1 | MODULE flusv_mod |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | SUBROUTINE flusv(KDLON,nsf,n,omega,g,tau,emis,bh,bsol,fah,fdh) |
---|
8 | use dimradmars_mod, only: ndlo2, ndlon, nflev |
---|
9 | IMPLICIT NONE |
---|
10 | c....................................................................... |
---|
11 | c |
---|
12 | c compute the upward and downward fluxes at the interface between n layers |
---|
13 | c * in the infrared |
---|
14 | c * B is a linear function of $\tau$ in each layer |
---|
15 | c * B at the surface can be different than what corresponds to the profile |
---|
16 | c in the n-th layer |
---|
17 | c * the work hypothes isthat we have two isotropic fluxes for each |
---|
18 | c hemisphere ("hemispheric constant") + "technical source function" |
---|
19 | c (see Toon et al. 1988) |
---|
20 | c * the downward flux at the top of the atmosphere is zero |
---|
21 | c * layers are numbered from the top of the atmosphere to the ground |
---|
22 | c |
---|
23 | c in : * KDLON ---> vectorisation dimension |
---|
24 | c * nsf ---> nsf=0 ==> "hemispheric constant" |
---|
25 | c nsf>0 ==> "hemispheric constant" + "source function" |
---|
26 | c * n ---> number of layers |
---|
27 | c * omega(i) ---> single scattering albedo for the i-th layer |
---|
28 | c * g(i) ---> asymmetry parameter for the i-th layer |
---|
29 | c * tau(i) ---> optical thickness of the i-th layer |
---|
30 | c * emis ---> ground emissivity |
---|
31 | c * bh(i) ---> black body luminance at the top of the i-th layer, |
---|
32 | c bh(n+1) for the ground value which |
---|
33 | c corresponds to the profile for the n-th layer |
---|
34 | c * bsol ---> black body luminance of the ground |
---|
35 | c |
---|
36 | c out : * fah(i) ---> upward flux at the top of the i-th layer, |
---|
37 | c fah(n+1) for the ground |
---|
38 | c * fdh(i) ---> downward flux at the top of the i-th layer, |
---|
39 | c fdh(n+1) for the ground |
---|
40 | c |
---|
41 | c....................................................................... |
---|
42 | c arguments |
---|
43 | c |
---|
44 | INTEGER,INTENT(IN) :: KDLON,nsf,n |
---|
45 | REAL,INTENT(IN) :: omega(NDLO2,n),g(NDLO2,n) |
---|
46 | REAL,INTENT(IN) :: tau(NDLO2,n),emis(NDLO2) |
---|
47 | REAL,INTENT(IN) :: bh(NDLO2,n+1),bsol(NDLO2) |
---|
48 | REAL,INTENT(OUT) :: fah(NDLO2,n+1),fdh(NDLO2,n+1) |
---|
49 | c....................................................................... |
---|
50 | c local variables |
---|
51 | c |
---|
52 | REAL,PARAMETER :: pi=3.141592653589793E+0 |
---|
53 | INTEGER iv,i,j |
---|
54 | REAL beta,gama1,gama2,amu1,grgama,b0,b1 |
---|
55 | REAL a(NDLON,4*nflev),b(NDLON,4*nflev) |
---|
56 | & ,d(NDLON,4*nflev),e(NDLON,4*nflev) |
---|
57 | & ,y(NDLON,4*nflev) |
---|
58 | & ,alambda(NDLON,2*nflev) |
---|
59 | & ,e1(NDLON,2*nflev),e2(NDLON,2*nflev) |
---|
