1 | subroutine improvedCO2clouds(ngrid,nlay,ptimestep, |
---|
2 | & pplay,pplev,pt,pdt, |
---|
3 | & pq,pdq,pdqcloudco2,pdtcloudco2, |
---|
4 | & nq,tauscaling, |
---|
5 | & memdMMccn,memdMMh2o,memdNNccn) |
---|
6 | USE comcstfi_h |
---|
7 | USE ioipsl_getincom |
---|
8 | USE updaterad |
---|
9 | use tracer_mod |
---|
10 | use conc_mod, only: mmean |
---|
11 | |
---|
12 | implicit none |
---|
13 | |
---|
14 | c------------------------------------------------------------------ |
---|
15 | c This routine is used to form CO2 clouds when a parcel of the GCM is |
---|
16 | c saturated. It includes the ability to have supersaturation, a |
---|
17 | c computation of the nucleation rates, growthrates and the |
---|
18 | c scavenging of dust particles by clouds. |
---|
19 | c It is worth noting that the amount of dust is computed using the |
---|
20 | c dust optical depth computed in aeropacity.F. That's why |
---|
21 | c the variable called "tauscaling" is used to convert |
---|
22 | c pq(dust_mass) and pq(dust_number), which are relative |
---|
23 | c quantities, to absolute and realistic quantities stored in zq. |
---|
24 | c This has to be done to convert the inputs into absolute |
---|
25 | c values, but also to convert the outputs back into relative |
---|
26 | c values which are then used by the sedimentation and advection |
---|
27 | c schemes. |
---|
28 | c CO2 ice particles can nucleate on both dust and on water ice particles |
---|
29 | c When CO2 ice is deposited onto a water ice particles, the particle is |
---|
30 | c removed from the water tracers. |
---|
31 | c Memory of the origin of the co2 particles is kept and thus the |
---|
32 | c water cycle shouldn't be modified by this. |
---|
33 | cWARNING: no sedimentation of the water ice origin is performed |
---|
34 | c in the microphysical timestep in co2cloud.F. |
---|
35 | |
---|
36 | c Authors of the water ice clouds microphysics |
---|
37 | c J.-B. Madeleine, based on the work by Franck Montmessin |
---|
38 | c (October 2011) |
---|
39 | c T. Navarro, debug,correction, new scheme (October-April 2011) |
---|
40 | c A. Spiga, optimization (February 2012) |
---|
41 | c Adaptation for CO2 clouds by Joachim Audouard (09/16), based on the work |
---|
42 | c of Constantino Listowski |
---|
43 | c There is an energy limit to how much co2 can sublimate/condensate. It is |
---|
44 | c defined by the difference of the GCM temperature with the co2 condensation |
---|
45 | c temperature. |
---|
46 | c Warning: |
---|
47 | c If meteoritic particles are activated and turn into co2 ice particles, |
---|
48 | c then they will be reversed in the dust tracers if the cloud sublimates |
---|
49 | |
---|
50 | c------------------------------------------------------------------ |
---|
51 | #include "callkeys.h" |
---|
52 | #include "microphys.h" |
---|
53 | #include "datafile.h" |
---|
54 | c------------------------------------------------------------------ |
---|
55 | c Inputs: |
---|
56 | |
---|
57 | INTEGER ngrid,nlay |
---|
58 | integer nq ! nombre de traceurs |
---|
59 | REAL ptimestep ! pas de temps physique (s) |
---|
60 | REAL pplay(ngrid,nlay) ! pression au milieu des couches (Pa) |
---|
61 | REAL pplev(ngrid,nlay+1) ! pression inter couches (Pa) |
---|
62 | real masse (ngrid,nlay) ! Layer mass (kg.m-2) |
---|
63 | REAL pt(ngrid,nlay) ! temperature at the middle of the |
---|
64 | ! layers (K) |
---|
65 | REAL pdt(ngrid,nlay) ! tendance temperature des autres |
---|
66 | ! param. |
---|
67 | REAL pq(ngrid,nlay,nq) ! traceur (kg/kg) |
---|
68 | REAL pdq(ngrid,nlay,nq) ! tendance avant condensation |
---|
69 | ! (kg/kg.s-1) |
---|
70 | REAL tauscaling(ngrid) ! Convertion factor for qdust and Ndust |
