
| 595 | zq(ig,l,igcm_ccnco2_number) = |
|---|
| 596 | & zq(ig,l,igcm_ccnco2_number) + dNNh2o |
|---|
| 597 | |
|---|
| 598 | zq(ig,l,igcm_ccn_number)=zq(ig,l,igcm_ccn_number)-dNNh2o |
|---|
| 599 | zq(ig,l,igcm_h2o_ice) = zq(ig,l,igcm_h2o_ice)-dMh2o_ice |
|---|
| 600 | zq(ig,l,igcm_ccn_mass)= zq(ig,l,igcm_ccn_mass)-dMh2o_ccn |
|---|
| 601 | |
|---|
| 602 | |
|---|
| 603 | memdMMh2o(ig,l)=memdMMh2o(ig,l)+dMh2o_ice |
|---|
| 604 | memdMMccn(ig,l)=memdMMccn(ig,l)+dMh2o_ccn |
|---|
| 605 | memdNNccn(ig,l)=memdNNccn(ig,l)+dNNh2o |
|---|
| 606 | ENDIF ! of is satu >1 |
|---|
| 607 | !============================================================= |
|---|
| 608 | ! 4. Ice growth: scheme for radius evolution |
|---|
| 609 | !============================================================= |
|---|
| 610 | |
|---|
| 611 | c We trigger crystal growth if and only if there is at least one nuclei (N>1). |
|---|
| 612 | c Indeed, if we are supersaturated and still don't have at least one nuclei, we should better wait |
|---|
| 613 | c to avoid unrealistic value for nuclei radius and so on for cases that remain negligible. |
|---|
| 614 | IF (zq(ig,l,igcm_ccnco2_number)*tauscaling(ig) .ge. 1)THEN |
|---|
| 615 | ! we trigger crystal growth |
|---|
| 616 | c |
|---|
| 617 | c write(*,*) "ccn number mass=",zq(ig,l,igcm_ccnco2_number), |
|---|
| 618 | c & zq(ig,l,igcm_ccnco2_mass) |
|---|
| 619 | |
|---|
| 620 | c Niceco2 = zq(ig,l,igcm_co2_ice) |
|---|
| 621 | c Qccnco2 = zq(ig,l,igcm_ccnco2_mass) |
|---|
| 622 | c Nccnco2 = zq(ig,l,igcm_ccnco2_number) |
|---|
| 623 | c call updaterice_microco2(Niceco2,Qccnco2,Nccnco2, |
|---|
| 624 | c & tauscaling(ig),riceco2(ig,l),rhocloudco2(ig,l)) |
|---|
| 625 | c write(*,*) "updater rice=",riceco2(ig,l) |
|---|
| 626 | |
|---|
| 627 | rdust(ig,l)= zq(ig,l,igcm_ccnco2_mass) |
|---|
| 628 | & *0.75/pi/rho_dust |
|---|
| 629 | & / zq(ig,l,igcm_ccnco2_number) |
|---|
| 630 | rdust(ig,l)= rdust(ig,l)**(1./3.) |
|---|
| 631 | rdust(ig,l)=max(1.e-10,rdust(ig,l)) |
|---|
| 632 | c rdust(ig,l)=min(5.e-6,rdust(ig,l)) |
|---|
| 633 | |
|---|
| 634 | riceco2(ig,l)=( zq(ig,l,igcm_co2_ice)*3.0/ |
|---|
| 635 | & (4.0*rho_ice_co2*zq(ig,l,igcm_ccnco2_number) |
|---|
| 636 | & *pi*tauscaling(ig)) +rdust(ig,l)*rdust(ig,l) |
|---|
| 637 | & *rdust(ig,l) )**(1.0/3.0) |
|---|
| 638 | |
|---|
| 639 | c riceco2(ig,l)=max(1.e-10,riceco2(ig,l)) |
|---|