60 | & ,e3(NDLON,2*nflev),e4(NDLON,2*nflev) |
---|
61 | & ,cah(NDLON,2*nflev),cab(NDLON,2*nflev) |
---|
62 | & ,cdh(NDLON,2*nflev),cdb(NDLON,2*nflev) |
---|
63 | REAL grg(NDLON,2*nflev),grh(NDLON,2*nflev) |
---|
64 | & ,grj(NDLON,2*nflev),grk(NDLON,2*nflev) |
---|
65 | & ,alpha1(NDLON,2*nflev),alpha2(NDLON,2*nflev) |
---|
66 | & ,sigma1(NDLON,2*nflev),sigma2(NDLON,2*nflev) |
---|
67 | INTEGER,PARAMETER :: nq=8 |
---|
68 | REAL,PARAMETER :: x(nq) = |
---|
69 | & (/1.9855071751231860E-2 , 0.1016667612931866E+0 |
---|
70 | & , 0.2372337950418355E+0 , 0.4082826787521751E+0 |
---|
71 | & , 0.5917173212478250E+0 , 0.7627662049581645E+0 |
---|
72 | & , 0.8983332387068134E+0 , 0.9801449282487682E+0/) |
---|
73 | REAL,PARAMETER :: w(nq) = |
---|
74 | & (/5.0614268145185310E-2 , 0.1111905172266872E+0 |
---|
75 | & , 0.1568533229389437E+0 , 0.1813418916891810E+0 |
---|
76 | & , 0.1813418916891810E+0 , 0.1568533229389437E+0 |
---|
77 | & , 0.1111905172266872E+0 , 5.0614268145185310E-2/) |
---|
78 | REAL :: gri(NDLON,nq) |
---|
79 | c....................................................................... |
---|
80 | c |
---|
81 | c....................................................................... |
---|
82 | do i=1,n |
---|
83 | do iv=1,KDLON |
---|
84 | beta=(1.E+0-g(iv,i))/2.E+0 |
---|
85 | gama1=2.E+0*(1.E+0-omega(iv,i)*(1.E+0-beta)) |
---|
86 | gama2=2.E+0*omega(iv,i)*beta |
---|
87 | amu1=5.E-1 |
---|
88 | alambda(iv,i)=sqrt(gama1**2-gama2**2) |
---|
89 | grgama=(gama1-alambda(iv,i))/gama2 |
---|
90 | c |
---|
91 | c small hack here : if the optical depth of a layer is too small, |
---|
92 | c $dB \over d\tau$ becomes very large and the scheme fails. |
---|
93 | c In those cases we assume an isothermal layer. |
---|
94 | c |
---|
95 | if (tau(iv,i).gt.1.E-3) then |
---|
96 | b0=bh(iv,i) |
---|
97 | b1=(bh(iv,i+1)-b0)/tau(iv,i) |
---|
98 | else |
---|
99 | b0=(bh(iv,i)+bh(iv,i+1))/2.E+0 |
---|
100 | b1=0.E+0 |
---|
101 | endif |
---|
102 | c |
---|
103 | e1(iv,i)=1.E+0+grgama*exp(-alambda(iv,i)*tau(iv,i)) |
---|
104 | e2(iv,i)=1.E+0-grgama*exp(-alambda(iv,i)*tau(iv,i)) |
---|
105 | e3(iv,i)=grgama+exp(-alambda(iv,i)*tau(iv,i)) |
---|
106 | e4(iv,i)=grgama-exp(-alambda(iv,i)*tau(iv,i)) |
---|
107 | cah(iv,i)=2.E+0*pi*amu1*(b0+b1/(gama1+gama2)) |
---|
108 | cab(iv,i)=2.E+0*pi*amu1*(b0+b1*(tau(iv,i)+1.E+0/(gama1+gama2))) |
---|
109 | cdh(iv,i)=2.E+0*pi*amu1*(b0-b1/(gama1+gama2)) |
---|
110 | cdb(iv,i)=2.E+0*pi*amu1*(b0+b1*(tau(iv,i)-1.E+0/(gama1+gama2))) |
---|
111 | c |
---|
112 | grg(iv,i)=(1.E+0/amu1-alambda(iv,i)) |
---|
113 | grh(iv,i)=grgama*(alambda(iv,i)+1.E+0/amu1) |
---|
114 | grj(iv,i)=grh(iv,i) |
---|
115 | grk(iv,i)=grg(iv,i) |
---|
116 | alpha1(iv,i)=2.E+0*pi*(b0+b1*(1.E+0/(gama1+gama2)-amu1)) |
---|
117 | alpha2(iv,i)=2.E+0*pi*b1 |
---|
118 | sigma1(iv,i)=2.E+0*pi*(b0-b1*(1.E+0/(gama1+gama2)-amu1)) |
---|