---|
71 | REAL rice(ngrid,nlay) ! Water Ice mass mean radius (m) |
---|
72 | ! used for nucleation of CO2 on ice-coated ccns |
---|
73 | REAL rccnh2o(ngrid,nlay) ! Water Ice mass mean radius (m) |
---|
74 | c Outputs: |
---|
75 | REAL pdqcloudco2(ngrid,nlay,nq) ! tendance de la condensation |
---|
76 | ! CO2 (kg/kg.s-1) |
---|
77 | ! condensation si igcm_co2_ice |
---|
78 | REAL pdtcloudco2(ngrid,nlay) ! tendance temperature due |
---|
79 | ! a la chaleur latente |
---|
80 | |
---|
81 | c------------------------------------------------------------------ |
---|
82 | c Local variables: |
---|
83 | LOGICAL firstcall |
---|
84 | DATA firstcall/.true./ |
---|
85 | SAVE firstcall |
---|
86 | REAL*8 derf ! Error function |
---|
87 | INTEGER ig,l,i,flag_pourri |
---|
88 | |
---|
89 | REAL zq(ngrid,nlay,nq) ! local value of tracers |
---|
90 | REAL zq0(ngrid,nlay,nq) ! local initial value of tracers |
---|
91 | REAL zt(ngrid,nlay) ! local value of temperature |
---|
92 | REAL zqsat(ngrid,nlay) ! saturation vapor pressure for CO2 |
---|
93 | real tcond(ngrid,nlay) |
---|
94 | real zqco2(ngrid,nlay) |
---|
95 | REAL lw !Latent heat of sublimation (J.kg-1) |
---|
96 | REAL,save :: l0,l1,l2,l3,l4 |
---|
97 | DOUBLE PRECISION dMice ! mass of condensed ice |
---|
98 | DOUBLE PRECISION sumcheck |
---|
99 | DOUBLE PRECISION facteurmax!for energy limit on mass growth |
---|
100 | DOUBLE PRECISION pco2,psat ! Co2 vapor partial pressure (Pa) |
---|
101 | DOUBLE PRECISION satu ! Co2 vapor saturation ratio over ice |
---|
102 | DOUBLE PRECISION Mo,No |
---|
103 | DOUBLE PRECISION Rn, Rm, dev2,dev3, n_derf, m_derf |
---|
104 | DOUBLE PRECISION memdMMccn(ngrid,nlay) |
---|
105 | DOUBLE PRECISION memdMMh2o(ngrid,nlay) |
---|
106 | DOUBLE PRECISION memdNNccn(ngrid,nlay) |
---|
107 | |
---|
108 | ! Radius used by the microphysical scheme (m) |
---|
109 | DOUBLE PRECISION n_aer(nbinco2_cld) ! number concentration volume-1 of particle/each size bin |
---|
110 | DOUBLE PRECISION m_aer(nbinco2_cld) ! mass mixing ratio of particle/each size bin |
---|
111 | DOUBLE PRECISION m_aer2(nbinco2_cld) ! mass mixing ratio of particle/each size bin |
---|
112 | DOUBLE PRECISION m_aer_h2oice2(nbinco2_cld) ! mass mixing ratio of particle/each size bin |
---|
113 | |
---|
114 | DOUBLE PRECISION n_aer_h2oice(nbinco2_cld) ! Same - for CO2 nucleation |
---|
115 | DOUBLE PRECISION m_aer_h2oice(nbinco2_cld) ! Same - for CO2 nucleation |
---|
116 | DOUBLE PRECISION rad_h2oice(nbinco2_cld) |
---|
117 | |
---|
118 | c REAL*8 sigco2 ! Co2-ice/air surface tension (N.m) |
---|
119 | c EXTERNAL sigco2 |
---|
120 | |
---|
121 | DOUBLE PRECISION dN,dM, dNh2o, dMh2o, dNN,dMM,dNNh2o,dMMh2o |
---|
122 | DOUBLE PRECISION dMh2o_ice,dMh2o_ccn |
---|
123 | |
---|
124 | DOUBLE PRECISION rate(nbinco2_cld) ! nucleation rate |
---|
125 | DOUBLE PRECISION rateh2o(nbinco2_cld) ! nucleation rate |
---|
126 | REAL seq |
---|
127 | DOUBLE PRECISION rho_ice_co2T(ngrid,nlay) |
---|
128 | DOUBLE PRECISION riceco2(ngrid,nlay) ! CO2Ice mean radius (m) |
---|
129 | REAL rhocloud(ngrid,nlay) ! Cloud density (kg.m-3) |
---|
130 | |
---|
131 | REAL rhocloudco2(ngrid,nlay) ! Cloud density (kg.m-3) |
---|
132 | REAL rdust(ngrid,nlay) ! Dust geometric mean radius (m) |
---|
133 | |
---|
134 | c REAL res ! Resistance growth |
---|
135 | DOUBLE PRECISION Ic_rice ! Mass transfer rate CO2 ice crystal |
---|
136 | DOUBLE PRECISION ratioh2o_ccn |
---|
137 | DOUBLE PRECISION vo2co2 |
---|
138 | c Parameters of the size discretization |
---|
139 | c used by the microphysical scheme |
---|
140 | DOUBLE PRECISION, PARAMETER :: rmin_cld = 1.e-9 ! Minimum radius (m) |
---|
141 | DOUBLE PRECISION, PARAMETER :: rmax_cld = 5.e-6 ! Maximum radius (m) |
