[38] | 1 | SUBROUTINE GWPROFIL |
---|
| 2 | * ( klon, klev |
---|
| 3 | * , kgwd ,kdx , ktest |
---|
| 4 | * , KKCRIT, KKCRITH, KCRIT , kkenvh, kknu,kknu2 |
---|
| 5 | * , PAPHM1, PRHO , PSTAB , PTFR , PVPH , PRI , PTAU |
---|
| 6 | * , ptauf ,pdmod , pnu , psig ,pgamma, pvar ) |
---|
| 7 | |
---|
| 8 | C**** *GWPROFIL* |
---|
| 9 | C |
---|
| 10 | C PURPOSE. |
---|
| 11 | C -------- |
---|
| 12 | C |
---|
| 13 | C** INTERFACE. |
---|
| 14 | C ---------- |
---|
| 15 | C FROM *GWDRAG* |
---|
| 16 | C |
---|
| 17 | C EXPLICIT ARGUMENTS : |
---|
| 18 | C -------------------- |
---|
| 19 | C ==== INPUTS === |
---|
| 20 | C ==== OUTPUTS === |
---|
| 21 | C |
---|
| 22 | C IMPLICIT ARGUMENTS : NONE |
---|
| 23 | C -------------------- |
---|
| 24 | C |
---|
| 25 | C METHOD: |
---|
| 26 | C ------- |
---|
| 27 | C THE STRESS PROFILE FOR GRAVITY WAVES IS COMPUTED AS FOLLOWS: |
---|
| 28 | C IT IS CONSTANT (NO GWD) AT THE LEVELS BETWEEN THE GROUND |
---|
| 29 | C AND THE TOP OF THE BLOCKED LAYER (KKENVH). |
---|
| 30 | C IT DECREASES LINEARLY WITH HEIGHTS FROM THE TOP OF THE |
---|
| 31 | C BLOCKED LAYER TO 3*VAROR (kKNU), TO SIMULATES LEE WAVES OR |
---|
| 32 | C NONLINEAR GRAVITY WAVE BREAKING. |
---|
| 33 | C ABOVE IT IS CONSTANT, EXCEPT WHEN THE WAVE ENCOUNTERS A CRITICAL |
---|
| 34 | C LEVEL (KCRIT) OR WHEN IT BREAKS. |
---|
| 35 | C |
---|
| 36 | C |
---|
| 37 | C |
---|
| 38 | C EXTERNALS. |
---|
| 39 | C ---------- |
---|
| 40 | C |
---|
| 41 | C |
---|
| 42 | C REFERENCE. |
---|
| 43 | C ---------- |
---|
| 44 | C |
---|
| 45 | C SEE ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE "I.F.S." |
---|
| 46 | C |
---|
| 47 | C AUTHOR. |
---|
| 48 | C ------- |
---|
| 49 | C |
---|
| 50 | C MODIFICATIONS. |
---|
| 51 | C -------------- |
---|
| 52 | C PASSAGE OF THE NEW GWDRAG TO I.F.S. (F. LOTT, 22/11/93) |
---|
| 53 | C----------------------------------------------------------------------- |
---|
[1047] | 54 | use dimradmars_mod, only: ndlo2 |
---|
[38] | 55 | implicit none |
---|
| 56 | C |
---|
| 57 | |
---|
| 58 | C |
---|
| 59 | |
---|
| 60 | #include "dimensions.h" |
---|
| 61 | #include "dimphys.h" |
---|
[1047] | 62 | !#include "dimradmars.h" |
---|
[38] | 63 | integer klon,klev,kidia,kfdia |
---|
| 64 | #include "yoegwd.h" |
---|
| 65 | |
---|
| 66 | C----------------------------------------------------------------------- |
---|
| 67 | C |
---|
| 68 | C* 0.1 ARGUMENTS |
---|
| 69 | C --------- |
---|
| 70 | C |
---|
| 71 | integer kgwd |
---|
| 72 | INTEGER KKCRIT(NDLO2),KKCRITH(NDLO2),KCRIT(NDLO2) |
