| 1 | MODULE co2condens_mod |
|---|
| 2 | |
|---|
| 3 | IMPLICIT NONE |
|---|
| 4 | |
|---|
| 5 | logical, save :: scavco2cond = .false. ! flag for using scavenging_by_co2 |
|---|
| 6 | !$OMP THREADPRIVATE(scavco2cond) |
|---|
| 7 | |
|---|
| 8 | CONTAINS |
|---|
| 9 | |
|---|
| 10 | SUBROUTINE co2condens(ngrid,nlayer,nq,nslope,ptimestep, |
|---|
| 11 | $ pcapcal,pplay,pplev,ptsrf,pt, |
|---|
| 12 | $ pphi,pdt,pdu,pdv,pdtsrf,pu,pv,pq,pdq, |
|---|
| 13 | $ piceco2,psolaralb,pemisurf,rdust, |
|---|
| 14 | $ pdtc,pdtsrfc,pdpsrf,pduc,pdvc,pdqc, |
|---|
| 15 | $ fluxsurf_sw,zls, |
|---|
| 16 | $ zdqssed_co2,pcondicea_co2microp, |
|---|
| 17 | $ pdqsc) |
|---|
| 18 | |
|---|
| 19 | use tracer_mod, only: noms, igcm_h2o_ice, igcm_h2o_vap, |
|---|
| 20 | & igcm_dust_mass, igcm_dust_number, |
|---|
| 21 | & igcm_ccn_mass, igcm_ccn_number, |
|---|
| 22 | & igcm_hdo_ice, igcm_hdo_vap, |
|---|
| 23 | & nqperes,nqfils, ! MVals: variables isotopes |
|---|
| 24 | & qperemin,masseqmin, |
|---|
| 25 | & igcm_co2 |
|---|
| 26 | use surfdat_h, only: emissiv |
|---|
| 27 | use geometry_mod, only: latitude, ! grid point latitudes (rad) |
|---|
| 28 | & longitude_deg, latitude_deg |
|---|
| 29 | use planete_h, only: obliquit |
|---|
| 30 | use comcstfi_h, only: cpp, g, r, pi |
|---|
| 31 | use dust_param_mod, only: freedust |
|---|
| 32 | use write_output_mod, only: write_output |
|---|
| 33 | #ifndef MESOSCALE |
|---|
| 34 | USE vertical_layers_mod, ONLY: ap, bp |
|---|
| 35 | #endif |
|---|
| 36 | use comslope_mod, ONLY: subslope_dist,def_slope_mean |
|---|
| 37 | IMPLICIT NONE |
|---|
| 38 | c======================================================================= |
|---|
| 39 | c subject: |
|---|
| 40 | c -------- |
|---|
| 41 | c Condensation/sublimation of CO2 ice on the ground and in the |
|---|
| 42 | c atmosphere |
|---|
| 43 | c (Scheme described in Forget et al., Icarus, 1998) |
|---|
| 44 | c |
|---|
| 45 | c author: Francois Forget 1994-1996 ; updated 1996 -- 2018 |
|---|
| 46 | c ------ |
|---|
| 47 | c adapted to external CO2 ice clouds scheme by Deborah Bardet (2018) ' |
|---|
| 48 | c |
|---|
| 49 | c======================================================================= |
|---|
| 50 | c |
|---|
| 51 | c 0. Declarations : |
|---|
| 52 | c ------------------ |
|---|
| 53 | c |
|---|
| 54 | include "callkeys.h" |
|---|
| 55 | |
|---|
| 56 | c----------------------------------------------------------------------- |
|---|
| 57 | c Arguments : |
|---|
| 58 | c --------- |
|---|
| 59 | INTEGER,INTENT(IN) :: ngrid ! number of atmospheric columns |
|---|
| 60 | INTEGER,INTENT(IN) :: nlayer ! number of vertical layers |
|---|
| 61 | INTEGER,INTENT(IN) :: nq ! number of tracers |
|---|
| 62 | INTEGER,INTENT(IN) :: nslope ! number of subslope |
|---|
| 63 | |
|---|
| 64 | REAL,INTENT(IN) :: ptimestep ! physics timestep (s) |
|---|
| 65 | REAL,INTENT(IN) :: pcapcal(ngrid,nslope) |
|---|
| 66 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) !mid-layer pressure (Pa) |
|---|
| 67 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) ! inter-layer pressure (Pa) |
|---|
| 68 | REAL,INTENT(IN) :: ptsrf(ngrid,nslope) ! surface temperature (K) |
|---|