---|
142 | DOUBLE PRECISION, PARAMETER :: rbmin_cld =1.e-10! Minimum bounary radius (m) |
---|
143 | DOUBLE PRECISION, PARAMETER :: rbmax_cld = 2.e-4 ! Maximum boundary radius (m) |
---|
144 | DOUBLE PRECISION vrat_cld ! Volume ratio |
---|
145 | DOUBLE PRECISION rb_cldco2(nbinco2_cld+1) ! boundary values of each rad_cldco2 bin (m) |
---|
146 | SAVE rb_cldco2 |
---|
147 | DOUBLE PRECISION dr_cld(nbinco2_cld) ! width of each rad_cldco2 bin (m) |
---|
148 | DOUBLE PRECISION vol_cld(nbinco2_cld) ! particle volume for each bin (m3) |
---|
149 | |
---|
150 | DOUBLE PRECISION Proba,Masse_atm,drsurdt,reff,Probah2o |
---|
151 | REAL sigma_iceco2 ! Variance of the co2 ice and CCN distributions |
---|
152 | SAVE sigma_iceco2 |
---|
153 | REAL sigma_ice ! Variance of the h2o ice and CCN distributions |
---|
154 | SAVE sigma_ice |
---|
155 | DOUBLE PRECISION Niceco2,Qccnco2,Nccnco2 |
---|
156 | integer,save :: coeffh2o !will be =0 is co2useh2o=.false. |
---|
157 | ! Variables for the meteoritic flux: |
---|
158 | double precision meteo_ccn(ngrid,nlay,100) !100=nbinco2_cld !!! |
---|
159 | double precision,save :: meteo(130,100) |
---|
160 | double precision mtemp(100),pression_meteo(130) |
---|
161 | logical file_ok |
---|
162 | integer nelem,lebon1,lebon2 |
---|
163 | double precision :: ltemp1(130),ltemp2(130) |
---|
164 | integer ibin,uMeteo,j |
---|
165 | |
---|
166 | IF (firstcall) THEN |
---|
167 | !============================================================= |
---|
168 | ! 0. Definition of the size grid |
---|
169 | !============================================================= |
---|
170 | c rad_cldco2 is the primary radius grid used for microphysics computation. |
---|
171 | c The grid spacing is computed assuming a constant volume ratio |
---|
172 | c between two consecutive bins; i.e. vrat_cld. |
---|
173 | c vrat_cld is determined from the boundary values of the size grid: |
---|
174 | c rmin_cld and rmax_cld. |
---|
175 | c The rb_cldco2 array contains the boundary values of each rad_cldco2 bin. |
---|
176 | c dr_cld is the width of each rad_cldco2 bin. |
---|
177 | |
---|
178 | vrat_cld = dlog(rmax_cld/rmin_cld) / float(nbinco2_cld-1) *3. |
---|
179 | vrat_cld = dexp(vrat_cld) |
---|
180 | rb_cldco2(1) = rbmin_cld |
---|
181 | rad_cldco2(1) = rmin_cld |
---|
182 | vol_cld(1) = 4./3. * dble(pi) * rmin_cld*rmin_cld*rmin_cld |
---|
183 | do i=1,nbinco2_cld-1 |
---|
184 | rad_cldco2(i+1) = rad_cldco2(i) * vrat_cld**(1./3.) |
---|
185 | vol_cld(i+1) = vol_cld(i) * vrat_cld |
---|
186 | enddo |
---|
187 | do i=1,nbinco2_cld |
---|
188 | rb_cldco2(i+1)= ( (2.*vrat_cld) / (vrat_cld+1.) )**(1./3.) * |
---|
189 | & rad_cldco2(i) |
---|
190 | dr_cld(i) = rb_cldco2(i+1) - rb_cldco2(i) |
---|
191 | enddo |
---|
192 | rb_cldco2(nbinco2_cld+1) = rbmax_cld |
---|
193 | dr_cld(nbinco2_cld) = rb_cldco2(nbinco2_cld+1) - |
---|
194 | & rb_cldco2(nbinco2_cld) |
---|
195 | print*, ' ' |
---|
196 | print*,'Microphysics co2: size bin information:' |
---|
197 | print*,'i,rb_cldco2(i), rad_cldco2(i),dr_cld(i)' |
---|
198 | print*,'-----------------------------------' |
---|
199 | do i=1,nbinco2_cld |
---|
200 | write(*,'(i3,3x,3(e12.6,4x))') i,rb_cldco2(i), rad_cldco2(i), |
---|
201 | & dr_cld(i) |
---|
202 | enddo |
---|
203 | write(*,'(i3,3x,e12.6)') nbinco2_cld+1,rb_cldco2(nbinco2_cld+1) |
---|
204 | print*,'-----------------------------------' |
---|
205 | do i=1,nbinco2_cld+1 |
---|
206 | rb_cldco2(i) = dlog(rb_cldco2(i)) !! we save that so that it is not computed |
---|
207 | !! at each timestep and gridpoint |
---|
208 | enddo |
---|
209 | c Contact parameter of co2 ice on dst ( m=cos(theta) ) |
---|