---|
| 73 | * ,kdx(NDLO2),ktest(NDLO2) |
---|
| 74 | * ,kkenvh(NDLO2),kknu(NDLO2),kknu2(NDLO2) |
---|
| 75 | C |
---|
| 76 | REAL PAPHM1(NDLO2,klev+1), PSTAB(NDLO2,klev+1), |
---|
| 77 | * PRHO (NDLO2,klev+1), PVPH (NDLO2,klev+1), |
---|
| 78 | * PRI (NDLO2,klev+1), PTFR (NDLO2), PTAU(NDLO2,klev+1), |
---|
| 79 | * ptauf (NDLO2,klev+1) |
---|
| 80 | |
---|
| 81 | REAL pdmod (NDLO2) , pnu (NDLO2) , psig(NDLO2), |
---|
| 82 | * pgamma(NDLO2) , pvar(NDLO2) |
---|
| 83 | |
---|
| 84 | C----------------------------------------------------------------------- |
---|
| 85 | C |
---|
| 86 | C* 0.2 LOCAL ARRAYS |
---|
| 87 | C ------------ |
---|
| 88 | C |
---|
| 89 | c declarations pour 'implicit none" |
---|
| 90 | real zsqr,zalfa,zriw,zalpha,zb,zdel,zdz2n,zdelp,zdelpt |
---|
| 91 | |
---|
| 92 | integer ji,jk,jl,ilevh |
---|
| 93 | REAL ZDZ2 (NDLO2,nlayermx) , ZNORM(NDLO2) , zoro(NDLO2) |
---|
| 94 | REAL ZTAU (NDLO2,nlayermx+1) |
---|
| 95 | C |
---|
| 96 | C----------------------------------------------------------------------- |
---|
| 97 | C |
---|
| 98 | C* 1. INITIALIZATION |
---|
| 99 | C -------------- |
---|
| 100 | |
---|
| 101 | |
---|
| 102 | kidia=1 |
---|
| 103 | kfdia=klon |
---|
| 104 | |
---|
| 105 | 100 CONTINUE |
---|
| 106 | C |
---|
| 107 | C |
---|
| 108 | C* COMPUTATIONAL CONSTANTS. |
---|
| 109 | C ------------- ---------- |
---|
| 110 | C |
---|
| 111 | ilevh=KLEV/3 |
---|
| 112 | C |
---|
| 113 | DO 400 ji=1,kgwd |
---|
| 114 | jl=kdx(ji) |
---|
| 115 | Zoro(JL)=Psig(JL)*Pdmod(JL)/4./max(pvar(jl),1.0) |
---|
| 116 | ZTAU(JL,KKNU(JL)+1)=PTAU(JL,KKNU(JL)+1) |
---|
| 117 | ZTAU(JL,KLEV+1)=PTAU(JL,KLEV+1) |
---|
| 118 | 400 CONTINUE |
---|
| 119 | C |
---|
| 120 | DO 430 JK=KLEV,2,-1 |
---|
| 121 | C |
---|
| 122 | C |
---|
| 123 | C* 4.1 CONSTANT WAVE STRESS UNTIL TOP OF THE |
---|
| 124 | C BLOCKING LAYER. |
---|
| 125 | 410 CONTINUE |
---|
| 126 | C |
---|
| 127 | DO 411 ji=1,kgwd |
---|
| 128 | jl=kdx(ji) |
---|
| 129 | IF(JK.GE.KKNU2(JL)) THEN |
---|
| 130 | PTAU(JL,JK)=ZTAU(JL,KLEV+1) |
---|
| 131 | ENDIF |
---|
| 132 | 411 CONTINUE |
---|
| 133 | C |
---|
| 134 | C* 4.15 CONSTANT SHEAR STRESS UNTIL THE TOP OF THE |
---|
| 135 | C LOW LEVEL FLOW LAYER. |
---|
| 136 | 415 CONTINUE |
---|
| 137 | C |
---|
| 138 | C |
---|
| 139 | C* 4.2 WAVE DISPLACEMENT AT NEXT LEVEL. |
---|
| 140 | C |
---|
| 141 | 420 CONTINUE |
---|
| 142 | C |
---|
| 143 | DO 421 ji=1,kgwd |
---|
| 144 | jl=kdx(ji) |
---|
| 145 | IF(JK.LT.KKNU2(JL)) THEN |
---|