| 640 | c riceco2(ig,l)=min(1.e-5,riceco2(ig,l)) |
|---|
| 641 | ! WATCH OUT: CO2 nuclei is supposed to be dust |
|---|
| 642 | ! only when deriving rhocloud (otherwise would need to keep info on water embedded in co2) - listo |
|---|
| 643 | c write(*,*) "Rdust before growth = ",rdust(ig,l) |
|---|
| 644 | c write(*,*) "Riceco2 before growth = ",riceco2(ig,l) |
|---|
| 645 | |
|---|
| 646 | !! Niceco2,Qccnco2,Nccnco2 |
|---|
| 647 | c Niceco2 = zq(ig,l,igcm_co2_ice) |
|---|
| 648 | c Qccnco2 = zq(ig,l,igcm_ccnco2_mass) |
|---|
| 649 | c Nccnco2 = zq(ig,l,igcm_ccnco2_number) |
|---|
| 650 | c call updaterice_microco2(Niceco2,Qccnco2,Nccnco2, |
|---|
| 651 | c & tauscaling(ig),riceco2(ig,l),rhocloudco2(ig,l)) |
|---|
| 652 | c write(*,*) "Riceco2 before growth = ",riceco2(ig,l) |
|---|
| 653 | c write(*,*) "rdust before growth = ",rdust(ig,l) |
|---|
| 654 | c write(*,*) "co2ice before growth=",zq(ig,l,igcm_co2_ice) |
|---|
| 655 | c write(*,*) "co2 before growth=",zq(ig,l,igcm_co2) |
|---|
| 656 | c write(*,*) "pplay before growth=",pplay(ig,l) |
|---|
| 657 | c write(*,*) "zt before growth =",zt(ig,l) |
|---|
| 658 | c write(*,*) "Satu before growth=",satu |
|---|
| 659 | c riceco2(ig,l)=max(riceco2(ig,l),rdust(ig,l)) |
|---|
| 660 | No = zq(ig,l,igcm_ccnco2_number)* tauscaling(ig)+1.e-30 |
|---|
| 661 | ! No nb de particules de poussieres mis à l'échelle pour donner une opacité optique |
|---|
| 662 | |
|---|
| 663 | c saturation at equilibrium |
|---|
| 664 | c rice should not be too small, otherwise seq value is not valid |
|---|
| 665 | c seq = exp(2.*sigco2*mco2 / (rho_ice_co2*rgp*zt(ig,l)* |
|---|
| 666 | c & max(riceco2(ig,l),1.e-7))) !Exponant sans unité OK |
|---|
| 667 | |
|---|
| 668 | ccccccc Scheme of microphys. mass growth for CO2 |
|---|
| 669 | |
|---|
| 670 | call massflowrateCO2(pplay(ig,l),zt(ig,l), |
|---|
| 671 | & satu,riceco2(ig,l),mmean(ig,l),Ic_rice) ! Mass transfer rate (kg/s) for a rice particle |
|---|
| 672 | ! Ic_rice mass flux kg.s-1 <0 si croissance ! |
|---|
| 673 | if (isnan(Ic_rice)) then |
|---|
| 674 | Ic_rice=0. |
|---|
| 675 | flag_pourri=1 |
|---|
| 676 | endif |
|---|
| 677 | c drsurdt=-1.0/(4.0*pi*riceco2(ig,l)* |
|---|
| 678 | c & riceco2(ig,l)*rho_ice_co2)*Ic_rice |
|---|
| 679 | dMice = No * Ic_rice*ptimestep ! Kg par kg d'air, <0 si croissance ! |
|---|
| 680 | c write(*,*) "dMicev0 in improved = " , dMice |
|---|
| 681 | |
|---|