210 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
211 | c mteta = 0.952 |
---|
212 | c mtetaco2 = 0.952 |
---|
213 | write(*,*) 'co2_param contact parameter:', mtetaco2 |
---|
214 | c Volume of a co2 molecule (m3) |
---|
215 | vo1 = m0co2 / dble(rho_ice_co2) ! m0co2 et non mco2 |
---|
216 | c below, vo1 will be recomputed using real rho ice co2 (T-dependant) |
---|
217 | vo1co2=vo1 ! AJOUT JA |
---|
218 | c Variance of the ice and CCN distributions |
---|
219 | sigma_iceco2 = sqrt(log(1.+nuiceco2_sed)) |
---|
220 | sigma_ice = sqrt(log(1.+nuice_sed)) |
---|
221 | |
---|
222 | |
---|
223 | write(*,*) 'Variance of ice & CCN CO2 distribs :', sigma_iceco2 |
---|
224 | write(*,*) 'nuice for co2 ice sedimentation:', nuiceco2_sed |
---|
225 | write(*,*) 'Volume of a co2 molecule:', vo1co2 |
---|
226 | |
---|
227 | coeffh2o=0 |
---|
228 | if (co2useh2o) then |
---|
229 | write(*,*) |
---|
230 | write(*,*) "co2useh2o=.true. in callphys.def" |
---|
231 | write(*,*) "This means water ice particles can " |
---|
232 | write(*,*) "serve as CCN for CO2 microphysics" |
---|
233 | coeffh2o=1 |
---|
234 | endif |
---|
235 | if (meteo_flux) then |
---|
236 | write(*,*) |
---|
237 | write(*,*) "meteo_flux=.true. in callphys.def" |
---|
238 | write(*,*) "meteoritic dust particles are available" |
---|
239 | write(*,*) "for co2 ice nucleation! " |
---|
240 | write(*,*) "Flux given by J. Plane (pressions,size bins)" |
---|
241 | ! Initialisation of the flux: it is constant and is it saved |
---|
242 | !We must interpolate the table to the GCM pressures |
---|
243 | INQUIRE(FILE=datafile(1:LEN_TRIM(datafile))// |
---|
244 | & '/Meteo_flux_Plane.dat', EXIST=file_ok) |
---|
245 | IF (.not. file_ok) THEN |
---|
246 | write(*,*) 'file Meteo_flux_Plane.dat should be in ' |
---|
247 | & ,datafile |
---|
248 | STOP |
---|
249 | endif |
---|
250 | !used Variables |
---|
251 | open(newunit=uMeteo,file=trim(datafile)// |
---|
252 | & '/Meteo_flux_Plane.dat' |
---|
253 | & ,FORM='formatted') |
---|
254 | !13000 records (130 pressions x 100 bin sizes) |
---|
255 | read(uMeteo,*) !skip 1 line |
---|
256 | do i=1,130 |
---|
257 | read(uMeteo,*) pression_meteo(i) |
---|
258 | write(*,*) pression_meteo(i) |
---|
259 | enddo |
---|
260 | read(uMeteo,*) !skip 1 line |
---|
261 | do i=1,130 |
---|
262 | do j=1,100 ! les mêmes 100 bins size que la distri nuclea: on touche pas |
---|
263 | read(uMeteo,'(F12.6)') meteo(i,j) |
---|
264 | enddo |
---|
265 | !On doit maintenant réinterpoler le tableau(130,100) sur les pressions du GCM (nlay,100) |
---|
266 | enddo |
---|
267 | close(uMeteo) |
---|
268 | write(*,*) "File meteo_flux read, end of firstcall in co2 micro" |
---|
269 | endif !of if meteo_flux |
---|
270 | |
---|
271 | ! Parameter values for Latent heat computation |
---|
272 | l0=595594d0 |
---|
273 | l1=903.111d0 |
---|
274 | l2=-11.5959d0 |
---|
275 | l3=0.0528288d0 |
---|
276 | l4=-0.000103183d0 |
---|
277 | firstcall=.false. |
---|
278 | END IF |
---|
279 | !============================================================= |
---|
280 | ! 1. Initialisation |
---|
281 | !============================================================= |
---|
282 | flag_pourri=0 |
---|
283 | meteo_ccn(:,:,:)=0. |
---|
284 | rice(:,:) = 1.e-8 |
---|
285 | riceco2(:,:) = 1.e-11 |
---|
286 | |
---|
287 | c Initialize the tendencies |
---|
288 | pdqcloudco2(1:ngrid,1:nlay,1:nq)=0. |
---|
289 | pdtcloudco2(1:ngrid,1:nlay)=0. |
---|
290 | |
---|
291 | c pt temperature layer; pdt dT.s-1 |
---|
292 | c pq traceur kg/kg; pdq tendance idem .s-1 |
---|
293 | zt(1:ngrid,1:nlay) = |
---|
294 | & pt(1:ngrid,1:nlay) + |
---|
295 | & pdt(1:ngrid,1:nlay) * ptimestep |
---|
296 | zq(1:ngrid,1:nlay,1:nq) = |
---|