119 | sigma2(iv,i)=alpha2(iv,i) |
---|
120 | c |
---|
121 | enddo ! of do iv=1,KDLON |
---|
122 | enddo ! of do i=1,n |
---|
123 | c....................................................................... |
---|
124 | do iv=1,KDLON |
---|
125 | a(iv,1)=0.E+0 |
---|
126 | b(iv,1)=e1(iv,1) |
---|
127 | d(iv,1)=-e2(iv,1) |
---|
128 | e(iv,1)=-cdh(iv,1) |
---|
129 | enddo |
---|
130 | c |
---|
131 | do i=1,n-1 |
---|
132 | j=2*i+1 |
---|
133 | do iv=1,KDLON |
---|
134 | a(iv,j)=e2(iv,i)*e3(iv,i)-e4(iv,i)*e1(iv,i) |
---|
135 | b(iv,j)=e1(iv,i)*e1(iv,i+1)-e3(iv,i)*e3(iv,i+1) |
---|
136 | d(iv,j)=e3(iv,i)*e4(iv,i+1)-e1(iv,i)*e2(iv,i+1) |
---|
137 | e(iv,j)=e3(iv,i)*(cah(iv,i+1)-cab(iv,i)) |
---|
138 | & +e1(iv,i)*(cdb(iv,i)-cdh(iv,i+1)) |
---|
139 | enddo |
---|
140 | enddo ! of do i=1,n-1 |
---|
141 | c |
---|
142 | do i=1,n-1 |
---|
143 | j=2*i |
---|
144 | do iv=1,KDLON |
---|
145 | a(iv,j)=e2(iv,i+1)*e1(iv,i)-e3(iv,i)*e4(iv,i+1) |
---|
146 | b(iv,j)=e2(iv,i)*e2(iv,i+1)-e4(iv,i)*e4(iv,i+1) |
---|
147 | d(iv,j)=e1(iv,i+1)*e4(iv,i+1)-e2(iv,i+1)*e3(iv,i+1) |
---|
148 | e(iv,j)=e2(iv,i+1)*(cah(iv,i+1)-cab(iv,i)) |
---|
149 | & +e4(iv,i+1)*(cdb(iv,i)-cdh(iv,i+1)) |
---|
150 | enddo |
---|
151 | enddo ! of do i=1,n-1 |
---|
152 | c |
---|
153 | j=2*n |
---|
154 | do iv=1,KDLON |
---|
155 | a(iv,j)=e1(iv,n)-(1.E+0-emis(iv))*e3(iv,n) |
---|
156 | b(iv,j)=e2(iv,n)-(1.E+0-emis(iv))*e4(iv,n) |
---|
157 | d(iv,j)=0.E+0 |
---|
158 | e(iv,j)=emis(iv)*pi*bsol(iv)-cab(iv,n) |
---|
159 | & +(1.E+0-emis(iv))*cdb(iv,n) |
---|
160 | enddo |
---|
161 | c....................................................................... |
---|
162 | call sys3v(KDLON,2*n,a,b,d,e,y) |
---|
163 | c....................................................................... |
---|
164 | do i=1,n |
---|
165 | do iv=1,KDLON |
---|
166 | grg(iv,i)=grg(iv,i)*(y(iv,2*i-1)+y(iv,2*i)) |
---|
167 | grh(iv,i)=grh(iv,i)*(y(iv,2*i-1)-y(iv,2*i)) |
---|
168 | grj(iv,i)=grj(iv,i)*(y(iv,2*i-1)+y(iv,2*i)) |
---|
169 | grk(iv,i)=grk(iv,i)*(y(iv,2*i-1)-y(iv,2*i)) |
---|
170 | enddo |
---|
171 | enddo |
---|
172 | c....................................................................... |
---|
173 | c values of "hemispheric constant" fluxes |
---|
174 | c |
---|
175 | IF (nsf.eq.0) THEN |
---|
176 | do i=1,n |
---|
177 | do iv=1,KDLON |
---|
178 | fah(iv,i)=e3(iv,i)*y(iv,2*i-1)-e4(iv,i)*y(iv,2*i)+cah(iv,i) |
---|
179 | fdh(iv,i)=e1(iv,i)*y(iv,2*i-1)-e2(iv,i)*y(iv,2*i)+cdh(iv,i) |
---|
180 | enddo |
---|
181 | enddo |
---|
182 | do iv=1,KDLON |
---|
183 | fah(iv,n+1)=e1(iv,n)*y(iv,2*n-1)+e2(iv,n)*y(iv,2*n)+cab(iv,n) |
---|
184 | fdh(iv,n+1)=e3(iv,n)*y(iv,2*n-1)+e4(iv,n)*y(iv,2*n)+cdb(iv,n) |
---|
185 | enddo |
---|
186 | ELSE |
---|
187 | c....................................................................... |
---|
188 | c going to the "source function" |
---|
189 | c |
---|
