source: trunk/LMDZ.MARS/libf/phymars/growthrate.F @ 1242

Last change on this file since 1242 was 1226, checked in by aslmd, 11 years ago

LMDZ.MARS : Replaced comcstfi and planete includes by modules.

File size: 3.5 KB
Line 
1      subroutine growthrate(temp,pmid,psat,rcrystal,res)
2
3      use tracer_mod, only: rho_ice
4      USE comcstfi_h
5      IMPLICIT NONE
6
7c=======================================================================
8c
9c     Determination of the water ice crystal growth rate
10c
11c     Authors: F. Montmessin
12c       Adapted for the LMD/GCM by J.-B. Madeleine (October 2011)
13c       Use of resistances in the analytical function
14c            instead of growth rate - T. Navarro (2012)
15c     
16c=======================================================================
17
18c-----------------------------------------------------------------------
19c   declarations:
20c   -------------
21
22#include "dimensions.h"
23#include "dimphys.h"
24!#include "tracer.h"
25#include "microphys.h"
26
27c
28c   arguments:
29c   ----------
30
31c     Input
32      REAL temp     ! temperature in the middle of the layer (K)
33      REAL pmid     ! pressure in the middle of the layer (K)
34      REAL psat   ! water vapor saturation pressure (Pa)
35      REAL rcrystal ! crystal radius before condensation (m)
36
37c     Output
38      REAL res      ! growth resistance (res=Rk+Rd)
39
40
41c   local:
42c   ------
43
44      REAL k,Lv                 
45      REAL knudsen           ! Knudsen number (gas mean free path/particle radius)
46      REAL afactor,Dv,lambda       ! Intermediate computations for growth rate
47      REAL Rk,Rd
48     
49     
50
51c-----------------------------------------------------------------------
52c      Ice particle growth rate by diffusion/impegement of water molecules
53c                r.dr/dt = (S-Seq) / (Seq*Rk+Rd)
54c        with r the crystal radius, Rk and Rd the resistances due to
55c        latent heat release and to vapor diffusion respectively
56c-----------------------------------------------------------------------
57
58c     - Equilibrium saturation accounting for KeLvin Effect
59c      seq=exp(2*sigh2o*mh2o/(rho_ice*rgp*t*r))
60c      (already computed in improvedcloud.F)
61
62c     - Thermal conductibility of CO2
63      k  = (0.17913 * temp - 13.9789) * 4.184e-4
64c     - Latent heat of h2o (J.kg-1)
65      Lv = (2834.3
66     &        - 0.28  * (temp-To)
67     &        - 0.004 * (temp-To) * (temp-To) ) * 1.e+3
68
69c     - Constant to compute gas mean free path
70c     l= (T/P)*a, with a = (  0.707*8.31/(4*pi*molrad**2 * avogadro))
71      afactor = 0.707*rgp/(4 * pi * molco2 * molco2 * nav)
72
73c     - Compute Dv, water vapor diffusion coefficient
74c       accounting for both kinetic and continuum regime of diffusion,
75c       the nature of which depending on the Knudsen number.
76
77      Dv = 1./3. * sqrt( 8*kbz*temp/(pi*mh2o/nav) )* kbz * temp /
78     &   ( pi * pmid * (molco2+molh2o)*(molco2+molh2o)
79     &        * sqrt(1.+mh2o/mco2) )
80     
81      knudsen = temp / pmid * afactor / rcrystal
82      lambda  = (1.333+0.71/knudsen) / (1.+1./knudsen)
83     
84c      Dv is not corrected. Instead, we use below coefficients coeff1, coeff2
85c      Dv      = Dv / (1. + lambda * knudsen)
86
87c     - Compute Rk
88      Rk = Lv*Lv* rho_ice * mh2o / (k*rgp*temp*temp)
89c     - Compute Rd
90      Rd = rgp * temp *rho_ice / (Dv*psat*mh2o)
91     
92     
93      res = Rk + Rd*(1. + lambda * knudsen)
94     
95      !coeff1 = real(Rk + Rd*(1. + lambda * knudsen))
96      !coeff2 = real(Rk + Rd*(1. - lambda * knudsen))
97     
98c Below are growth rate used for other schemes
99c     - Compute growth=rdr/dt, then r(t+1)= sqrt(r(t)**2.+2.*growth*dt)
100c      growth = 1. / (seq*Rk+Rd)
101c      growth = (ph2o/psat-seq) / (seq*Rk+Rd)
102c      rf   = sqrt( max( r**2.+2.*growth*timestep , 0. ) )
103c      dr   = rf-r
104
105      RETURN
106      END
107
Note: See TracBrowser for help on using the repository browser.