297 | & pq(1:ngrid,1:nlay,1:nq) + |
---|
298 | & pdq(1:ngrid,1:nlay,1:nq) * ptimestep |
---|
299 | WHERE( zq(1:ngrid,1:nlay,1:nq) < 1.e-30 ) |
---|
300 | & zq(1:ngrid,1:nlay,1:nq) = 1.e-30 |
---|
301 | |
---|
302 | zq0(1:ngrid,1:nlay,1:nq) = zq(1:ngrid,1:nlay,1:nq) |
---|
303 | !============================================================= |
---|
304 | ! 2. Compute saturation |
---|
305 | !============================================================= |
---|
306 | dev2 = 1. / ( sqrt(2.) * sigma_iceco2 ) |
---|
307 | dev3 = 1. / ( sqrt(2.) * sigma_ice ) |
---|
308 | call co2sat(ngrid*nlay,zt,pplay,zqsat) !zqsat is psat(co2) |
---|
309 | zqco2=zq(:,:,igcm_co2)+zq(:,:,igcm_co2_ice) |
---|
310 | CALL tcondco2(ngrid,nlay,pplay,zqco2,tcond) |
---|
311 | !============================================================= |
---|
312 | ! 3. Bonus: additional meteoritic particles for nucleation |
---|
313 | !============================================================= |
---|
314 | if (meteo_flux) then |
---|
315 | !pression_meteo(130) |
---|
316 | !pplev(ngrid,nlay+1) |
---|
317 | !meteo(130,100) |
---|
318 | !resultat: meteo_ccn(ngrid,nlay,100) |
---|
319 | do l=1,nlay |
---|
320 | do ig=1,ngrid |
---|
321 | masse(ig,l)=(pplev(ig,l) - pplev(ig,l+1)) /g |
---|
322 | ltemp1=abs(pression_meteo(:)-pplev(ig,l)) |
---|
323 | ltemp2=abs(pression_meteo(:)-pplev(ig,l+1)) |
---|
324 | lebon1=minloc(ltemp1,DIM=1) |
---|
325 | lebon2=minloc(ltemp2,DIM=1) |
---|
326 | nelem=lebon2-lebon1+1. |
---|
327 | mtemp(:)=0d0 !mtemp(100) : valeurs pour les 100bins |
---|
328 | do ibin=1,100 |
---|
329 | mtemp(ibin)=sum(meteo(lebon1:lebon2,ibin)) |
---|
330 | enddo |
---|
331 | meteo_ccn(ig,l,:)=mtemp(:)/nelem/masse(ig,l) !Par kg air |
---|
332 | csi par m carre, x epaisseur/masse pour par kg/air |
---|
333 | !write(*,*) "masse air ig l=",masse(ig,l) |
---|
334 | !check original unit with J. Plane |
---|
335 | enddo |
---|
336 | enddo |
---|
337 | endif |
---|
338 | c ------------------------------------------------------------------------ |
---|
339 | c --------- Actual microphysics : Main loop over the GCM's grid --------- |
---|
340 | c ------------------------------------------------------------------------ |
---|
341 | DO l=1,nlay |
---|
342 | DO ig=1,ngrid |
---|
343 | c Get the partial pressure of co2 vapor and its saturation ratio |
---|
344 | pco2 = zq(ig,l,igcm_co2) * (mmean(ig,l)/44.01) * pplay(ig,l) |
---|
345 | satu = pco2 / zqsat(ig,l) |
---|
346 | |
---|
347 | rho_ice_co2T(ig,l)=1000.*(1.72391-2.53e-4*zt(ig,l) |
---|
348 | & -2.87e-6*zt(ig,l)*zt(ig,l)) !T-dependant CO2 ice density |
---|
349 | vo2co2 = m0co2 / dble(rho_ice_co2T(ig,l)) |
---|
350 | rho_ice_co2=rho_ice_co2T(ig,l) |
---|
351 | |
---|
352 | !============================================================= |
---|
353 | !4. Nucleation |
---|
354 | !============================================================= |
---|
355 | IF ( satu .ge. 1 ) THEN ! if there is condensation |
---|
356 | |
---|
357 | c call updaterccn(zq(ig,l,igcm_dust_mass), |
---|
358 | c & zq(ig,l,igcm_dust_number),rdust(ig,l),tauscaling(ig)) |
---|
359 | |
---|
360 | !We do rdust computation "by hand" because we don't want to |
---|
361 | ! change the mininumum rdust value in updaterad... It would |
---|
362 | ! mess up various part of the GCM ! |
---|
363 | |
---|
364 | rdust(ig,l)= zq(ig,l,igcm_dust_mass) |
---|
365 | & *0.75/pi/rho_dust |
---|
366 | & / zq(ig,l,igcm_dust_number) |
---|
367 | rdust(ig,l)= rdust(ig,l)**(1./3.) |
---|
368 | if (zq(ig,l,igcm_dust_mass)*tauscaling(ig) .le. 1.e-20 |
---|
369 | & .or. zq(ig,l,igcm_dust_number)*tauscaling(ig) .le.1 |
---|
370 | & .or. rdust(ig,l) .le. 1.e-9) then |
---|
371 | rdust(ig,l)=1.e-9 |