190 | c apply a quadrature over nq (fixed parameter) points |
---|
191 | c x is the vector of the \mu of the quadrature |
---|
192 | c w is the vector of corresponding weights |
---|
193 | c x() et w() are fixed parameters |
---|
194 | c |
---|
195 | c....................................................................... |
---|
196 | c start from the top and go down along the nq angles to compute all |
---|
197 | c downward fluxes |
---|
198 | c |
---|
199 | do j=1,nq |
---|
200 | do iv=1,KDLON |
---|
201 | gri(iv,j)=0.E+0 |
---|
202 | enddo |
---|
203 | enddo |
---|
204 | do iv=1,KDLON |
---|
205 | fdh(iv,1)=0.E+0 |
---|
206 | enddo |
---|
207 | do i=1,n |
---|
208 | do j=1,nq |
---|
209 | do iv=1,KDLON |
---|
210 | gri(iv,j)=gri(iv,j)*exp(-tau(iv,i)/x(j)) |
---|
211 | & +grj(iv,i)/(alambda(iv,i)*x(j)+1.E+0) |
---|
212 | & *(1.E+0-exp(-tau(iv,i)*(alambda(iv,i)+1.E+0/x(j)))) |
---|
213 | & +grk(iv,i)/(alambda(iv,i)*x(j)-1.E+0) |
---|
214 | & *(exp(-tau(iv,i)/x(j))-exp(-tau(iv,i)*alambda(iv,i))) |
---|
215 | & +sigma1(iv,i)*(1.E+0-exp(-tau(iv,i)/x(j))) |
---|
216 | & +sigma2(iv,i)*(x(j)*exp(-tau(iv,i)/x(j))+tau(iv,i)-x(j)) |
---|
217 | enddo ! of do iv=1,KDLON |
---|
218 | enddo ! of do j=1,nq |
---|
219 | do iv=1,KDLON |
---|
220 | fdh(iv,i+1)=0.E+0 |
---|
221 | enddo |
---|
222 | do j=1,nq |
---|
223 | do iv=1,KDLON |
---|
224 | fdh(iv,i+1)=fdh(iv,i+1)+w(j)*x(j)*gri(iv,j) |
---|
225 | enddo ! of do iv=1,KDLON |
---|
226 | enddo ! of do j=1,nq |
---|
227 | enddo ! of do i=1,n |
---|
228 | c....................................................................... |
---|
229 | c apply the reflexion condition on the ground |
---|
230 | c |
---|
231 | do iv=1,KDLON |
---|
232 | fah(iv,n+1)=(1.E+0-emis(iv))*fdh(iv,n+1)+pi*emis(iv)*bsol(iv) |
---|
233 | enddo |
---|
234 | do j=1,nq |
---|
235 | do iv=1,KDLON |
---|
236 | gri(iv,j)=2.E+0*fah(iv,n+1) |
---|
237 | enddo |
---|
238 | enddo |
---|
239 | c....................................................................... |
---|
240 | c going back up to compute all the upward fluxes |
---|
241 | c |
---|
242 | do i=n,1,-1 |
---|
243 | do j=1,nq |
---|
244 | do iv=1,KDLON |
---|
245 | gri(iv,j)=gri(iv,j)*exp(-tau(iv,i)/x(j)) |
---|
246 | & +grg(iv,i)/(alambda(iv,i)*x(j)-1.E+0) |
---|
247 | & *(exp(-tau(iv,i)/x(j))-exp(-tau(iv,i)*alambda(iv,i))) |
---|
248 | & +grh(iv,i)/(alambda(iv,i)*x(j)+1.E+0) |
---|
249 | & *(1.E+0-exp(-tau(iv,i)*(alambda(iv,i)+1.E+0/x(j)))) |
---|
250 | & +alpha1(iv,i)*(1.E+0-exp(-tau(iv,i)/x(j))) |
---|
251 | & +alpha2(iv,i)*(x(j)-(tau(iv,i)+x(j))*exp(-tau(iv,i)/x(j))) |
---|
252 | enddo ! of do iv=1,KDLON |
---|
253 | enddo ! of do j=1,nq |
---|
254 | do iv=1,KDLON |
---|
255 | fah(iv,i)=0.E+0 |
---|
256 | enddo |
---|
257 | do j=1,nq |
---|
258 | do iv=1,KDLON |
---|
259 | fah(iv,i)=fah(iv,i)+w(j)*x(j)*gri(iv,j) |
---|
260 | enddo |
---|