| 682 | if (dMice .ge. 0d0) then |
|---|
| 683 | dMice = min(dMice,abs(zq(ig,l,igcm_co2_ice))) |
|---|
| 684 | else |
|---|
| 685 | dMice =-1.* min(abs(dMice),abs(zq(ig,l,igcm_co2))) |
|---|
| 686 | endif |
|---|
| 687 | c riceco2(ig,l)=riceco2(ig,l)+drsurdt*ptimestep |
|---|
| 688 | c write(*,*) "riceco2+dr/dt = ", riceco2(ig,l) |
|---|
| 689 | !write(*,*) "dMice in improved = " , dMice |
|---|
| 690 | |
|---|
| 691 | zq(ig,l,igcm_co2_ice) = zq(ig,l,igcm_co2_ice)-dMice |
|---|
| 692 | zq(ig,l,igcm_co2) = zq(ig,l,igcm_co2)+dMice |
|---|
| 693 | |
|---|
| 694 | ! latent heat release >0 if growth i.e. if dMice <0 |
|---|
| 695 | |
|---|
| 696 | |
|---|
| 697 | lw = l0 + l1 * zt(ig,l) + l2 * zt(ig,l)**2 + |
|---|
| 698 | & l3 * zt(ig,l)**3 + l4 * zt(ig,l)**4 !J.kg-1 |
|---|
| 699 | c write(*,*) "CPP= ",cpp ! = 744.5 |
|---|
| 700 | !Peut etre un probleme de signe ici! |
|---|
| 701 | pdtcloudco2(ig,l)= -1.*dMice*lw/cpp/ptimestep ! kg par couche * J par kg /J par K / s = K par seconde |
|---|
| 702 | |
|---|
| 703 | !write(*,*) "pdtcloudco2 after growth = ",pdtcloudco2(ig,l) |
|---|
| 704 | |
|---|
| 705 | !write(*,*) "co2 after growth = ",zq(ig,l,igcm_co2) |
|---|
| 706 | !write(*,*) "co2_ice after growth = ",zq(ig,l,igcm_co2_ice) |
|---|
| 707 | |
|---|
| 708 | !deltaT par condens/subli. qui remplace le dT du CO2 du newcondens pré-constantino |
|---|
| 709 | !PDT should be in K/s. |
|---|
| 710 | !============================================================= |
|---|
| 711 | ! 5. Dust cores released, tendancies, latent heat, etc ... |
|---|
| 712 | !============================================================= |
|---|
| 713 | |
|---|
| 714 | c if (abs(dMice) .ge. 1.e-10) then |
|---|
| 715 | |
|---|
| 716 | c write(*,*) "DIAG zq pdt",(zq(ig,l,igcm_co2_ice)- |
|---|
| 717 | c & zq0(ig,l,igcm_co2_ice))/ptimestep,pdtcloudco2(ig,l) |
|---|
| 718 | c endif |
|---|
| 719 | ENDIF ! of if NCCN > 1 |
|---|
| 720 | |
|---|
| 721 | rdust(ig,l)= zq(ig,l,igcm_ccnco2_mass) |
|---|
| 722 | & *0.75/pi/rho_dust |
|---|
| 723 | & / zq(ig,l,igcm_ccnco2_number) |
|---|
| 724 | rdust(ig,l)= rdust(ig,l)**(1./3.) |
|---|
| 725 | rdust(ig,l)=max(1.e-9,rdust(ig,l)) |
|---|
| 726 | c rdust(ig,l)=min(5.e-6,rdust(ig,l)) |
|---|
| 727 | |
|---|
| 728 | riceco2(ig,l)=( zq(ig,l,igcm_co2_ice)*3.0/ |
|---|
| 729 | & (4.0*rho_ice_co2*zq(ig,l,igcm_ccnco2_number) |
|---|
| 730 | & *pi*tauscaling(ig)) +rdust(ig,l)*rdust(ig,l) |