---|
372 | endif |
---|
373 | rdust(ig,l)=min(5.e-4,rdust(ig,l)) |
---|
374 | |
---|
375 | c Expand the dust moments into a binned distribution |
---|
376 | Mo = zq(ig,l,igcm_dust_mass)* tauscaling(ig)+1.e-30 |
---|
377 | No = zq(ig,l,igcm_dust_number)* tauscaling(ig)+1.e-30 |
---|
378 | Rn = rdust(ig,l) |
---|
379 | Rn = -dlog(Rn) |
---|
380 | Rm = Rn - 3. * sigma_iceco2*sigma_iceco2 |
---|
381 | n_derf = derf( (rb_cldco2(1)+Rn) *dev2) |
---|
382 | m_derf = derf( (rb_cldco2(1)+Rm) *dev2) |
---|
383 | |
---|
384 | do i = 1, nbinco2_cld |
---|
385 | n_aer(i) = -0.5 * No * n_derf !! this ith previously computed |
---|
386 | m_aer(i) = -0.5 * Mo * m_derf !! this ith previously computed |
---|
387 | n_derf = derf((rb_cldco2(i+1)+Rn) *dev2) |
---|
388 | m_derf = derf((rb_cldco2(i+1)+Rm) *dev2) |
---|
389 | n_aer(i) = n_aer(i) + 0.5 * No * n_derf + |
---|
390 | & meteo_ccn(ig,l,i) !Ajout meteo_ccn particles |
---|
391 | m_aer(i) = m_aer(i) + 0.5 * Mo * m_derf |
---|
392 | m_aer2(i)=4./3.*pi*rho_dust |
---|
393 | & *meteo_ccn(ig,l,i)*rad_cldco2(i)*rad_cldco2(i) |
---|
394 | & *rad_cldco2(i) |
---|
395 | enddo |
---|
396 | if (meteo_flux) m_aer(:)=m_aer(:)+m_aer2(:) |
---|
397 | |
---|
398 | !Same but with h2o particles as CCN |
---|
399 | call updaterice_micro(zq(ig,l,igcm_h2o_ice), |
---|
400 | & zq(ig,l,igcm_ccn_mass),zq(ig,l,igcm_ccn_number), |
---|
401 | & tauscaling(ig),rice(ig,l),rhocloud(ig,l)) |
---|
402 | Mo = zq(ig,l,igcm_h2o_ice) + |
---|
403 | & zq(ig,l,igcm_ccn_mass)*tauscaling(ig)+1.e-30!*tauscaling(ig) |
---|
404 | ! & + 1.e-30 !Total mass of H20 crystals,CCN included |
---|
405 | No = zq(ig,l,igcm_ccn_number)* tauscaling(ig) + 1.e-30 |
---|
406 | Rn = rice(ig,l) |
---|
407 | Rn = -dlog(Rn) |
---|
408 | Rm = Rn - 3. * sigma_ice*sigma_ice |
---|
409 | n_derf = derf( (rb_cldco2(1)+Rn) *dev3) |
---|
410 | m_derf = derf( (rb_cldco2(1)+Rm) *dev3) |
---|
411 | do i = 1, nbinco2_cld |
---|
412 | n_aer_h2oice(i) = -0.5 * No * n_derf |
---|
413 | m_aer_h2oice(i) = -0.5 * Mo * m_derf |
---|
414 | n_derf = derf( (rb_cldco2(i+1)+Rn) *dev3) |
---|
415 | m_derf = derf( (rb_cldco2(i+1)+Rm) *dev3) |
---|
416 | n_aer_h2oice(i) = n_aer_h2oice(i) + 0.5 * No * n_derf |
---|
417 | m_aer_h2oice(i) = m_aer_h2oice(i) + 0.5 * Mo * m_derf |
---|
418 | rad_h2oice(i) = rad_cldco2(i) |
---|
419 | enddo |
---|
420 | !Call to nucleation routine |
---|
421 | call nucleaCO2(dble(pco2),zt(ig,l),dble(satu) |
---|
422 | & ,n_aer,rate,n_aer_h2oice |
---|
423 | & ,rad_h2oice,rateh2o,vo2co2) |
---|
424 | dN = 0. |
---|
425 | dM = 0. |
---|
426 | dNh2o = 0. |
---|
427 | dMh2o = 0. |
---|
428 | do i = 1, nbinco2_cld |
---|
429 | Proba=1.0-dexp(-1.*ptimestep*rate(i)) |
---|
430 | Probah2o=coeffh2o*(1.0-dexp(-1.*ptimestep*rateh2o(i))) !if co2useh2o=.false., this is =0 |
---|
431 | dNh2o = dNh2o + n_aer_h2oice(i) * Probah2o |
---|
432 | dMh2o = dMh2o + m_aer_h2oice(i) * Probah2o |
---|
433 | dN = dN + n_aer(i) * Proba |
---|
434 | dM = dM + m_aer(i) * Proba |
---|
435 | enddo |
---|
436 | ! dM masse activée (kg) et dN nb particules par kg d'air |
---|
437 | ! Now increment CCN tracers and update dust tracers |
---|
438 | dNN= dN/tauscaling(ig) |
---|
439 | dMM= dM/tauscaling(ig) |
---|
440 | dNN=min(dNN,zq(ig,l,igcm_dust_number)) |
---|
441 | dMM=min(dMM,zq(ig,l,igcm_dust_mass)) |
---|
442 | zq(ig,l,igcm_ccnco2_mass) = |
---|
443 | & zq(ig,l,igcm_ccnco2_mass) + dMM |
---|
444 | zq(ig,l,igcm_ccnco2_number) = |
---|
445 | & zq(ig,l,igcm_ccnco2_number) + dNN |
---|
446 | zq(ig,l,igcm_dust_mass)= zq(ig,l,igcm_dust_mass)-dMM |
---|
447 | zq(ig,l,igcm_dust_number)=zq(ig,l,igcm_dust_number)-dNN |
---|
448 | |
---|
449 | c Update CCN for CO2 nucleating on H2O CCN : |
