1 | MODULE hdo_surfex_mod |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | subroutine hdo_surfex(ngrid,nlay,nq,ptimestep, |
---|
8 | & zt,pplay,zq,pqsurf, |
---|
9 | & old_h2o_vap,qsat,pdqsdif,dwatercap_dif, |
---|
10 | & hdoflux) |
---|
11 | |
---|
12 | use tracer_mod, only: igcm_h2o_vap, igcm_h2o_ice, |
---|
13 | & igcm_hdo_vap, igcm_hdo_ice, |
---|
14 | & qperemin |
---|
15 | use surfdat_h, only: watercaptag |
---|
16 | use geometry_mod, only: longitude_deg,latitude_deg |
---|
17 | use comcstfi_h, only: pi |
---|
18 | use write_output_mod, only: write_output |
---|
19 | |
---|
20 | implicit none |
---|
21 | c------------------------------------------------------------------ |
---|
22 | c Routine to compute the fluxes between air and surface |
---|
23 | c for HDO, based of the fluxes for H2O |
---|
24 | c L. Rossi.; M. Vals 2019 |
---|
25 | c------------------------------------------------------------------ |
---|
26 | include "callkeys.h" |
---|
27 | include "microphys.h" |
---|
28 | c------------------------------------------------------------------ |
---|
29 | c Arguments: |
---|
30 | c --------- |
---|
31 | c Inputs: |
---|
32 | INTEGER, INTENT(IN) :: ngrid,nlay |
---|
33 | INTEGER, INTENT(IN) :: nq ! nombre de traceurs |
---|
34 | |
---|
35 | REAL, INTENT(IN) :: ptimestep ! pas de temps physique (s) |
---|
36 | REAL, INTENT(IN) :: zt(ngrid,nlay) ! local value of temperature |
---|
37 | REAL, INTENT(IN) :: pplay(ngrid,nlay) ! pression au milieu des couches (Pa) |
---|
38 | REAL, INTENT(IN) :: zq(ngrid,nlay,nq) ! local value of tracers |
---|
39 | REAL, INTENT(IN) :: pqsurf(ngrid,nq) |
---|
40 | REAL, INTENT(IN) :: old_h2o_vap(ngrid) ! traceur d'eau avant |
---|
41 | !traitement de l'eau (kg/kg) |
---|
42 | REAL, INTENT(IN) :: qsat(ngrid) ! saturation mixing ratio |
---|
43 | REAL, INTENT(IN) :: dwatercap_dif(ngrid) ! trend related to permanent ice |
---|
44 | REAL, INTENT(INOUT) :: pdqsdif(ngrid,nq) ! tendance towards surface |
---|
45 | ! (kg/kg.s-1) |
---|
46 | |
---|
47 | c Output: |
---|
48 | REAL, INTENT(OUT) :: hdoflux(ngrid) ! value of vapour flux of HDO |
---|
49 | |
---|
50 | c------------------------------------------------------------------ |
---|
51 | c Local variables: |
---|
52 | |
---|
53 | REAL alpha(ngrid) ! equilibrium fractionation factor |
---|
54 | REAL alpha_c(ngrid) ! real fractionation factor |
---|
55 | REAL extrasublim ! sublimation in excess of surface ice |
---|
56 | REAL tmpratio(ngrid) ! D/H ratio in flux to surf |
---|
57 | REAL h2oflux(ngrid) ! value of vapour flux of H2O |
---|
58 | ! same sign as pdqsdif |
---|
59 | REAL*8 satu(ngrid) ! Water vapor saturation ratio over ice |
---|
60 | REAL zt1(ngrid),pplay1(ngrid) |
---|
61 | REAL Dv,Dv_hdo ! Water/HDO vapor diffusion coefficient |
---|
62 | INTEGER ig,l |
---|
63 | |
---|
64 | REAL DoH_vap(ngrid) |
---|
65 | |
---|
66 | c----------------------------------------------------------------------- |
---|
67 | c Calculation of the fluxes for HDO |
---|
68 | !! Calculation of the saturation ratio in the layer above the surface |
---|
69 | satu(1:ngrid)=old_h2o_vap(1:ngrid) / qsat(1:ngrid) |
---|
70 | !! Initialisation of the fractionation coefficient |
---|
71 | alpha(1:ngrid)=1. |
---|
72 | alpha_c(1:ngrid)=1. |
---|
73 | |
---|
74 | DO ig=1,ngrid |
---|
75 | |
---|
76 | h2oflux(ig) = pdqsdif(ig,igcm_h2o_ice) + |
---|
77 | & dwatercap_dif(ig) |
---|
78 | |
---|
79 | !! IF Sublimation |
---|
80 | if (h2oflux(ig).le.0.) then |
---|