|---|
| 731 | & *rdust(ig,l) )**(1.0/3.0) |
|---|
| 732 | !Niceco2 = zq(ig,l,igcm_co2_ice) |
|---|
| 733 | !Qccnco2 = zq(ig,l,igcm_ccnco2_mass) |
|---|
| 734 | !Nccnco2 = zq(ig,l,igcm_ccnco2_number) |
|---|
| 735 | c |
|---|
| 736 | c call updaterice_microCO2(Niceco2,Qccnco2,Nccnco2, |
|---|
| 737 | c & tauscaling(ig),riceco2(ig,l),rhocloudco2(ig,l)) |
|---|
| 738 | |
|---|
| 739 | c If there is no more co2 ice, all the ice particles sublimate, all the condensation nuclei are released: |
|---|
| 740 | |
|---|
| 741 | if ((zq(ig,l,igcm_co2_ice).le. 1.e-25)) then |
|---|
| 742 | c & .or. flag_pourri .eq. 1 |
|---|
| 743 | c & .or.(riceco2(ig,l) .le. rdust(ig,l)) |
|---|
| 744 | c & .or. (l .ge.1 .and. l .le. 5) |
|---|
| 745 | c & .or. (zq(ig,l,igcm_co2_ice) .ge. 0.1) |
|---|
| 746 | lw = l0 + l1 * zt(ig,l) + l2 * zt(ig,l)**2 + |
|---|
| 747 | & l3 * zt(ig,l)**3 + l4 * zt(ig,l)**4 !J.kg-1 |
|---|
| 748 | c write(*,*) "CPP= ",cpp ! = 744.5 |
|---|
| 749 | |
|---|
| 750 | pdtcloudco2(ig,l)=pdtcloudco2(ig,l)-1. |
|---|
| 751 | & *zq(ig,l,igcm_co2_ice)*lw/cpp/ptimestep ! |
|---|
| 752 | !On sublime tout ! |
|---|
| 753 | c write(*,*) "Riceco2 improved before reset=",riceco2(ig,l) |
|---|
| 754 | c write(*,*) "Niceco2 improved before reset=", |
|---|
| 755 | c & zq(ig,l,igcm_co2_ice) |
|---|
| 756 | c write(*,*) "Rdust improved before reset=",rdust(ig,l) |
|---|
| 757 | |
|---|
| 758 | if (memdMMccn(ig,l) .gt. 0) then |
|---|
| 759 | zq(ig,l,igcm_ccn_mass)=zq(ig,l,igcm_ccn_mass) |
|---|
| 760 | & +memdMMccn(ig,l) |
|---|
| 761 | endif |
|---|
| 762 | if (memdMMh2o(ig,l) .gt. 0) then |
|---|
| 763 | zq(ig,l,igcm_h2o_ice)=zq(ig,l,igcm_h2o_ice) |
|---|
| 764 | & +memdMMh2o(ig,l) |
|---|
| 765 | endif |
|---|
| 766 | |
|---|
| 767 | if (memdNNccn(ig,l) .gt. 0) then |
|---|
| 768 | zq(ig,l,igcm_ccn_number)=zq(ig,l,igcm_ccn_number) |
|---|
| 769 | & +memdNNccn(ig,l) |
|---|
| 770 | endif |
|---|
| 771 | |
|---|
| 772 | c if (zq(ig,l,igcm_ccnco2_mass) .gt. 1.e-30) then |
|---|
| 773 | zq(ig,l,igcm_dust_mass) = |
|---|
| 774 | & zq(ig,l,igcm_dust_mass) |
|---|
| 775 | & + zq(ig,l,igcm_ccnco2_mass)- |
|---|
| 776 | & (memdMMh2o(ig,l)+memdMMccn(ig,l)) |
|---|
| 777 | c endif |
|---|
| 778 | c if (zq(ig,l,igcm_ccnco2_number) .gt. 1.e-30) then |
|---|
| 779 | zq(ig,l,igcm_dust_number) = |
|---|
| 780 | & zq(ig,l,igcm_dust_number) |
|---|