261 | enddo ! of do j=1,nq |
---|
262 | enddo ! of do i=n,1,-1 |
---|
263 | c....................................................................... |
---|
264 | ENDIF ! of IF (nsf.eq.0) |
---|
265 | c....................................................................... |
---|
266 | c |
---|
267 | c....................................................................... |
---|
268 | |
---|
269 | END SUBROUTINE flusv |
---|
270 | |
---|
271 | c *************************************************************** |
---|
272 | |
---|
273 | |
---|
274 | SUBROUTINE sys3v(KDLON,n,a,b,d,e,y) |
---|
275 | use dimradmars_mod, only: ndlon, ndlo2, nflev |
---|
276 | IMPLICIT NONE |
---|
277 | c....................................................................... |
---|
278 | c |
---|
279 | c solve a tridiagonal linear system such that: |
---|
280 | c |
---|
281 | c | b1 d1 | | y1 | | e1 | |
---|
282 | c | a2 b2 d2 | | y2 | | e2 | |
---|
283 | c | a3 b3 d3 | * | y3 | = | e3 | |
---|
284 | c | .... | | | | | |
---|
285 | c | an bn | | yn | | en | |
---|
286 | c |
---|
287 | c in : * KDLON --> vectorisation dimension |
---|
288 | c * n --> system size |
---|
289 | c * a,b,d,e --> coefficients as shown above |
---|
290 | c |
---|
291 | c out : * y --> see above |
---|
292 | c |
---|
293 | c....................................................................... |
---|
294 | c arguments |
---|
295 | c |
---|
296 | INTEGER,INTENT(IN) :: KDLON,n |
---|
297 | REAL,INTENT(IN) :: a(NDLO2,n),b(NDLO2,n),d(NDLO2,n),e(NDLO2,n) |
---|
298 | REAL,INTENT(OUT) :: y(NDLO2,n) |
---|
299 | c....................................................................... |
---|
300 | c local variables |
---|
301 | c |
---|
302 | INTEGER :: iv,i |
---|
303 | REAL :: as(NDLON,4*nflev),ds(NDLON,4*nflev) |
---|
304 | & ,x(NDLON,4*nflev) |
---|
305 | c....................................................................... |
---|
306 | c |
---|
307 | c....................................................................... |
---|
308 | do iv=1,KDLON |
---|
309 | as(iv,n)=a(iv,n)/b(iv,n) |
---|
310 | ds(iv,n)=e(iv,n)/b(iv,n) |
---|
311 | enddo |
---|
312 | do i=n-1,1,-1 |
---|
313 | do iv=1,KDLON |
---|
314 | x(iv,i)=1.E+0/(b(iv,i)-d(iv,i)*as(iv,i+1)) |
---|
315 | as(iv,i)=a(iv,i)*x(iv,i) |
---|
316 | ds(iv,i)=(e(iv,i)-d(iv,i)*ds(iv,i+1))*x(iv,i) |
---|
317 | enddo |
---|
318 | enddo |
---|
319 | do iv=1,KDLON |
---|
320 | y(iv,1)=ds(iv,1) |
---|
321 | enddo |
---|
322 | do i=2,n |
---|
323 | do iv=1,KDLON |
---|
324 | y(iv,i)=ds(iv,i)-as(iv,i)*y(iv,i-1) |
---|
325 | enddo |
---|
326 | enddo |
---|
327 | c....................................................................... |
---|
328 | c |
---|
329 | c....................................................................... |
---|
330 | |
---|
331 | END SUBROUTINE sys3v |
---|
332 | |
---|
333 | END MODULE flusv_mod |
---|