[1911] | 1 | subroutine improvedCO2clouds(ngrid,nlay,microtimestep, |
---|
| 2 | & pplay,pplev,pteff,sum_subpdt, |
---|
| 3 | & pqeff,sum_subpdq,subpdqcloudco2,subpdtcloudco2, |
---|
[1685] | 4 | & nq,tauscaling, |
---|
| 5 | & memdMMccn,memdMMh2o,memdNNccn) |
---|
[1884] | 6 | USE comcstfi_h, only: pi, g, cpp |
---|
| 7 | USE updaterad, only: updaterice_micro, updaterice_microco2 |
---|
| 8 | use tracer_mod, only: igcm_dust_mass, igcm_dust_number, rho_dust, |
---|
| 9 | & igcm_h2o_ice, igcm_ccn_mass, |
---|
| 10 | & igcm_ccn_number, nuice_sed, |
---|
| 11 | & igcm_co2, igcm_co2_ice, igcm_ccnco2_mass, |
---|
| 12 | & igcm_ccnco2_number, nuiceco2_sed, |
---|
| 13 | & rho_ice_co2 |
---|
[1617] | 14 | use conc_mod, only: mmean |
---|
[1918] | 15 | use datafile_mod, only: datadir |
---|
[1720] | 16 | |
---|
[1617] | 17 | implicit none |
---|
| 18 | |
---|
| 19 | c------------------------------------------------------------------ |
---|
| 20 | c This routine is used to form CO2 clouds when a parcel of the GCM is |
---|
| 21 | c saturated. It includes the ability to have supersaturation, a |
---|
| 22 | c computation of the nucleation rates, growthrates and the |
---|
| 23 | c scavenging of dust particles by clouds. |
---|
| 24 | c It is worth noting that the amount of dust is computed using the |
---|
| 25 | c dust optical depth computed in aeropacity.F. That's why |
---|
| 26 | c the variable called "tauscaling" is used to convert |
---|
| 27 | c pq(dust_mass) and pq(dust_number), which are relative |
---|
| 28 | c quantities, to absolute and realistic quantities stored in zq. |
---|
| 29 | c This has to be done to convert the inputs into absolute |
---|
| 30 | c values, but also to convert the outputs back into relative |
---|
| 31 | c values which are then used by the sedimentation and advection |
---|
| 32 | c schemes. |
---|
[1685] | 33 | c CO2 ice particles can nucleate on both dust and on water ice particles |
---|
| 34 | c When CO2 ice is deposited onto a water ice particles, the particle is |
---|
| 35 | c removed from the water tracers. |
---|
[1818] | 36 | c Memory of the origin of the co2 particles is kept and thus the |
---|
| 37 | c water cycle shouldn't be modified by this. |
---|
[1685] | 38 | cWARNING: no sedimentation of the water ice origin is performed |
---|
| 39 | c in the microphysical timestep in co2cloud.F. |
---|
[1617] | 40 | |
---|
| 41 | c Authors of the water ice clouds microphysics |
---|
| 42 | c J.-B. Madeleine, based on the work by Franck Montmessin |
---|
| 43 | c (October 2011) |
---|
| 44 | c T. Navarro, debug,correction, new scheme (October-April 2011) |
---|
| 45 | c A. Spiga, optimization (February 2012) |
---|
| 46 | c Adaptation for CO2 clouds by Joachim Audouard (09/16), based on the work |
---|
| 47 | c of Constantino Listowski |
---|
[1818] | 48 | c There is an energy limit to how much co2 can sublimate/condensate. It is |
---|
| 49 | c defined by the difference of the GCM temperature with the co2 condensation |
---|
| 50 | c temperature. |
---|
[1816] | 51 | c Warning: |
---|
| 52 | c If meteoritic particles are activated and turn into co2 ice particles, |
---|
| 53 | c then they will be reversed in the dust tracers if the cloud sublimates |
---|
| 54 | |
---|
[1617] | 55 | c------------------------------------------------------------------ |
---|
[1884] | 56 | include "callkeys.h" |
---|
| 57 | include "microphys.h" |
---|
[1617] | 58 | c------------------------------------------------------------------ |
---|
[1884] | 59 | c Arguments: |
---|
[1617] | 60 | |
---|
[1884] | 61 | INTEGER,INTENT(in) :: ngrid,nlay |
---|
| 62 | integer,intent(in) :: nq ! number of tracers |
---|
[1911] | 63 | REAL,INTENT(in) :: microtimestep ! physics time step (s) |
---|
[1884] | 64 | REAL,INTENT(in) :: pplay(ngrid,nlay) ! mid-layer pressure (Pa) |
---|
| 65 | REAL,INTENT(in) :: pplev(ngrid,nlay+1) ! inter-layer pressure (Pa) |
---|
[1911] | 66 | REAL,INTENT(in) :: pteff(ngrid,nlay) ! temperature at the middle of the |
---|
[1617] | 67 | ! layers (K) |
---|
[1911] | 68 | REAL,INTENT(in) :: sum_subpdt(ngrid,nlay) ! tendency on temperature from |
---|
[1884] | 69 | ! previous physical parametrizations |
---|
[1911] | 70 | REAL,INTENT(in) :: pqeff(ngrid,nlay,nq) ! tracers (kg/kg) |