---|
450 | ! Warning: must keep memory of it |
---|
451 | if (co2useh2o) then |
---|
452 | dNNh2o=dNh2o/tauscaling(ig) |
---|
453 | dNNh2o=min(dNNh2o,zq(ig,l,igcm_ccn_number)) |
---|
454 | ratioh2o_ccn=1./(zq(ig,l,igcm_h2o_ice) |
---|
455 | & +zq(ig,l,igcm_ccn_mass)*tauscaling(ig)) |
---|
456 | dMh2o_ice=dMh2o*zq(ig,l,igcm_h2o_ice)*ratioh2o_ccn |
---|
457 | dMh2o_ccn=dMh2o*zq(ig,l,igcm_ccn_mass)* |
---|
458 | & tauscaling(ig)*ratioh2o_ccn |
---|
459 | dMh2o_ccn=dMh2o_ccn/tauscaling(ig) |
---|
460 | dMh2o_ccn=min(dMh2o_ccn,zq(ig,l,igcm_ccn_mass)) |
---|
461 | dMh2o_ice=min(dMh2o_ice,zq(ig,l,igcm_h2o_ice)) |
---|
462 | zq(ig,l,igcm_ccnco2_mass) = |
---|
463 | & zq(ig,l,igcm_ccnco2_mass) + dMh2o_ice+dMh2o_ccn |
---|
464 | zq(ig,l,igcm_ccnco2_number) = |
---|
465 | & zq(ig,l,igcm_ccnco2_number) + dNNh2o |
---|
466 | zq(ig,l,igcm_ccn_number)=zq(ig,l,igcm_ccn_number)-dNNh2o |
---|
467 | zq(ig,l,igcm_h2o_ice) = zq(ig,l,igcm_h2o_ice)-dMh2o_ice |
---|
468 | zq(ig,l,igcm_ccn_mass)= zq(ig,l,igcm_ccn_mass)-dMh2o_ccn |
---|
469 | memdMMh2o(ig,l)=memdMMh2o(ig,l)+dMh2o_ice |
---|
470 | memdMMccn(ig,l)=memdMMccn(ig,l)+dMh2o_ccn |
---|
471 | memdNNccn(ig,l)=memdNNccn(ig,l)+dNNh2o |
---|
472 | endif !of if co2useh2o |
---|
473 | ENDIF ! of is satu >1 |
---|
474 | !============================================================= |
---|
475 | ! 4. Ice growth: scheme for radius evolution |
---|
476 | !============================================================= |
---|
477 | |
---|
478 | c We trigger crystal growth if and only if there is at least one nuclei (N>1). |
---|
479 | c Indeed, if we are supersaturated and still don't have at least one nuclei, we should better wait |
---|
480 | c to avoid unrealistic value for nuclei radius and so on for cases that remain negligible. |
---|
481 | No = zq(ig,l,igcm_ccnco2_number)* tauscaling(ig)+1.e-30 |
---|
482 | IF (No .ge. 1)THEN ! we trigger crystal growth |
---|
483 | call updaterice_microco2(zq(ig,l,igcm_co2_ice), |
---|
484 | & zq(ig,l,igcm_ccnco2_mass),zq(ig,l,igcm_ccnco2_number), |
---|
485 | & tauscaling(ig),riceco2(ig,l),rhocloudco2(ig,l)) |
---|
486 | |
---|
487 | Ic_rice=0. |
---|
488 | flag_pourri=0 |
---|
489 | lw = l0 + l1 * zt(ig,l) + l2 * zt(ig,l)**2 + |
---|
490 | & l3 * zt(ig,l)**3 + l4 * zt(ig,l)**4 !J.kg-1 |
---|
491 | facteurmax=abs(Tcond(ig,l)-zt(ig,l))*cpp/lw |
---|
492 | !specific heat of co2 ice = 1000 J.kg-1.K-1 |
---|
493 | !specific heat of atm cpp = 744.5 J.kg-1.K-1 |
---|
494 | |
---|
495 | ccccccc call scheme of microphys. mass growth for CO2 |
---|
496 | call massflowrateCO2(pplay(ig,l),zt(ig,l), |
---|
497 | & satu,riceco2(ig,l),mmean(ig,l),Ic_rice) |
---|
498 | c Ic_rice Mass transfer rate (kg/s) for a rice particle >0 si croissance ! |
---|
499 | |
---|
500 | if (isnan(Ic_rice) .or. Ic_rice .eq. 0.) then |
---|
501 | Ic_rice=0. |
---|
502 | flag_pourri=1 |
---|
503 | pdtcloudco2(ig,l)=-pdt(ig,l) |
---|
504 | dMice=0 |
---|
505 | |
---|
506 | else |
---|
507 | dMice=zq(ig,l,igcm_ccnco2_number)*Ic_rice*ptimestep |
---|
508 | & *tauscaling(ig) ! Kg par kg d'air, >0 si croissance ! |
---|
509 | !kg.s-1 par particule * nb particule par kg air*s |
---|
510 | ! = kg par kg air |
---|
511 | |
---|
512 | dMice = max(dMice,max(-facteurmax,-zq(ig,l,igcm_co2_ice))) |
---|
513 | dMice = min(dMice,min(facteurmax,zq(ig,l,igcm_co2))) |
---|
514 | !facteurmax maximum quantity of CO2 that can sublime/condense according to available thermal energy |
---|
515 | ! latent heat release >0 if growth i.e. if dMice >0 |
---|
516 | pdtcloudco2(ig,l)=dMice*lw/cpp/ptimestep |
---|
517 | ! kgco2/kgair* J/kgco2 * 1/(J.kgair-1.K-1)/s= K par seconde |
---|
518 | !Now update tracers |
---|