| 146 | ZNORM(JL)=gkdrag*PRHO(JL,JK)*SQRT(PSTAB(JL,JK))*PVPH(JL,JK) |
---|
| 147 | * *zoro(jl) |
---|
| 148 | ZDZ2(JL,JK)=PTAU(JL,JK+1)/max(ZNORM(JL),gssec) |
---|
| 149 | ENDIF |
---|
| 150 | 421 CONTINUE |
---|
| 151 | C |
---|
| 152 | C* 4.3 WAVE RICHARDSON NUMBER, NEW WAVE DISPLACEMENT |
---|
| 153 | C* AND STRESS: BREAKING EVALUATION AND CRITICAL |
---|
| 154 | C LEVEL |
---|
| 155 | C |
---|
| 156 | DO 431 ji=1,kgwd |
---|
| 157 | jl=kdx(ji) |
---|
| 158 | IF(JK.LT.KKNU2(JL)) THEN |
---|
| 159 | IF((PTAU(JL,JK+1).LT.GTSEC).OR.(JK.LE.KCRIT(JL))) THEN |
---|
| 160 | PTAU(JL,JK)=0.0 |
---|
| 161 | ELSE |
---|
| 162 | ZSQR=SQRT(PRI(JL,JK)) |
---|
| 163 | ZALFA=SQRT(PSTAB(JL,JK)*ZDZ2(JL,JK))/PVPH(JL,JK) |
---|
| 164 | ZRIW=PRI(JL,JK)*(1.-ZALFA)/(1+ZALFA*ZSQR)**2 |
---|
| 165 | IF(ZRIW.LT.GRCRIT) THEN |
---|
| 166 | ZDEL=4./ZSQR/GRCRIT+1./GRCRIT**2+4./GRCRIT |
---|
| 167 | ZB=1./GRCRIT+2./ZSQR |
---|
| 168 | ZALPHA=0.5*(-ZB+SQRT(ZDEL)) |
---|
| 169 | ZDZ2N=(PVPH(JL,JK)*ZALPHA)**2/PSTAB(JL,JK) |
---|
| 170 | PTAU(JL,JK)=ZNORM(JL)*ZDZ2N |
---|
| 171 | ELSE |
---|
| 172 | PTAU(JL,JK)=ZNORM(JL)*ZDZ2(JL,JK) |
---|
| 173 | ENDIF |
---|
| 174 | PTAU(JL,JK)=MIN(PTAU(JL,JK),PTAU(JL,JK+1)) |
---|
| 175 | ENDIF |
---|
| 176 | ENDIF |
---|
| 177 | 431 CONTINUE |
---|
| 178 | |
---|
| 179 | 430 CONTINUE |
---|
| 180 | 440 CONTINUE |
---|
| 181 | |
---|
| 182 | c write(*,*) 'ptau' |
---|
| 183 | c write(*,99) ((ji,ilevh,ptau(ji,ilevh),ji=1,NDLO2), |
---|
| 184 | c . ilevh=1,nlayermx+1) |
---|
| 185 | 99 FORMAT(i3,i3,f15.5) |
---|
| 186 | |
---|
| 187 | |
---|
| 188 | C REORGANISATION OF THE STRESS PROFILE |
---|
| 189 | C IF BREAKING OCCURS AT LOW LEVEL: |
---|
| 190 | |
---|
| 191 | DO 530 ji=1,kgwd |
---|
| 192 | jl=kdx(ji) |
---|
| 193 | ZTAU(JL,KKENVH(JL))=PTAU(JL,KKENVH(JL)) |
---|
| 194 | ZTAU(JL,KKCRITH(JL))=PTAU(JL,KKCRITH(JL)) |
---|
| 195 | 530 CONTINUE |
---|
| 196 | |
---|
| 197 | DO 531 JK=1,KLEV |
---|
| 198 | |
---|
| 199 | DO 532 ji=1,kgwd |
---|
| 200 | jl=kdx(ji) |
---|
| 201 | |
---|
| 202 | IF(JK.GT.KKCRITH(JL).AND.JK.LT.KKENVH(JL))THEN |
---|
| 203 | |
---|
| 204 | ZDELP=PAPHM1(JL,JK)-PAPHM1(JL,KKENVH(JL)) |
---|
| 205 | ZDELPT=PAPHM1(JL,KKCRITH(JL))-PAPHM1(JL,KKENVH(JL)) |
---|
| 206 | PTAU(JL,JK)=ZTAU(JL,KKENVH(JL)) + |
---|
| 207 | . (ZTAU(JL,KKCRITH(JL))-ZTAU(JL,KKENVH(JL)) )* |
---|
| 208 | . ZDELP/ZDELPT |
---|
| 209 | |
---|
| 210 | ENDIF |
---|
| 211 | |
---|
| 212 | 532 CONTINUE |
---|
| 213 | |
---|
| 214 | 531 CONTINUE |
---|
| 215 | |
---|
| 216 | RETURN |
---|
| 217 | END |
---|