---|
| 71 | REAL,INTENT(in) :: sum_subpdq(ngrid,nlay,nq) ! tendencies on tracers |
---|
[1884] | 72 | ! before condensation (kg/kg.s-1) |
---|
| 73 | REAL,INTENT(in) :: tauscaling(ngrid) ! Convertion factor for qdust and Ndust |
---|
[1617] | 74 | c Outputs: |
---|
[1911] | 75 | REAL,INTENT(out) :: subpdqcloudco2(ngrid,nlay,nq) ! tendency on tracers |
---|
[1884] | 76 | ! due to CO2 condensation (kg/kg.s-1) |
---|
[1617] | 77 | ! condensation si igcm_co2_ice |
---|
[1911] | 78 | REAL,INTENT(out) :: subpdtcloudco2(ngrid,nlay) ! tendency on temperature due |
---|
[1884] | 79 | ! to latent heat |
---|
[1617] | 80 | |
---|
| 81 | c------------------------------------------------------------------ |
---|
| 82 | c Local variables: |
---|
[1884] | 83 | LOGICAL,SAVE :: firstcall=.true. |
---|
[1617] | 84 | REAL*8 derf ! Error function |
---|
[1720] | 85 | INTEGER ig,l,i,flag_pourri |
---|
[1617] | 86 | |
---|
[1884] | 87 | real masse (ngrid,nlay) ! Layer mass (kg.m-2) |
---|
| 88 | REAL rice(ngrid,nlay) ! Water Ice mass mean radius (m) |
---|
| 89 | ! used for nucleation of CO2 on ice-coated ccns |
---|
| 90 | REAL rccnh2o(ngrid,nlay) ! Water Ice mass mean radius (m) |
---|
[1617] | 91 | REAL zq(ngrid,nlay,nq) ! local value of tracers |
---|
| 92 | REAL zq0(ngrid,nlay,nq) ! local initial value of tracers |
---|
| 93 | REAL zt(ngrid,nlay) ! local value of temperature |
---|
| 94 | REAL zqsat(ngrid,nlay) ! saturation vapor pressure for CO2 |
---|
[1816] | 95 | real tcond(ngrid,nlay) |
---|
| 96 | real zqco2(ngrid,nlay) |
---|
[1617] | 97 | REAL lw !Latent heat of sublimation (J.kg-1) |
---|
[1720] | 98 | REAL,save :: l0,l1,l2,l3,l4 |
---|
[1685] | 99 | DOUBLE PRECISION dMice ! mass of condensed ice |
---|
[1617] | 100 | DOUBLE PRECISION sumcheck |
---|
[1816] | 101 | DOUBLE PRECISION facteurmax!for energy limit on mass growth |
---|
| 102 | DOUBLE PRECISION pco2,psat ! Co2 vapor partial pressure (Pa) |
---|
[1617] | 103 | DOUBLE PRECISION satu ! Co2 vapor saturation ratio over ice |
---|
| 104 | DOUBLE PRECISION Mo,No |
---|
[1720] | 105 | DOUBLE PRECISION Rn, Rm, dev2,dev3, n_derf, m_derf |
---|
| 106 | DOUBLE PRECISION memdMMccn(ngrid,nlay) |
---|
| 107 | DOUBLE PRECISION memdMMh2o(ngrid,nlay) |
---|
[1685] | 108 | DOUBLE PRECISION memdNNccn(ngrid,nlay) |
---|
[1816] | 109 | |
---|
[1617] | 110 | ! Radius used by the microphysical scheme (m) |
---|
| 111 | DOUBLE PRECISION n_aer(nbinco2_cld) ! number concentration volume-1 of particle/each size bin |
---|
| 112 | DOUBLE PRECISION m_aer(nbinco2_cld) ! mass mixing ratio of particle/each size bin |
---|
[1720] | 113 | DOUBLE PRECISION m_aer2(nbinco2_cld) ! mass mixing ratio of particle/each size bin |
---|
| 114 | DOUBLE PRECISION m_aer_h2oice2(nbinco2_cld) ! mass mixing ratio of particle/each size bin |
---|
[1617] | 115 | |
---|
| 116 | DOUBLE PRECISION n_aer_h2oice(nbinco2_cld) ! Same - for CO2 nucleation |
---|
| 117 | DOUBLE PRECISION m_aer_h2oice(nbinco2_cld) ! Same - for CO2 nucleation |
---|
| 118 | DOUBLE PRECISION rad_h2oice(nbinco2_cld) |
---|
| 119 | |
---|
| 120 | c REAL*8 sigco2 ! Co2-ice/air surface tension (N.m) |
---|
| 121 | c EXTERNAL sigco2 |
---|
| 122 | |
---|
[1685] | 123 | DOUBLE PRECISION dN,dM, dNh2o, dMh2o, dNN,dMM,dNNh2o,dMMh2o |
---|
[1720] | 124 | DOUBLE PRECISION dMh2o_ice,dMh2o_ccn |
---|
| 125 | |
---|
[1617] | 126 | DOUBLE PRECISION rate(nbinco2_cld) ! nucleation rate |
---|
| 127 | DOUBLE PRECISION rateh2o(nbinco2_cld) ! nucleation rate |
---|
| 128 | REAL seq |
---|
[1685] | 129 | DOUBLE PRECISION rho_ice_co2T(ngrid,nlay) |
---|
[1617] | 130 | DOUBLE PRECISION riceco2(ngrid,nlay) ! CO2Ice mean radius (m) |
---|
[1685] | 131 | REAL rhocloud(ngrid,nlay) ! Cloud density (kg.m-3) |
---|
| 132 | |
---|
[1617] | 133 | REAL rhocloudco2(ngrid,nlay) ! Cloud density (kg.m-3) |
---|
| 134 | REAL rdust(ngrid,nlay) ! Dust geometric mean radius (m) |
---|
| 135 | |
---|
| 136 | c REAL res ! Resistance growth |
---|
| 137 | DOUBLE PRECISION Ic_rice ! Mass transfer rate CO2 ice crystal |
---|
[1685] | 138 | DOUBLE PRECISION ratioh2o_ccn |
---|
| 139 | DOUBLE PRECISION vo2co2 |
---|
[1617] | 140 | c Parameters of the size discretization |
---|
| 141 | c used by the microphysical scheme |
---|