| 781 | & + zq(ig,l,igcm_ccnco2_number)-memdNNccn(ig,l) |
|---|
| 782 | c endif |
|---|
| 783 | |
|---|
| 784 | c if (zq(ig,l,igcm_co2_ice) .gt. 1.e-30) then |
|---|
| 785 | zq(ig,l,igcm_co2) = zq(ig,l,igcm_co2) |
|---|
| 786 | & + zq(ig,l,igcm_co2_ice) |
|---|
| 787 | c endif |
|---|
| 788 | |
|---|
| 789 | zq(ig,l,igcm_ccnco2_mass)=0. |
|---|
| 790 | zq(ig,l,igcm_co2_ice)=0. |
|---|
| 791 | zq(ig,l,igcm_ccnco2_number)=0. |
|---|
| 792 | memdNNccn(ig,l)=0. |
|---|
| 793 | memdMMh2o(ig,l)=0. |
|---|
| 794 | memdMMccn(ig,l)=0. |
|---|
| 795 | riceco2(ig,l)=0. |
|---|
| 796 | |
|---|
| 797 | endif |
|---|
| 798 | ENDDO ! of ig loop |
|---|
| 799 | ENDDO ! of nlayer loop |
|---|
| 800 | ! Get cloud tendencies |
|---|
| 801 | pdqcloudco2(1:ngrid,1:nlay,igcm_co2) = |
|---|
| 802 | & (zq(1:ngrid,1:nlay,igcm_co2) - |
|---|
| 803 | & zq0(1:ngrid,1:nlay,igcm_co2))/ptimestep |
|---|
| 804 | pdqcloudco2(1:ngrid,1:nlay,igcm_co2_ice) = |
|---|
| 805 | & (zq(1:ngrid,1:nlay,igcm_co2_ice) - |
|---|
| 806 | & zq0(1:ngrid,1:nlay,igcm_co2_ice))/ptimestep |
|---|
| 807 | pdqcloudco2(1:ngrid,1:nlay,igcm_h2o_ice) = |
|---|
| 808 | & (zq(1:ngrid,1:nlay,igcm_h2o_ice) - |
|---|
| 809 | & zq0(1:ngrid,1:nlay,igcm_h2o_ice))/ptimestep |
|---|
| 810 | pdqcloudco2(1:ngrid,1:nlay,igcm_ccn_mass) = |
|---|
| 811 | & (zq(1:ngrid,1:nlay,igcm_ccn_mass) - |
|---|
| 812 | & zq0(1:ngrid,1:nlay,igcm_ccn_mass))/ptimestep |
|---|
| 813 | pdqcloudco2(1:ngrid,1:nlay,igcm_ccn_number) = |
|---|
| 814 | & (zq(1:ngrid,1:nlay,igcm_ccn_number) - |
|---|
| 815 | & zq0(1:ngrid,1:nlay,igcm_ccn_number))/ptimestep |
|---|
| 816 | pdqcloudco2(1:ngrid,1:nlay,igcm_ccnco2_mass) = |
|---|
| 817 | & (zq(1:ngrid,1:nlay,igcm_ccnco2_mass) - |
|---|
| 818 | & zq0(1:ngrid,1:nlay,igcm_ccnco2_mass))/ptimestep |
|---|
| 819 | pdqcloudco2(1:ngrid,1:nlay,igcm_ccnco2_number) = |
|---|
| 820 | & (zq(1:ngrid,1:nlay,igcm_ccnco2_number) - |
|---|
| 821 | & zq0(1:ngrid,1:nlay,igcm_ccnco2_number))/ptimestep |
|---|
| 822 | pdqcloudco2(1:ngrid,1:nlay,igcm_dust_mass) = |
|---|
| 823 | & (zq(1:ngrid,1:nlay,igcm_dust_mass) - |
|---|
| 824 | & zq0(1:ngrid,1:nlay,igcm_dust_mass))/ptimestep |
|---|
| 825 | pdqcloudco2(1:ngrid,1:nlay,igcm_dust_number) = |
|---|
| 826 | & (zq(1:ngrid,1:nlay,igcm_dust_number) - |
|---|
| 827 | & zq0(1:ngrid,1:nlay,igcm_dust_number))/ptimestep |
|---|
| 828 | return |
|---|
| 829 | end |
|---|
| 830 | |
|---|
| 831 | |
|---|
| 832 | |
|---|