[2312] | 1 | MODULE hdo_surfex_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
| 7 | subroutine hdo_surfex(ngrid,nlay,nq,ptimestep, |
---|
[2593] | 8 | & zt,pplay,zq,pqsurf, |
---|
| 9 | & old_h2o_vap,qsat,pdqsdif,dwatercap_dif, |
---|
[2312] | 10 | & hdoflux) |
---|
| 11 | |
---|
| 12 | use tracer_mod, only: igcm_h2o_vap, igcm_h2o_ice, |
---|
[2324] | 13 | & igcm_hdo_vap, igcm_hdo_ice, |
---|
| 14 | & qperemin |
---|
[2312] | 15 | use surfdat_h, only: watercaptag |
---|
| 16 | use geometry_mod, only: longitude_deg,latitude_deg |
---|
[2593] | 17 | use comcstfi_h, only: pi |
---|
[2932] | 18 | use write_output_mod, only: write_output |
---|
[2312] | 19 | |
---|
| 20 | implicit none |
---|
| 21 | c------------------------------------------------------------------ |
---|
| 22 | c Routine to compute the fluxes between air and surface |
---|
| 23 | c for HDO, based of the fluxes for H2O |
---|
| 24 | c L. Rossi.; M. Vals 2019 |
---|
| 25 | c------------------------------------------------------------------ |
---|
| 26 | include "callkeys.h" |
---|
[2593] | 27 | include "microphys.h" |
---|
[2312] | 28 | c------------------------------------------------------------------ |
---|
| 29 | c Arguments: |
---|
| 30 | c --------- |
---|
| 31 | c Inputs: |
---|
| 32 | INTEGER, INTENT(IN) :: ngrid,nlay |
---|
| 33 | INTEGER, INTENT(IN) :: nq ! nombre de traceurs |
---|
| 34 | |
---|
| 35 | REAL, INTENT(IN) :: ptimestep ! pas de temps physique (s) |
---|
| 36 | REAL, INTENT(IN) :: zt(ngrid,nlay) ! local value of temperature |
---|
[2593] | 37 | REAL, INTENT(IN) :: pplay(ngrid,nlay) ! pression au milieu des couches (Pa) |
---|
[2312] | 38 | REAL, INTENT(IN) :: zq(ngrid,nlay,nq) ! local value of tracers |
---|
| 39 | REAL, INTENT(IN) :: pqsurf(ngrid,nq) |
---|
| 40 | REAL, INTENT(IN) :: old_h2o_vap(ngrid) ! traceur d'eau avant |
---|
| 41 | !traitement de l'eau (kg/kg) |
---|
[2593] | 42 | REAL, INTENT(IN) :: qsat(ngrid) ! saturation mixing ratio |
---|
[2316] | 43 | REAL, INTENT(IN) :: dwatercap_dif(ngrid) ! trend related to permanent ice |
---|
[2312] | 44 | REAL, INTENT(INOUT) :: pdqsdif(ngrid,nq) ! tendance towards surface |
---|
| 45 | ! (kg/kg.s-1) |
---|
| 46 | |
---|
| 47 | c Output: |
---|
| 48 | REAL, INTENT(OUT) :: hdoflux(ngrid) ! value of vapour flux of HDO |
---|
| 49 | |
---|
| 50 | c------------------------------------------------------------------ |
---|
| 51 | c Local variables: |
---|
| 52 | |
---|
[2593] | 53 | REAL alpha(ngrid) ! equilibrium fractionation factor |
---|
| 54 | REAL alpha_c(ngrid) ! real fractionation factor |
---|
[2312] | 55 | REAL extrasublim ! sublimation in excess of surface ice |
---|
| 56 | REAL tmpratio(ngrid) ! D/H ratio in flux to surf |
---|
[2316] | 57 | REAL h2oflux(ngrid) ! value of vapour flux of H2O |
---|
| 58 | ! same sign as pdqsdif |
---|
[2593] | 59 | REAL*8 satu(ngrid) ! Water vapor saturation ratio over ice |
---|
| 60 | REAL zt1(ngrid),pplay1(ngrid) |
---|
| 61 | REAL Dv,Dv_hdo ! Water/HDO vapor diffusion coefficient |
---|
[2312] | 62 | INTEGER ig,l |
---|
| 63 | |
---|
| 64 | REAL DoH_vap(ngrid) |
---|
| 65 | |
---|
| 66 | c----------------------------------------------------------------------- |
---|
| 67 | c Calculation of the fluxes for HDO |
---|
[2593] | 68 | !! Calculation of the saturation ratio in the layer above the surface |
---|
| 69 | satu(1:ngrid)=old_h2o_vap(1:ngrid) / qsat(1:ngrid) |
---|
| 70 | !! Initialisation of the fractionation coefficient |
---|
| 71 | alpha(1:ngrid)=1. |
---|
| 72 | alpha_c(1:ngrid)=1. |
---|
[2312] | 73 | |
---|
| 74 | DO ig=1,ngrid |
---|
[2316] | 75 | |
---|
| 76 | h2oflux(ig) = pdqsdif(ig,igcm_h2o_ice) + |
---|
| 77 | & dwatercap_dif(ig) |
---|
[2312] | 78 | |
---|
| 79 | !! IF Sublimation |
---|
| 80 | if (h2oflux(ig).le.0.) then |