[1816] | 142 | DOUBLE PRECISION, PARAMETER :: rmin_cld = 1.e-9 ! Minimum radius (m) |
---|
| 143 | DOUBLE PRECISION, PARAMETER :: rmax_cld = 5.e-6 ! Maximum radius (m) |
---|
| 144 | DOUBLE PRECISION, PARAMETER :: rbmin_cld =1.e-10! Minimum bounary radius (m) |
---|
| 145 | DOUBLE PRECISION, PARAMETER :: rbmax_cld = 2.e-4 ! Maximum boundary radius (m) |
---|
[1617] | 146 | DOUBLE PRECISION vrat_cld ! Volume ratio |
---|
| 147 | DOUBLE PRECISION rb_cldco2(nbinco2_cld+1) ! boundary values of each rad_cldco2 bin (m) |
---|
| 148 | SAVE rb_cldco2 |
---|
[1816] | 149 | DOUBLE PRECISION dr_cld(nbinco2_cld) ! width of each rad_cldco2 bin (m) |
---|
[1617] | 150 | DOUBLE PRECISION vol_cld(nbinco2_cld) ! particle volume for each bin (m3) |
---|
| 151 | |
---|
[1685] | 152 | DOUBLE PRECISION Proba,Masse_atm,drsurdt,reff,Probah2o |
---|
[1816] | 153 | REAL sigma_iceco2 ! Variance of the co2 ice and CCN distributions |
---|
| 154 | SAVE sigma_iceco2 |
---|
| 155 | REAL sigma_ice ! Variance of the h2o ice and CCN distributions |
---|
[1720] | 156 | SAVE sigma_ice |
---|
[1632] | 157 | DOUBLE PRECISION Niceco2,Qccnco2,Nccnco2 |
---|
[1816] | 158 | integer,save :: coeffh2o !will be =0 is co2useh2o=.false. |
---|
| 159 | ! Variables for the meteoritic flux: |
---|
[1884] | 160 | integer,parameter :: nbin_meteor=100 |
---|
| 161 | integer,parameter :: nlev_meteor=130 |
---|
| 162 | double precision meteor_ccn(ngrid,nlay,100) !100=nbinco2_cld !!! |
---|
| 163 | double precision,save :: meteor(130,100) |
---|
| 164 | double precision mtemp(100),pression_meteor(130) |
---|
[1816] | 165 | logical file_ok |
---|
[1884] | 166 | integer read_ok |
---|
[1816] | 167 | integer nelem,lebon1,lebon2 |
---|
| 168 | double precision :: ltemp1(130),ltemp2(130) |
---|
[1913] | 169 | integer ibin,j |
---|
| 170 | integer,parameter :: uMeteor=666 |
---|
[1720] | 171 | |
---|
[1617] | 172 | IF (firstcall) THEN |
---|
| 173 | !============================================================= |
---|
| 174 | ! 0. Definition of the size grid |
---|
| 175 | !============================================================= |
---|
| 176 | c rad_cldco2 is the primary radius grid used for microphysics computation. |
---|
| 177 | c The grid spacing is computed assuming a constant volume ratio |
---|
| 178 | c between two consecutive bins; i.e. vrat_cld. |
---|
| 179 | c vrat_cld is determined from the boundary values of the size grid: |
---|
| 180 | c rmin_cld and rmax_cld. |
---|
| 181 | c The rb_cldco2 array contains the boundary values of each rad_cldco2 bin. |
---|
| 182 | c dr_cld is the width of each rad_cldco2 bin. |
---|
| 183 | |
---|
[1816] | 184 | vrat_cld = dlog(rmax_cld/rmin_cld) / float(nbinco2_cld-1) *3. |
---|
| 185 | vrat_cld = dexp(vrat_cld) |
---|
[1617] | 186 | rb_cldco2(1) = rbmin_cld |
---|
| 187 | rad_cldco2(1) = rmin_cld |
---|
| 188 | vol_cld(1) = 4./3. * dble(pi) * rmin_cld*rmin_cld*rmin_cld |
---|
| 189 | do i=1,nbinco2_cld-1 |
---|
| 190 | rad_cldco2(i+1) = rad_cldco2(i) * vrat_cld**(1./3.) |
---|
| 191 | vol_cld(i+1) = vol_cld(i) * vrat_cld |
---|
[1816] | 192 | enddo |
---|
[1617] | 193 | do i=1,nbinco2_cld |
---|
| 194 | rb_cldco2(i+1)= ( (2.*vrat_cld) / (vrat_cld+1.) )**(1./3.) * |
---|
| 195 | & rad_cldco2(i) |
---|
| 196 | dr_cld(i) = rb_cldco2(i+1) - rb_cldco2(i) |
---|
| 197 | enddo |
---|
| 198 | rb_cldco2(nbinco2_cld+1) = rbmax_cld |
---|
| 199 | dr_cld(nbinco2_cld) = rb_cldco2(nbinco2_cld+1) - |
---|
| 200 | & rb_cldco2(nbinco2_cld) |
---|
| 201 | print*, ' ' |
---|
| 202 | print*,'Microphysics co2: size bin information:' |
---|
| 203 | print*,'i,rb_cldco2(i), rad_cldco2(i),dr_cld(i)' |
---|
| 204 | print*,'-----------------------------------' |
---|
| 205 | do i=1,nbinco2_cld |
---|
[1884] | 206 | write(*,'(i3,3x,3(e13.6,4x))') i,rb_cldco2(i), rad_cldco2(i), |
---|
[1617] | 207 | & dr_cld(i) |
---|
| 208 | enddo |
---|
[1884] | 209 | write(*,'(i3,3x,e13.6)') nbinco2_cld+1,rb_cldco2(nbinco2_cld+1) |
---|
[1617] | 210 | print*,'-----------------------------------' |
---|
| 211 | do i=1,nbinco2_cld+1 |
---|
[1816] | 212 | rb_cldco2(i) = dlog(rb_cldco2(i)) !! we save that so that it is not computed |
---|
[1617] | 213 | !! at each timestep and gridpoint |
---|
| 214 | enddo |
---|