519 | zq(ig,l,igcm_co2_ice) = zq(ig,l,igcm_co2_ice)+dMice |
---|
520 | zq(ig,l,igcm_co2) = zq(ig,l,igcm_co2)-dMice |
---|
521 | endif |
---|
522 | |
---|
523 | !============================================================= |
---|
524 | ! 5. Dust cores releasing if no more co2 ice : |
---|
525 | !============================================================= |
---|
526 | |
---|
527 | if (zq(ig,l,igcm_co2_ice).le. 1.e-25)THEN |
---|
528 | !On sublime tout |
---|
529 | if (co2useh2o) then |
---|
530 | if (memdMMccn(ig,l) .gt. 0) then |
---|
531 | zq(ig,l,igcm_ccn_mass)=zq(ig,l,igcm_ccn_mass) |
---|
532 | & +memdMMccn(ig,l) |
---|
533 | endif |
---|
534 | if (memdMMh2o(ig,l) .gt. 0) then |
---|
535 | zq(ig,l,igcm_h2o_ice)=zq(ig,l,igcm_h2o_ice) |
---|
536 | & +memdMMh2o(ig,l) |
---|
537 | endif |
---|
538 | |
---|
539 | if (memdNNccn(ig,l) .gt. 0) then |
---|
540 | zq(ig,l,igcm_ccn_number)=zq(ig,l,igcm_ccn_number) |
---|
541 | & +memdNNccn(ig,l) |
---|
542 | endif |
---|
543 | endif |
---|
544 | zq(ig,l,igcm_dust_mass) = |
---|
545 | & zq(ig,l,igcm_dust_mass) |
---|
546 | & + zq(ig,l,igcm_ccnco2_mass)- |
---|
547 | & (memdMMh2o(ig,l)+memdMMccn(ig,l)) |
---|
548 | zq(ig,l,igcm_dust_number) = |
---|
549 | & zq(ig,l,igcm_dust_number) |
---|
550 | & + zq(ig,l,igcm_ccnco2_number)-memdNNccn(ig,l) |
---|
551 | |
---|
552 | zq(ig,l,igcm_co2) = zq(ig,l,igcm_co2) |
---|
553 | & + zq(ig,l,igcm_co2_ice) |
---|
554 | |
---|
555 | zq(ig,l,igcm_ccnco2_mass)=0. |
---|
556 | zq(ig,l,igcm_co2_ice)=0. |
---|
557 | zq(ig,l,igcm_ccnco2_number)=0. |
---|
558 | memdNNccn(ig,l)=0. |
---|
559 | memdMMh2o(ig,l)=0. |
---|
560 | memdMMccn(ig,l)=0. |
---|
561 | riceco2(ig,l)=0. |
---|
562 | |
---|
563 | endif !of if co2_ice <1e-25 |
---|
564 | |
---|
565 | ENDIF ! of if NCCN > 1 |
---|
566 | ENDDO ! of ig loop |
---|
567 | ENDDO ! of nlayer loop |
---|
568 | |
---|
569 | !============================================================= |
---|
570 | ! 6. END: get cloud tendencies |
---|
571 | !============================================================= |
---|
572 | |
---|
573 | ! Get cloud tendencies |
---|
574 | pdqcloudco2(1:ngrid,1:nlay,igcm_co2) = |
---|
575 | & (zq(1:ngrid,1:nlay,igcm_co2) - |
---|
576 | & zq0(1:ngrid,1:nlay,igcm_co2))/ptimestep |
---|
577 | pdqcloudco2(1:ngrid,1:nlay,igcm_co2_ice) = |
---|
578 | & (zq(1:ngrid,1:nlay,igcm_co2_ice) - |
---|
579 | & zq0(1:ngrid,1:nlay,igcm_co2_ice))/ptimestep |
---|
580 | pdqcloudco2(1:ngrid,1:nlay,igcm_h2o_ice) = |
---|
581 | & (zq(1:ngrid,1:nlay,igcm_h2o_ice) - |
---|
582 | & zq0(1:ngrid,1:nlay,igcm_h2o_ice))/ptimestep |
---|
583 | pdqcloudco2(1:ngrid,1:nlay,igcm_ccn_mass) = |
---|
584 | & (zq(1:ngrid,1:nlay,igcm_ccn_mass) - |
---|
585 | & zq0(1:ngrid,1:nlay,igcm_ccn_mass))/ptimestep |
---|
586 | pdqcloudco2(1:ngrid,1:nlay,igcm_ccn_number) = |
---|
587 | & (zq(1:ngrid,1:nlay,igcm_ccn_number) - |
---|
588 | & zq0(1:ngrid,1:nlay,igcm_ccn_number))/ptimestep |
---|
589 | pdqcloudco2(1:ngrid,1:nlay,igcm_ccnco2_mass) = |
---|
590 | & (zq(1:ngrid,1:nlay,igcm_ccnco2_mass) - |
---|
591 | & zq0(1:ngrid,1:nlay,igcm_ccnco2_mass))/ptimestep |
---|
592 | pdqcloudco2(1:ngrid,1:nlay,igcm_ccnco2_number) = |
---|
593 | & (zq(1:ngrid,1:nlay,igcm_ccnco2_number) - |
---|
594 | & zq0(1:ngrid,1:nlay,igcm_ccnco2_number))/ptimestep |
---|
595 | pdqcloudco2(1:ngrid,1:nlay,igcm_dust_mass) = |
---|
596 | & (zq(1:ngrid,1:nlay,igcm_dust_mass) - |
---|
597 | & zq0(1:ngrid,1:nlay,igcm_dust_mass))/ptimestep |
---|
598 | pdqcloudco2(1:ngrid,1:nlay,igcm_dust_number) = |
---|
599 | & (zq(1:ngrid,1:nlay,igcm_dust_number) - |
---|
600 | & zq0(1:ngrid,1:nlay,igcm_dust_number))/ptimestep |
---|
601 | return |
---|
602 | end |
---|
603 | |
---|
604 | |
---|
605 | |
---|