81 | |
---|
82 | if (pqsurf(ig,igcm_h2o_ice).gt.qperemin) then |
---|
83 | pdqsdif(ig,igcm_hdo_ice) = |
---|
84 | & pdqsdif(ig,igcm_h2o_ice)* |
---|
85 | & (pqsurf(ig,igcm_hdo_ice)/ |
---|
86 | & pqsurf(ig,igcm_h2o_ice) ) |
---|
87 | else |
---|
88 | pdqsdif(ig,igcm_hdo_ice) = 0. |
---|
89 | endif |
---|
90 | |
---|
91 | pdqsdif(ig,igcm_hdo_ice)= |
---|
92 | & max(pdqsdif(ig,igcm_hdo_ice), |
---|
93 | & -pqsurf(ig,igcm_hdo_ice)/ptimestep) |
---|
94 | |
---|
95 | hdoflux(ig) = pdqsdif(ig,igcm_hdo_ice) |
---|
96 | |
---|
97 | if(watercaptag(ig)) then |
---|
98 | |
---|
99 | !if we sublimate more than qsurf |
---|
100 | if ((-h2oflux(ig)*ptimestep) |
---|
101 | & .gt.pqsurf(ig,igcm_h2o_ice)) then |
---|
102 | |
---|
103 | C dwatercap_dif is how much we sublimate in excess of |
---|
104 | C pqsurf for H2O |
---|
105 | C hdoflux(ig) is the flux of HDO from atm. to surf. |
---|
106 | c The D/H of the old ice is supposed to be 5 SMOW |
---|
107 | c We need D/H of the flux to be 5, so we need |
---|
108 | c dwatercap_dif* 5 * 2 * 155.76e-6 (=1 SMOW) |
---|
109 | hdoflux(ig)= hdoflux(ig) |
---|
110 | & +(dwatercap_dif(ig)*(2.*155.76e-6)*5.) |
---|
111 | endif |
---|
112 | endif ! watercap |
---|
113 | |
---|
114 | else ! condensation |
---|
115 | |
---|
116 | if (hdofrac) then !do we use fractionation? |
---|
117 | !! Calculation of the H2O vapor diffusion coefficient |
---|
118 | Dv = 1./3. * sqrt( 8*kbz*zt(ig,1)/(pi*mh2o/nav) ) |
---|
119 | & * kbz * zt(ig,1) / |
---|
120 | & ( pi * pplay(ig,1) * (molco2+molh2o)*(molco2+molh2o) |
---|
121 | & * sqrt(1.+mh2o/mco2) ) |
---|
122 | !! Calculation of the HDO vapor diffusion coefficient |
---|
123 | Dv_hdo = 1./3. * sqrt( 8*kbz*zt(ig,1)/(pi*mhdo/nav) ) |
---|
124 | & * kbz * zt(ig,1) / |
---|
125 | & ( pi * pplay(ig,1) * (molco2+molhdo)*(molco2+molhdo) |
---|
126 | & * sqrt(1.+mhdo/mco2) ) |
---|
127 | !! Calculation of the "equilibrium" fractionation coefficient |
---|
128 | c alpha(ig) = exp(16288./zt(ig,1)**2.-9.34e-2) |
---|
129 | alpha(ig) = exp(13525./zt(ig,1)**2.-5.59e-2) !Lamb |
---|
130 | !! Calculation of the 'real' fractionnation coefficient (effect of kinetics, see Jouzel and Merlivat, 1984) |
---|
131 | alpha_c(ig) = (alpha(ig)*satu(ig))/ |
---|
132 | & ( (alpha(ig)*(Dv/Dv_hdo)*(satu(ig)-1.)) + 1.) |
---|
133 | else |
---|
134 | alpha_c(ig) = 1. |
---|
135 | endif |
---|
136 | |
---|
137 | if (old_h2o_vap(ig).gt.qperemin) then |
---|
138 | pdqsdif(ig,igcm_hdo_ice)= |
---|
139 | & alpha_c(ig)*pdqsdif(ig,igcm_h2o_ice)* |
---|
140 | & (zq(ig,1,igcm_hdo_vap)/ |
---|
141 | & old_h2o_vap(ig)) |
---|
142 | else |
---|
143 | pdqsdif(ig,igcm_hdo_ice)= 0. |
---|
144 | endif |
---|
145 | |
---|
146 | if (hdofrac) then !do we use fractionation? |
---|
147 | pdqsdif(ig,igcm_hdo_ice)= |
---|
148 | & min( pdqsdif(ig,igcm_hdo_ice), |
---|
149 | & (zq(ig,1,igcm_hdo_vap)/ptimestep) ) |
---|
150 | endif |
---|
151 | |
---|
152 | hdoflux(ig)=pdqsdif(ig,igcm_hdo_ice) |
---|
153 | |
---|
154 | endif !sublimation |
---|
155 | |
---|
156 | ENDDO ! of DO ig=1,ngrid |
---|
157 | |
---|
158 | c CALL write_output('extrasublim', |
---|
159 | c & 'extrasublimation', |
---|
160 | c & ' ',tmpratio) |
---|
161 | c CALL write_output('alpha_c_s', |
---|
162 | c & 'alpha_c_s', |
---|
163 | c & ' ',alpha_c) |
---|
164 | |
---|
165 | return |
---|
166 | end subroutine hdo_surfex |
---|
167 | c------------------------------------------------------------------ |
---|
168 | |
---|
169 | end module hdo_surfex_mod |
---|