| 215 | c Contact parameter of co2 ice on dst ( m=cos(theta) ) |
---|
| 216 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 217 | c mteta = 0.952 |
---|
| 218 | c mtetaco2 = 0.952 |
---|
[1685] | 219 | write(*,*) 'co2_param contact parameter:', mtetaco2 |
---|
[1617] | 220 | c Volume of a co2 molecule (m3) |
---|
| 221 | vo1 = m0co2 / dble(rho_ice_co2) ! m0co2 et non mco2 |
---|
[1816] | 222 | c below, vo1 will be recomputed using real rho ice co2 (T-dependant) |
---|
[1617] | 223 | vo1co2=vo1 ! AJOUT JA |
---|
| 224 | c Variance of the ice and CCN distributions |
---|
| 225 | sigma_iceco2 = sqrt(log(1.+nuiceco2_sed)) |
---|
[1720] | 226 | sigma_ice = sqrt(log(1.+nuice_sed)) |
---|
| 227 | |
---|
[1685] | 228 | |
---|
| 229 | write(*,*) 'Variance of ice & CCN CO2 distribs :', sigma_iceco2 |
---|
| 230 | write(*,*) 'nuice for co2 ice sedimentation:', nuiceco2_sed |
---|
| 231 | write(*,*) 'Volume of a co2 molecule:', vo1co2 |
---|
[1720] | 232 | |
---|
| 233 | coeffh2o=0 |
---|
| 234 | if (co2useh2o) then |
---|
| 235 | write(*,*) |
---|
| 236 | write(*,*) "co2useh2o=.true. in callphys.def" |
---|
| 237 | write(*,*) "This means water ice particles can " |
---|
| 238 | write(*,*) "serve as CCN for CO2 microphysics" |
---|
| 239 | coeffh2o=1 |
---|
| 240 | endif |
---|
| 241 | if (meteo_flux) then |
---|
| 242 | write(*,*) |
---|
| 243 | write(*,*) "meteo_flux=.true. in callphys.def" |
---|
| 244 | write(*,*) "meteoritic dust particles are available" |
---|
| 245 | write(*,*) "for co2 ice nucleation! " |
---|
[1816] | 246 | write(*,*) "Flux given by J. Plane (pressions,size bins)" |
---|
[1720] | 247 | ! Initialisation of the flux: it is constant and is it saved |
---|
[1816] | 248 | !We must interpolate the table to the GCM pressures |
---|
[1918] | 249 | INQUIRE(FILE=TRIM(datadir)// |
---|
[1720] | 250 | & '/Meteo_flux_Plane.dat', EXIST=file_ok) |
---|
| 251 | IF (.not. file_ok) THEN |
---|
| 252 | write(*,*) 'file Meteo_flux_Plane.dat should be in ' |
---|
[1918] | 253 | & ,trim(datadir) |
---|
[1720] | 254 | STOP |
---|
| 255 | endif |
---|
| 256 | !used Variables |
---|
[1918] | 257 | ! open(newunit=uMeteor,file=trim(datadir)// |
---|
| 258 | open(unit=uMeteor,file=trim(datadir)// |
---|
[1720] | 259 | & '/Meteo_flux_Plane.dat' |
---|
| 260 | & ,FORM='formatted') |
---|
[1816] | 261 | !13000 records (130 pressions x 100 bin sizes) |
---|
[1884] | 262 | read(uMeteor,*) !skip 1 line |
---|
[1720] | 263 | do i=1,130 |
---|
[1884] | 264 | read(uMeteor,*,iostat=read_ok) pression_meteor(i) |
---|
| 265 | if (read_ok==0) then |
---|
| 266 | write(*,*) pression_meteor(i) |
---|
| 267 | else |
---|
| 268 | write(*,*) 'Error reading Meteo_flux_Plane.dat' |
---|
| 269 | call abort_physic("CO2clouds", |
---|
| 270 | & "Error reading Meteo_flux_Plane.dat",1) |
---|
| 271 | endif |
---|
[1816] | 272 | enddo |
---|
[1884] | 273 | read(uMeteor,*) !skip 1 line |
---|
[1816] | 274 | do i=1,130 |
---|
[1720] | 275 | do j=1,100 ! les mêmes 100 bins size que la distri nuclea: on touche pas |
---|
[1884] | 276 | read(uMeteor,'(F12.6)',iostat=read_ok) meteor(i,j) |
---|
| 277 | if (read_ok/=0) then |
---|
| 278 | write(*,*) 'Error reading Meteo_flux_Plane.dat' |
---|
| 279 | call abort_physic("CO2clouds", |
---|
| 280 | & "Error reading Meteo_flux_Plane.dat",1) |
---|
| 281 | endif |
---|
[1720] | 282 | enddo |
---|
[1816] | 283 | !On doit maintenant réinterpoler le tableau(130,100) sur les pressions du GCM (nlay,100) |
---|
[1720] | 284 | enddo |
---|
[1884] | 285 | close(uMeteor) |
---|
[1816] | 286 | write(*,*) "File meteo_flux read, end of firstcall in co2 micro" |
---|
| 287 | endif !of if meteo_flux |
---|
| 288 | |
---|
| 289 | ! Parameter values for Latent heat computation |
---|
[1720] | 290 | l0=595594d0 |
---|
| 291 | l1=903.111d0 |
---|
| 292 | l2=-11.5959d0 |
---|
| 293 | l3=0.0528288d0 |
---|
| 294 | l4=-0.000103183d0 |
---|
[1617] | 295 | firstcall=.false. |
---|
| 296 | END IF |
---|
| 297 | !============================================================= |
---|
| 298 | ! 1. Initialisation |
---|
| 299 | !============================================================= |
---|
[1720] | 300 | flag_pourri=0 |
---|
[1884] | 301 | meteor_ccn(:,:,:)=0. |
---|
[1685] | 302 | rice(:,:) = 1.e-8 |