---|
| 81 | |
---|
[2324] | 82 | if (pqsurf(ig,igcm_h2o_ice).gt.qperemin) then |
---|
[2312] | 83 | pdqsdif(ig,igcm_hdo_ice) = |
---|
| 84 | & pdqsdif(ig,igcm_h2o_ice)* |
---|
| 85 | & (pqsurf(ig,igcm_hdo_ice)/ |
---|
| 86 | & pqsurf(ig,igcm_h2o_ice) ) |
---|
| 87 | else |
---|
| 88 | pdqsdif(ig,igcm_hdo_ice) = 0. |
---|
| 89 | endif |
---|
| 90 | |
---|
| 91 | pdqsdif(ig,igcm_hdo_ice)= |
---|
| 92 | & max(pdqsdif(ig,igcm_hdo_ice), |
---|
| 93 | & -pqsurf(ig,igcm_hdo_ice)/ptimestep) |
---|
| 94 | |
---|
| 95 | hdoflux(ig) = pdqsdif(ig,igcm_hdo_ice) |
---|
| 96 | |
---|
| 97 | if(watercaptag(ig)) then |
---|
| 98 | |
---|
| 99 | !if we sublimate more than qsurf |
---|
| 100 | if ((-h2oflux(ig)*ptimestep) |
---|
| 101 | & .gt.pqsurf(ig,igcm_h2o_ice)) then |
---|
| 102 | |
---|
[2316] | 103 | C dwatercap_dif is how much we sublimate in excess of |
---|
[2312] | 104 | C pqsurf for H2O |
---|
| 105 | C hdoflux(ig) is the flux of HDO from atm. to surf. |
---|
| 106 | c The D/H of the old ice is supposed to be 5 SMOW |
---|
| 107 | c We need D/H of the flux to be 5, so we need |
---|
[2316] | 108 | c dwatercap_dif* 5 * 2 * 155.76e-6 (=1 SMOW) |
---|
[2312] | 109 | hdoflux(ig)= hdoflux(ig) |
---|
[2316] | 110 | & +(dwatercap_dif(ig)*(2.*155.76e-6)*5.) |
---|
| 111 | endif |
---|
| 112 | endif ! watercap |
---|
[2312] | 113 | |
---|
| 114 | else ! condensation |
---|
| 115 | |
---|
| 116 | if (hdofrac) then !do we use fractionation? |
---|
[2593] | 117 | !! Calculation of the H2O vapor diffusion coefficient |
---|
| 118 | Dv = 1./3. * sqrt( 8*kbz*zt(ig,1)/(pi*mh2o/nav) ) |
---|
| 119 | & * kbz * zt(ig,1) / |
---|
| 120 | & ( pi * pplay(ig,1) * (molco2+molh2o)*(molco2+molh2o) |
---|
| 121 | & * sqrt(1.+mh2o/mco2) ) |
---|
| 122 | !! Calculation of the HDO vapor diffusion coefficient |
---|
| 123 | Dv_hdo = 1./3. * sqrt( 8*kbz*zt(ig,1)/(pi*mhdo/nav) ) |
---|
| 124 | & * kbz * zt(ig,1) / |
---|
| 125 | & ( pi * pplay(ig,1) * (molco2+molhdo)*(molco2+molhdo) |
---|
| 126 | & * sqrt(1.+mhdo/mco2) ) |
---|
| 127 | !! Calculation of the "equilibrium" fractionation coefficient |
---|
| 128 | c alpha(ig) = exp(16288./zt(ig,1)**2.-9.34e-2) |
---|
| 129 | alpha(ig) = exp(13525./zt(ig,1)**2.-5.59e-2) !Lamb |
---|
| 130 | !! Calculation of the 'real' fractionnation coefficient (effect of kinetics, see Jouzel and Merlivat, 1984) |
---|
| 131 | alpha_c(ig) = (alpha(ig)*satu(ig))/ |
---|
| 132 | & ( (alpha(ig)*(Dv/Dv_hdo)*(satu(ig)-1.)) + 1.) |
---|
[2312] | 133 | else |
---|
| 134 | alpha_c(ig) = 1. |
---|
| 135 | endif |
---|
| 136 | |
---|
[2324] | 137 | if (old_h2o_vap(ig).gt.qperemin) then |
---|
[2312] | 138 | pdqsdif(ig,igcm_hdo_ice)= |
---|
| 139 | & alpha_c(ig)*pdqsdif(ig,igcm_h2o_ice)* |
---|
| 140 | & (zq(ig,1,igcm_hdo_vap)/ |
---|
| 141 | & old_h2o_vap(ig)) |
---|
| 142 | else |
---|
| 143 | pdqsdif(ig,igcm_hdo_ice)= 0. |
---|
| 144 | endif |
---|
| 145 | |
---|
| 146 | if (hdofrac) then !do we use fractionation? |
---|
| 147 | pdqsdif(ig,igcm_hdo_ice)= |
---|
| 148 | & min( pdqsdif(ig,igcm_hdo_ice), |
---|
| 149 | & (zq(ig,1,igcm_hdo_vap)/ptimestep) ) |
---|
| 150 | endif |
---|
| 151 | |
---|
| 152 | hdoflux(ig)=pdqsdif(ig,igcm_hdo_ice) |
---|
| 153 | |
---|
| 154 | endif !sublimation |
---|
| 155 | |
---|
| 156 | ENDDO ! of DO ig=1,ngrid |
---|
| 157 | |
---|
[2932] | 158 | c CALL write_output('extrasublim', |
---|
[2312] | 159 | c & 'extrasublimation', |
---|
[2932] | 160 | c & ' ',tmpratio) |
---|
| 161 | c CALL write_output('alpha_c_s', |
---|
[2312] | 162 | c & 'alpha_c_s', |
---|
[2932] | 163 | c & ' ',alpha_c) |
---|
[2312] | 164 | |
---|
| 165 | return |
---|
| 166 | end subroutine hdo_surfex |
---|
| 167 | c------------------------------------------------------------------ |
---|
| 168 | |
---|
| 169 | end module hdo_surfex_mod |
---|