| 69 | REAL,INTENT(IN) :: pt(ngrid,nlayer) ! atmospheric temperature (K) |
|---|
| 70 | REAL,INTENT(IN) :: pphi(ngrid,nlayer) ! geopotential (m2.s-2) |
|---|
| 71 | REAL,INTENT(IN) :: pdt(ngrid,nlayer) ! tendency on temperature from |
|---|
| 72 | ! previous physical processes (K/s) |
|---|
| 73 | REAL,INTENT(IN) :: pdu(ngrid,nlayer) ! tendency on zonal wind (m/s2) |
|---|
| 74 | ! from previous physical processes |
|---|
| 75 | REAL,INTENT(IN) :: pdv(ngrid,nlayer) ! tendency on meridional wind (m/s2) |
|---|
| 76 | ! from previous physical processes |
|---|
| 77 | REAL,INTENT(IN) :: pdtsrf(ngrid,nslope) ! tendency on surface temperature from |
|---|
| 78 | ! previous physical processes (K/s) |
|---|
| 79 | REAL,INTENT(IN) :: pu(ngrid,nlayer) ! zonal wind (m/s) |
|---|
| 80 | REAL,INTENT(IN) :: pv(ngrid,nlayer) ! meridional wind (m/s) |
|---|
| 81 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) ! tracers (../kg_air) |
|---|
| 82 | REAL,INTENT(IN) :: pdq(ngrid,nlayer,nq) ! tendency on tracers from |
|---|
| 83 | ! previous physical processes |
|---|
| 84 | |
|---|
| 85 | REAL,INTENT(IN) :: zdqssed_co2(ngrid) ! CO2 flux at the surface (kg.m-2.s-1) |
|---|
| 86 | REAL,INTENT(IN) :: pcondicea_co2microp(ngrid,nlayer)! tendency due to CO2 condensation (kg/kg.s-1) |
|---|
| 87 | |
|---|
| 88 | REAL,INTENT(INOUT) :: piceco2(ngrid,nslope) ! CO2 ice on the surface (kg.m-2) |
|---|
| 89 | REAL,INTENT(INOUT) :: psolaralb(ngrid,2,nslope) ! albedo of the surface |
|---|
| 90 | REAL,INTENT(INOUT) :: pemisurf(ngrid,nslope) ! emissivity of the surface |
|---|
| 91 | REAL,INTENT(IN) :: rdust(ngrid,nlayer) ! dust effective radius |
|---|
| 92 | |
|---|
| 93 | ! tendencies due to CO2 condensation/sublimation: |
|---|
| 94 | REAL,INTENT(OUT) :: pdtc(ngrid,nlayer) ! tendency on temperature (K/s) |
|---|
| 95 | REAL,INTENT(OUT) :: pdtsrfc(ngrid,nslope) ! tendency on surface temperature (K/s) |
|---|
| 96 | REAL,INTENT(OUT) :: pdpsrf(ngrid) ! tendency on surface pressure (Pa/s) |
|---|
| 97 | REAL,INTENT(OUT) :: pduc(ngrid,nlayer) ! tendency on zonal wind (m.s-2) |
|---|
| 98 | REAL,INTENT(OUT) :: pdvc(ngrid,nlayer) ! tendency on meridional wind (m.s-2) |
|---|
| 99 | REAL,INTENT(OUT) :: pdqc(ngrid,nlayer,nq) ! tendency on tracers |
|---|
| 100 | REAL,INTENT(OUT) :: pdqsc(ngrid,nq) ! tendency on surface tracers |
|---|
| 101 | |
|---|
| 102 | ! added to calculate flux dependent albedo: |
|---|
| 103 | REAL,intent(in) :: fluxsurf_sw(ngrid,2) |
|---|
| 104 | real,intent(in) :: zls ! solar longitude (rad) |
|---|
| 105 | |
|---|
| 106 | c |
|---|
| 107 | c Local variables : |
|---|
| 108 | c ----------------- |
|---|
| 109 | |
|---|
| 110 | INTEGER i,j |
|---|
| 111 | INTEGER l,ig,iq,icap |
|---|
| 112 | REAL zt(ngrid,nlayer) |
|---|
| 113 | REAL zcpi |
|---|
| 114 | REAL ztcond (ngrid,nlayer+1) ! CO2 condensation temperature (atm) |
|---|
| 115 | REAL ztcondsol(ngrid) ! CO2 condensation temperature (surface) |
|---|
| 116 | REAL zdiceco2(ngrid,nslope) |
|---|
| 117 | REAL zdiceco2_mesh_avg(ngrid) |
|---|
| 118 | REAL zcondicea(ngrid,nlayer) ! condensation rate in layer l (kg/m2/s) |
|---|
| 119 | REAL zcondices(ngrid,nslope) ! condensation rate on the ground (kg/m2/s) |
|---|