---|
[1617] | 303 | riceco2(:,:) = 1.e-11 |
---|
| 304 | |
---|
| 305 | c Initialize the tendencies |
---|
[1911] | 306 | subpdqcloudco2(1:ngrid,1:nlay,1:nq)=0. |
---|
| 307 | subpdtcloudco2(1:ngrid,1:nlay)=0. |
---|
[1617] | 308 | |
---|
[1911] | 309 | c pteff temperature layer; sum_subpdt dT.s-1 |
---|
| 310 | c pqeff traceur kg/kg; sum_subpdq tendance idem .s-1 |
---|
[1617] | 311 | zt(1:ngrid,1:nlay) = |
---|
[1911] | 312 | & pteff(1:ngrid,1:nlay) + |
---|
| 313 | & sum_subpdt(1:ngrid,1:nlay) * microtimestep |
---|
[1617] | 314 | zq(1:ngrid,1:nlay,1:nq) = |
---|
[1911] | 315 | & pqeff(1:ngrid,1:nlay,1:nq) + |
---|
| 316 | & sum_subpdq(1:ngrid,1:nlay,1:nq) * microtimestep |
---|
[1617] | 317 | WHERE( zq(1:ngrid,1:nlay,1:nq) < 1.e-30 ) |
---|
[1816] | 318 | & zq(1:ngrid,1:nlay,1:nq) = 1.e-30 |
---|
| 319 | |
---|
| 320 | zq0(1:ngrid,1:nlay,1:nq) = zq(1:ngrid,1:nlay,1:nq) |
---|
[1617] | 321 | !============================================================= |
---|
| 322 | ! 2. Compute saturation |
---|
| 323 | !============================================================= |
---|
| 324 | dev2 = 1. / ( sqrt(2.) * sigma_iceco2 ) |
---|
[1720] | 325 | dev3 = 1. / ( sqrt(2.) * sigma_ice ) |
---|
[1617] | 326 | call co2sat(ngrid*nlay,zt,pplay,zqsat) !zqsat is psat(co2) |
---|
[1816] | 327 | zqco2=zq(:,:,igcm_co2)+zq(:,:,igcm_co2_ice) |
---|
| 328 | CALL tcondco2(ngrid,nlay,pplay,zqco2,tcond) |
---|
[1720] | 329 | !============================================================= |
---|
[1816] | 330 | ! 3. Bonus: additional meteoritic particles for nucleation |
---|
[1720] | 331 | !============================================================= |
---|
| 332 | if (meteo_flux) then |
---|
[1816] | 333 | !pression_meteo(130) |
---|
| 334 | !pplev(ngrid,nlay+1) |
---|
[1720] | 335 | !meteo(130,100) |
---|
| 336 | !resultat: meteo_ccn(ngrid,nlay,100) |
---|
| 337 | do l=1,nlay |
---|
| 338 | do ig=1,ngrid |
---|
[1816] | 339 | masse(ig,l)=(pplev(ig,l) - pplev(ig,l+1)) /g |
---|
[1884] | 340 | ltemp1=abs(pression_meteor(:)-pplev(ig,l)) |
---|
| 341 | ltemp2=abs(pression_meteor(:)-pplev(ig,l+1)) |
---|
[1720] | 342 | lebon1=minloc(ltemp1,DIM=1) |
---|
| 343 | lebon2=minloc(ltemp2,DIM=1) |
---|
| 344 | nelem=lebon2-lebon1+1. |
---|
| 345 | mtemp(:)=0d0 !mtemp(100) : valeurs pour les 100bins |
---|
| 346 | do ibin=1,100 |
---|
[1884] | 347 | mtemp(ibin)=sum(meteor(lebon1:lebon2,ibin)) |
---|
[1720] | 348 | enddo |
---|
[1884] | 349 | meteor_ccn(ig,l,:)=mtemp(:)/nelem/masse(ig,l) !Par kg air |
---|
[1816] | 350 | csi par m carre, x epaisseur/masse pour par kg/air |
---|
| 351 | !write(*,*) "masse air ig l=",masse(ig,l) |
---|
| 352 | !check original unit with J. Plane |
---|
[1720] | 353 | enddo |
---|
| 354 | enddo |
---|
| 355 | endif |
---|
[1816] | 356 | c ------------------------------------------------------------------------ |
---|
| 357 | c --------- Actual microphysics : Main loop over the GCM's grid --------- |
---|
| 358 | c ------------------------------------------------------------------------ |
---|
[1685] | 359 | DO l=1,nlay |
---|
| 360 | DO ig=1,ngrid |
---|
[1617] | 361 | c Get the partial pressure of co2 vapor and its saturation ratio |
---|
| 362 | pco2 = zq(ig,l,igcm_co2) * (mmean(ig,l)/44.01) * pplay(ig,l) |
---|
| 363 | satu = pco2 / zqsat(ig,l) |
---|
[1816] | 364 | |
---|
[1685] | 365 | rho_ice_co2T(ig,l)=1000.*(1.72391-2.53e-4*zt(ig,l) |
---|
[1816] | 366 | & -2.87e-6*zt(ig,l)*zt(ig,l)) !T-dependant CO2 ice density |
---|
[1720] | 367 | vo2co2 = m0co2 / dble(rho_ice_co2T(ig,l)) |
---|
[1685] | 368 | rho_ice_co2=rho_ice_co2T(ig,l) |
---|
[1720] | 369 | |
---|
[1816] | 370 | !============================================================= |
---|
| 371 | !4. Nucleation |
---|
| 372 | !============================================================= |
---|
| 373 | IF ( satu .ge. 1 ) THEN ! if there is condensation |
---|
[1617] | 374 | |
---|
[1816] | 375 | c call updaterccn(zq(ig,l,igcm_dust_mass), |
---|
| 376 | c & zq(ig,l,igcm_dust_number),rdust(ig,l),tauscaling(ig)) |
---|
| 377 | |
---|
| 378 | !We do rdust computation "by hand" because we don't want to |
---|
| 379 | ! change the mininumum rdust value in updaterad... It would |
---|
| 380 | ! mess up various part of the GCM ! |
---|
| 381 | |
---|
[1617] | 382 | rdust(ig,l)= zq(ig,l,igcm_dust_mass) |
---|
| 383 | & *0.75/pi/rho_dust |
---|
| 384 | & / zq(ig,l,igcm_dust_number) |
---|
| 385 | rdust(ig,l)= rdust(ig,l)**(1./3.) |
---|
[1816] | 386 | if (zq(ig,l,igcm_dust_mass)*tauscaling(ig) .le. 1.e-20 |
---|
| 387 | & .or. zq(ig,l,igcm_dust_number)*tauscaling(ig) .le.1 |
---|
| 388 | & .or. rdust(ig,l) .le. 1.e-9) then |
---|
| 389 | rdust(ig,l)=1.e-9 |
---|
| 390 | endif |
---|
| 391 | rdust(ig,l)=min(5.e-4,rdust(ig,l)) |
---|
[1685] | 392 | |
---|
[1617] | 393 | c Expand the dust moments into a binned distribution |
---|
[1685] | 394 | Mo = zq(ig,l,igcm_dust_mass)* tauscaling(ig)+1.e-30 |
---|
| 395 | No = zq(ig,l,igcm_dust_number)* tauscaling(ig)+1.e-30 |
---|
[1617] | 396 | Rn = rdust(ig,l) |
---|
[1816] | 397 | Rn = -dlog(Rn) |
---|
[1617] | 398 | Rm = Rn - 3. * sigma_iceco2*sigma_iceco2 |
---|
[1816] | 399 | n_derf = derf( (rb_cldco2(1)+Rn) *dev2) |
---|
| 400 | m_derf = derf( (rb_cldco2(1)+Rm) *dev2) |
---|
[1617] | 401 | |
---|
| 402 | do i = 1, nbinco2_cld |
---|
| 403 | n_aer(i) = -0.5 * No * n_derf !! this ith previously computed |
---|
| 404 | m_aer(i) = -0.5 * Mo * m_derf !! this ith previously computed |
---|
| 405 | n_derf = derf((rb_cldco2(i+1)+Rn) *dev2) |
---|
| 406 | m_derf = derf((rb_cldco2(i+1)+Rm) *dev2) |
---|
[1720] | 407 | n_aer(i) = n_aer(i) + 0.5 * No * n_derf + |
---|
[1884] | 408 | & meteor_ccn(ig,l,i) !Ajout meteor_ccn particles |
---|
[1617] | 409 | m_aer(i) = m_aer(i) + 0.5 * Mo * m_derf |
---|
[1720] | 410 | m_aer2(i)=4./3.*pi*rho_dust |
---|
[1884] | 411 | & *meteor_ccn(ig,l,i)*rad_cldco2(i)*rad_cldco2(i) |
---|
[1720] | 412 | & *rad_cldco2(i) |
---|
[1617] | 413 | enddo |
---|
[1816] | 414 | if (meteo_flux) m_aer(:)=m_aer(:)+m_aer2(:) |
---|
[1617] | 415 | |
---|
[1816] | 416 | !Same but with h2o particles as CCN |
---|
| 417 | call updaterice_micro(zq(ig,l,igcm_h2o_ice), |
---|
| 418 | & zq(ig,l,igcm_ccn_mass),zq(ig,l,igcm_ccn_number), |
---|
| 419 | & tauscaling(ig),rice(ig,l),rhocloud(ig,l)) |
---|
[1685] | 420 | Mo = zq(ig,l,igcm_h2o_ice) + |
---|
[1720] | 421 | & zq(ig,l,igcm_ccn_mass)*tauscaling(ig)+1.e-30!*tauscaling(ig) |
---|
| 422 | ! & + 1.e-30 !Total mass of H20 crystals,CCN included |
---|
[1617] | 423 | No = zq(ig,l,igcm_ccn_number)* tauscaling(ig) + 1.e-30 |
---|
| 424 | Rn = rice(ig,l) |
---|
[1816] | 425 | Rn = -dlog(Rn) |
---|
[1720] | 426 | Rm = Rn - 3. * sigma_ice*sigma_ice |
---|
[1816] | 427 | n_derf = derf( (rb_cldco2(1)+Rn) *dev3) |
---|
| 428 | m_derf = derf( (rb_cldco2(1)+Rm) *dev3) |
---|
[1617] | 429 | do i = 1, nbinco2_cld |
---|
[1720] | 430 | n_aer_h2oice(i) = -0.5 * No * n_derf |
---|
| 431 | m_aer_h2oice(i) = -0.5 * Mo * m_derf |
---|
| 432 | n_derf = derf( (rb_cldco2(i+1)+Rn) *dev3) |
---|
| 433 | m_derf = derf( (rb_cldco2(i+1)+Rm) *dev3) |
---|
| 434 | n_aer_h2oice(i) = n_aer_h2oice(i) + 0.5 * No * n_derf |
---|
| 435 | m_aer_h2oice(i) = m_aer_h2oice(i) + 0.5 * Mo * m_derf |
---|
[1685] | 436 | rad_h2oice(i) = rad_cldco2(i) |
---|
[1617] | 437 | enddo |
---|
[1816] | 438 | !Call to nucleation routine |
---|
[1617] | 439 | call nucleaCO2(dble(pco2),zt(ig,l),dble(satu) |
---|
| 440 | & ,n_aer,rate,n_aer_h2oice |
---|
[1685] | 441 | & ,rad_h2oice,rateh2o,vo2co2) |
---|
[1617] | 442 | dN = 0. |
---|
| 443 | dM = 0. |
---|
| 444 | dNh2o = 0. |
---|
| 445 | dMh2o = 0. |
---|
| 446 | do i = 1, nbinco2_cld |
---|
[1911] | 447 | Proba=1.0-dexp(-1.*microtimestep*rate(i)) |
---|
| 448 | Probah2o=coeffh2o* |
---|
| 449 | & (1.0-dexp(-1.*microtimestep*rateh2o(i))) !if co2useh2o=.false., this is =0 |
---|
[1685] | 450 | dNh2o = dNh2o + n_aer_h2oice(i) * Probah2o |
---|
| 451 | dMh2o = dMh2o + m_aer_h2oice(i) * Probah2o |
---|
[1617] | 452 | dN = dN + n_aer(i) * Proba |
---|
[1816] | 453 | dM = dM + m_aer(i) * Proba |
---|
[1617] | 454 | enddo |
---|
| 455 | ! dM masse activée (kg) et dN nb particules par kg d'air |
---|
[1816] | 456 | ! Now increment CCN tracers and update dust tracers |
---|
[1617] | 457 | dNN= dN/tauscaling(ig) |
---|
| 458 | dMM= dM/tauscaling(ig) |
---|
[1720] | 459 | dNN=min(dNN,zq(ig,l,igcm_dust_number)) |
---|
| 460 | dMM=min(dMM,zq(ig,l,igcm_dust_mass)) |
---|
[1617] | 461 | zq(ig,l,igcm_ccnco2_mass) = |
---|