| 120 | REAL zcondices_mesh_avg(ngrid) ! condensation rate on the ground (kg/m2/s) |
|---|
| 121 | REAL zfallice(ngrid,nlayer+1) ! amount of ice falling from layer l (kg/m2/s) |
|---|
| 122 | REAL condens_layer(ngrid,nlayer) ! co2clouds: condensation rate in layer l (kg/m2/s) |
|---|
| 123 | REAL condens_column(ngrid) ! co2clouds: sum(condens_layer(ig,:)) (kg/m2/s) |
|---|
| 124 | REAL zfallheat |
|---|
| 125 | REAL zmflux(nlayer+1) |
|---|
| 126 | REAL zu(nlayer),zv(nlayer) |
|---|
| 127 | REAL zqc(nlayer,nq),zq1(nlayer) |
|---|
| 128 | REAL ztsrf(ngrid,nslope) |
|---|
| 129 | REAL ztc(nlayer), ztm(nlayer+1) |
|---|
| 130 | REAL zum(nlayer+1) , zvm(nlayer+1) |
|---|
| 131 | REAL zqm(nlayer+1,nq),zqm1(nlayer+1) |
|---|
| 132 | REAL masse(nlayer),w(nlayer+1) |
|---|
| 133 | REAL Sm(nlayer),Smq(nlayer,nq),mixmas,qmix |
|---|
| 134 | REAL availco2 |
|---|
| 135 | LOGICAL condsub(ngrid,nslope) |
|---|
| 136 | |
|---|
| 137 | real :: emisref(ngrid,nslope) |
|---|
| 138 | |
|---|
| 139 | REAL zdq_scav(ngrid,nlayer,nq) ! tendency due to scavenging by co2 |
|---|
| 140 | REAL zq(ngrid,nlayer,nq) |
|---|
| 141 | |
|---|
| 142 | c variable speciale diagnostique |
|---|
| 143 | real tconda1(ngrid,nlayer) |
|---|
| 144 | real tconda2(ngrid,nlayer) |
|---|
| 145 | c REAL zdiceco2a(ngrid) ! for diagnostic only |
|---|
| 146 | real zdtsig (ngrid,nlayer) |
|---|
| 147 | real zdt (ngrid,nlayer) |
|---|
| 148 | real vmr_co2(ngrid,nlayer) ! co2 volume mixing ratio |
|---|
| 149 | ! improved_ztcond flag: If set to .true. (AND running with a 'co2' tracer) |
|---|
| 150 | ! then condensation temperature is computed using partial pressure of CO2 |
|---|
| 151 | logical,parameter :: improved_ztcond=.true. |
|---|
| 152 | |
|---|
| 153 | c local saved variables |
|---|
| 154 | integer,save :: ico2 ! index of CO2 tracer |
|---|
| 155 | real,save :: qco2,mmean |
|---|
| 156 | real,parameter :: latcond=5.9e5 ! (J/kg) Latent heat of solid CO2 ice |
|---|
| 157 | real,parameter :: tcond1mb=136.27 ! condensation temperature (K) at 1 mbar |
|---|
| 158 | real,parameter :: cpice=1000. ! (J.kg-1.K-1) specific heat of CO2 ice |
|---|
| 159 | REAL,SAVE :: acond,bcond,ccond |
|---|
| 160 | real,save :: m_co2, m_noco2, A , B |
|---|
| 161 | |
|---|
| 162 | LOGICAL,SAVE :: firstcall = .true. !,firstcall2=.true. |
|---|
| 163 | |
|---|
| 164 | !$OMP THREADPRIVATE(ico2,qco2,mmean,acond,bcond,ccond,m_co2,m_noco2) |
|---|
| 165 | !$OMP THREADPRIVATE(A,B,firstcall) |
|---|
| 166 | |
|---|
| 167 | c D.BARDET: for debug |
|---|
| 168 | real ztc3D(ngrid,nlayer) |
|---|
| 169 | REAL ztm3D(ngrid,nlayer) |
|---|
| 170 | REAL zmflux3D(ngrid,nlayer) |
|---|
| 171 | |
|---|
| 172 | c MVals: variables isotopes |
|---|
| 173 | REAL Ratio1(nlayer),Ratiom1(nlayer+1) |
|---|
| 174 | REAL masseq(nlayer),wq(nlayer+1) |
|---|
| 175 | INTEGER ifils,iq2 |
|---|
| 176 | |
|---|
| 177 | c Subslope: |
|---|
| 178 | |
|---|
| 179 | REAL :: emisref_tmp(ngrid) |
|---|
| 180 | REAL :: alb_tmp(ngrid,2) ! local |
|---|
| 181 | REAL :: zcondices_tmp(ngrid) ! local |
|---|
| 182 | REAL :: piceco2_tmp(ngrid) ! local |
|---|
| 183 | REAL :: pemisurf_tmp(ngrid)! local |
|---|
| 184 | LOGICAL :: condsub_tmp(ngrid) !local |
|---|
| 185 | REAL :: zfallice_tmp(ngrid,nlayer+1) |
|---|