| 462 | & zq(ig,l,igcm_ccnco2_mass) + dMM |
---|
[1720] | 463 | zq(ig,l,igcm_ccnco2_number) = |
---|
[1617] | 464 | & zq(ig,l,igcm_ccnco2_number) + dNN |
---|
[1720] | 465 | zq(ig,l,igcm_dust_mass)= zq(ig,l,igcm_dust_mass)-dMM |
---|
| 466 | zq(ig,l,igcm_dust_number)=zq(ig,l,igcm_dust_number)-dNN |
---|
| 467 | |
---|
[1685] | 468 | c Update CCN for CO2 nucleating on H2O CCN : |
---|
| 469 | ! Warning: must keep memory of it |
---|
[1816] | 470 | if (co2useh2o) then |
---|
| 471 | dNNh2o=dNh2o/tauscaling(ig) |
---|
| 472 | dNNh2o=min(dNNh2o,zq(ig,l,igcm_ccn_number)) |
---|
| 473 | ratioh2o_ccn=1./(zq(ig,l,igcm_h2o_ice) |
---|
| 474 | & +zq(ig,l,igcm_ccn_mass)*tauscaling(ig)) |
---|
| 475 | dMh2o_ice=dMh2o*zq(ig,l,igcm_h2o_ice)*ratioh2o_ccn |
---|
| 476 | dMh2o_ccn=dMh2o*zq(ig,l,igcm_ccn_mass)* |
---|
| 477 | & tauscaling(ig)*ratioh2o_ccn |
---|
| 478 | dMh2o_ccn=dMh2o_ccn/tauscaling(ig) |
---|
| 479 | dMh2o_ccn=min(dMh2o_ccn,zq(ig,l,igcm_ccn_mass)) |
---|
| 480 | dMh2o_ice=min(dMh2o_ice,zq(ig,l,igcm_h2o_ice)) |
---|
| 481 | zq(ig,l,igcm_ccnco2_mass) = |
---|
| 482 | & zq(ig,l,igcm_ccnco2_mass) + dMh2o_ice+dMh2o_ccn |
---|
| 483 | zq(ig,l,igcm_ccnco2_number) = |
---|
| 484 | & zq(ig,l,igcm_ccnco2_number) + dNNh2o |
---|
| 485 | zq(ig,l,igcm_ccn_number)=zq(ig,l,igcm_ccn_number)-dNNh2o |
---|
| 486 | zq(ig,l,igcm_h2o_ice) = zq(ig,l,igcm_h2o_ice)-dMh2o_ice |
---|
| 487 | zq(ig,l,igcm_ccn_mass)= zq(ig,l,igcm_ccn_mass)-dMh2o_ccn |
---|
| 488 | memdMMh2o(ig,l)=memdMMh2o(ig,l)+dMh2o_ice |
---|
| 489 | memdMMccn(ig,l)=memdMMccn(ig,l)+dMh2o_ccn |
---|
| 490 | memdNNccn(ig,l)=memdNNccn(ig,l)+dNNh2o |
---|
| 491 | endif !of if co2useh2o |
---|
[1617] | 492 | ENDIF ! of is satu >1 |
---|
| 493 | !============================================================= |
---|
| 494 | ! 4. Ice growth: scheme for radius evolution |
---|
| 495 | !============================================================= |
---|
| 496 | |
---|
| 497 | c We trigger crystal growth if and only if there is at least one nuclei (N>1). |
---|
| 498 | c Indeed, if we are supersaturated and still don't have at least one nuclei, we should better wait |
---|
| 499 | c to avoid unrealistic value for nuclei radius and so on for cases that remain negligible. |
---|
[1816] | 500 | No = zq(ig,l,igcm_ccnco2_number)* tauscaling(ig)+1.e-30 |
---|
| 501 | IF (No .ge. 1)THEN ! we trigger crystal growth |
---|
| 502 | call updaterice_microco2(zq(ig,l,igcm_co2_ice), |
---|
| 503 | & zq(ig,l,igcm_ccnco2_mass),zq(ig,l,igcm_ccnco2_number), |
---|
| 504 | & tauscaling(ig),riceco2(ig,l),rhocloudco2(ig,l)) |
---|
[1617] | 505 | |
---|
[1816] | 506 | Ic_rice=0. |
---|
| 507 | flag_pourri=0 |
---|
| 508 | lw = l0 + l1 * zt(ig,l) + l2 * zt(ig,l)**2 + |
---|
| 509 | & l3 * zt(ig,l)**3 + l4 * zt(ig,l)**4 !J.kg-1 |
---|
| 510 | facteurmax=abs(Tcond(ig,l)-zt(ig,l))*cpp/lw |
---|
| 511 | !specific heat of co2 ice = 1000 J.kg-1.K-1 |
---|
| 512 | !specific heat of atm cpp = 744.5 J.kg-1.K-1 |
---|
[1720] | 513 | |
---|
[1816] | 514 | ccccccc call scheme of microphys. mass growth for CO2 |
---|
[1617] | 515 | call massflowrateCO2(pplay(ig,l),zt(ig,l), |
---|
[1816] | 516 | & satu,riceco2(ig,l),mmean(ig,l),Ic_rice) |
---|
| 517 | c Ic_rice Mass transfer rate (kg/s) for a rice particle >0 si croissance ! |
---|
| 518 | |
---|
| 519 | if (isnan(Ic_rice) .or. Ic_rice .eq. 0.) then |
---|
[1720] | 520 | Ic_rice=0. |
---|
| 521 | flag_pourri=1 |
---|
[1911] | 522 | subpdtcloudco2(ig,l)=-sum_subpdt(ig,l) |
---|
[1816] | 523 | dMice=0 |
---|
| 524 | |
---|
| 525 | else |
---|
[1911] | 526 | dMice=zq(ig,l,igcm_ccnco2_number)*Ic_rice*microtimestep |
---|
[1816] | 527 | & *tauscaling(ig) ! Kg par kg d'air, >0 si croissance ! |
---|
| 528 | !kg.s-1 par particule * nb particule par kg air*s |
---|
| 529 | ! = kg par kg air |
---|
| 530 | |
---|
| 531 | dMice = max(dMice,max(-facteurmax,-zq(ig,l,igcm_co2_ice))) |
---|
| 532 | dMice = min(dMice,min(facteurmax,zq(ig,l,igcm_co2))) |
---|
| 533 | !facteurmax maximum quantity of CO2 that can sublime/condense according to available thermal energy |
---|
| 534 | ! latent heat release >0 if growth i.e. if dMice >0 |
---|
[1911] | 535 | subpdtcloudco2(ig,l)=dMice*lw/cpp/microtimestep |
---|
[1816] | 536 | ! kgco2/kgair* J/kgco2 * 1/(J.kgair-1.K-1)/s= K par seconde |
---|
| 537 | !Now update tracers |
---|
| 538 | zq(ig,l,igcm_co2_ice) = zq(ig,l,igcm_co2_ice)+dMice |
---|
| 539 | zq(ig,l,igcm_co2) = zq(ig,l,igcm_co2)-dMice |
---|
[1720] | 540 | endif |
---|
[1617] | 541 | |
---|
| 542 | !============================================================= |
---|
[1816] | 543 | ! 5. Dust cores releasing if no more co2 ice : |
---|
[1617] | 544 | !============================================================= |
---|
| 545 | |
---|
[1816] | 546 | if (zq(ig,l,igcm_co2_ice).le. 1.e-25)THEN |
---|
| 547 | !On sublime tout |
---|
| 548 | if (co2useh2o) then |
---|
[1685] | 549 | if (memdMMccn(ig,l) .gt. 0) then |
---|
| 550 | zq(ig,l,igcm_ccn_mass)=zq(ig,l,igcm_ccn_mass) |
---|
| 551 | & +memdMMccn(ig,l) |
---|
| 552 | endif |
---|
| 553 | if (memdMMh2o(ig,l) .gt. 0) then |
---|
| 554 | zq(ig,l,igcm_h2o_ice)=zq(ig,l,igcm_h2o_ice) |
---|
| 555 | & +memdMMh2o(ig,l) |
---|
| 556 | endif |
---|
| 557 | |
---|
| 558 | if (memdNNccn(ig,l) .gt. 0) then |
---|
| 559 | zq(ig,l,igcm_ccn_number)=zq(ig,l,igcm_ccn_number) |
---|
| 560 | & +memdNNccn(ig,l) |
---|
| 561 | endif |
---|
[1816] | 562 | endif |
---|
[1685] | 563 | zq(ig,l,igcm_dust_mass) = |
---|
| 564 | & zq(ig,l,igcm_dust_mass) |
---|
| 565 | & + zq(ig,l,igcm_ccnco2_mass)- |
---|
| 566 | & (memdMMh2o(ig,l)+memdMMccn(ig,l)) |
---|
| 567 | zq(ig,l,igcm_dust_number) = |
---|
| 568 | & zq(ig,l,igcm_dust_number) |
---|
| 569 | & + zq(ig,l,igcm_ccnco2_number)-memdNNccn(ig,l) |
---|
| 570 | |
---|
| 571 | zq(ig,l,igcm_co2) = zq(ig,l,igcm_co2) |
---|
| 572 | & + zq(ig,l,igcm_co2_ice) |
---|
| 573 | |
---|
| 574 | zq(ig,l,igcm_ccnco2_mass)=0. |
---|
| 575 | zq(ig,l,igcm_co2_ice)=0. |
---|
| 576 | zq(ig,l,igcm_ccnco2_number)=0. |
---|
| 577 | memdNNccn(ig,l)=0. |
---|
| 578 | memdMMh2o(ig,l)=0. |
---|
| 579 | memdMMccn(ig,l)=0. |
---|
| 580 | riceco2(ig,l)=0. |
---|
[1720] | 581 | |
---|
[1816] | 582 | endif !of if co2_ice <1e-25 |
---|
| 583 | |
---|
| 584 | ENDIF ! of if NCCN > 1 |
---|
[1720] | 585 | ENDDO ! of ig loop |
---|
| 586 | ENDDO ! of nlayer loop |
---|
[1816] | 587 | |
---|
| 588 | !============================================================= |
---|
| 589 | ! 6. END: get cloud tendencies |
---|
| 590 | !============================================================= |
---|
| 591 | |
---|
| 592 | ! Get cloud tendencies |
---|
[1911] | 593 | subpdqcloudco2(1:ngrid,1:nlay,igcm_co2) = |
---|
[1816] | 594 | & (zq(1:ngrid,1:nlay,igcm_co2) - |
---|
[1911] | 595 | & zq0(1:ngrid,1:nlay,igcm_co2))/microtimestep |
---|
| 596 | subpdqcloudco2(1:ngrid,1:nlay,igcm_co2_ice) = |
---|
[1816] | 597 | & (zq(1:ngrid,1:nlay,igcm_co2_ice) - |
---|
[1911] | 598 | & zq0(1:ngrid,1:nlay,igcm_co2_ice))/microtimestep |
---|
| 599 | subpdqcloudco2(1:ngrid,1:nlay,igcm_h2o_ice) = |
---|
[1816] | 600 | & (zq(1:ngrid,1:nlay,igcm_h2o_ice) - |
---|
[1911] | 601 | & zq0(1:ngrid,1:nlay,igcm_h2o_ice))/microtimestep |
---|
| 602 | subpdqcloudco2(1:ngrid,1:nlay,igcm_ccn_mass) = |
---|
[1816] | 603 | & (zq(1:ngrid,1:nlay,igcm_ccn_mass) - |
---|
[1911] | 604 | & zq0(1:ngrid,1:nlay,igcm_ccn_mass))/microtimestep |
---|
| 605 | subpdqcloudco2(1:ngrid,1:nlay,igcm_ccn_number) = |
---|
[1816] | 606 | & (zq(1:ngrid,1:nlay,igcm_ccn_number) - |
---|
[1911] | 607 | & zq0(1:ngrid,1:nlay,igcm_ccn_number))/microtimestep |
---|
| 608 | subpdqcloudco2(1:ngrid,1:nlay,igcm_ccnco2_mass) = |
---|
[1816] | 609 | & (zq(1:ngrid,1:nlay,igcm_ccnco2_mass) - |
---|
[1911] | 610 | & zq0(1:ngrid,1:nlay,igcm_ccnco2_mass))/microtimestep |
---|
| 611 | subpdqcloudco2(1:ngrid,1:nlay,igcm_ccnco2_number) = |
---|
[1816] | 612 | & (zq(1:ngrid,1:nlay,igcm_ccnco2_number) - |
---|
[1911] | 613 | & zq0(1:ngrid,1:nlay,igcm_ccnco2_number))/microtimestep |
---|
| 614 | subpdqcloudco2(1:ngrid,1:nlay,igcm_dust_mass) = |
---|
[1816] | 615 | & (zq(1:ngrid,1:nlay,igcm_dust_mass) - |
---|
[1911] | 616 | & zq0(1:ngrid,1:nlay,igcm_dust_mass))/microtimestep |
---|
| 617 | subpdqcloudco2(1:ngrid,1:nlay,igcm_dust_number) = |
---|
[1816] | 618 | & (zq(1:ngrid,1:nlay,igcm_dust_number) - |
---|
[1911] | 619 | & zq0(1:ngrid,1:nlay,igcm_dust_number))/microtimestep |
---|
[1884] | 620 | |
---|
[1816] | 621 | end |
---|
[1617] | 622 | |
---|
| 623 | |
---|
| 624 | |
---|