| 186 | REAL :: condens_layer_tmp(ngrid,nlayer) ! co2clouds: condensation rate in layer l (kg/m2/s) |
|---|
| 187 | INTEGER :: islope |
|---|
| 188 | c---------------------------------------------------------------------- |
|---|
| 189 | |
|---|
| 190 | c Initialisation |
|---|
| 191 | c -------------- |
|---|
| 192 | c |
|---|
| 193 | ! AS: firstcall OK absolute |
|---|
| 194 | IF (firstcall) THEN |
|---|
| 195 | |
|---|
| 196 | bcond=1./tcond1mb |
|---|
| 197 | ccond=cpp/(g*latcond) |
|---|
| 198 | acond=r/latcond |
|---|
| 199 | |
|---|
| 200 | firstcall=.false. |
|---|
| 201 | write(*,*) 'CO2condens: improved_ztcond=',improved_ztcond |
|---|
| 202 | PRINT*,'In co2condens:Tcond(P=1mb)=',tcond1mb,' Lcond=',latcond |
|---|
| 203 | PRINT*,'acond,bcond,ccond',acond,bcond,ccond |
|---|
| 204 | |
|---|
| 205 | ico2=0 |
|---|
| 206 | |
|---|
| 207 | c Prepare Special treatment if one of the tracer is CO2 gas |
|---|
| 208 | do iq=1,nq |
|---|
| 209 | if (noms(iq).eq."co2") then |
|---|
| 210 | ico2=iq |
|---|
| 211 | m_co2 = 44.01E-3 ! CO2 molecular mass (kg/mol) |
|---|
| 212 | m_noco2 = 33.37E-3 ! Non condensible mol mass (kg/mol) |
|---|
| 213 | c Compute A and B coefficient use to compute |
|---|
| 214 | c mean molecular mass Mair defined by |
|---|
| 215 | c 1/Mair = q(ico2)/m_co2 + (1-q(ico2))/m_noco2 |
|---|
| 216 | c 1/Mair = A*q(ico2) + B |
|---|
| 217 | A =(1/m_co2 - 1/m_noco2) |
|---|
| 218 | B=1/m_noco2 |
|---|
| 219 | endif |
|---|
| 220 | enddo |
|---|
| 221 | ENDIF ! of IF (firstcall) |
|---|
| 222 | zcpi=1./cpp |
|---|
| 223 | |
|---|
| 224 | c |
|---|
| 225 | c====================================================================== |
|---|
| 226 | c Calcul of CO2 condensation sublimation |
|---|
| 227 | c ============================================================ |
|---|
| 228 | c |
|---|
| 229 | c Used variable : |
|---|
| 230 | c piceco2(ngrid) : amount of co2 ice on the ground (kg/m2) |
|---|
| 231 | c zcondicea(ngrid,l): condensation rate in layer l (kg/m2/s) |
|---|
| 232 | c zcondices(ngrid): condensation rate on the ground (kg/m2/s) |
|---|
| 233 | c zfallice(ngrid,l):amount of ice falling from layer l (kg/m2/s) |
|---|
| 234 | c |
|---|
| 235 | c pdtc(ngrid,nlayer) : dT/dt due to cond/sub |
|---|
| 236 | c |
|---|
| 237 | c |
|---|
| 238 | c Tendencies set to 0 |
|---|
| 239 | c ------------------------------------- |
|---|
| 240 | zcondicea(1:ngrid,1:nlayer) = 0. |
|---|
| 241 | zfallice(1:ngrid,1:nlayer+1) = 0. |
|---|
| 242 | pduc(1:ngrid,1:nlayer) = 0 |
|---|
| 243 | pdvc(1:ngrid,1:nlayer) = 0 |
|---|
| 244 | pdtc(1:ngrid,1:nlayer) = 0. |
|---|
| 245 | pdqsc(1:ngrid,1:nq) = 0 |
|---|
| 246 | |
|---|
| 247 | pdqc(1:ngrid,1:nlayer,1:nq) = 0 |
|---|
| 248 | |
|---|
| 249 | zcondices(1:ngrid,1:nslope) = 0. |
|---|
| 250 | zcondices_mesh_avg(1:ngrid)=0. |
|---|
| 251 | pdtsrfc(1:ngrid,1:nslope) = 0. |
|---|
| 252 | pdpsrf(1:ngrid) = 0. |
|---|
| 253 | condsub(1:ngrid,1:nslope) = .false. |
|---|
| 254 | zdiceco2(1:ngrid,1:nslope) = 0. |
|---|
| 255 | zdiceco2_mesh_avg(1:ngrid)=0. |
|---|
| 256 | |
|---|
| 257 | zfallheat=0 |
|---|
| 258 | |
|---|
| 259 | zdq_scav(:,:,:)=0. |
|---|
| 260 | |
|---|
| 261 | c Update tendencies from previous processes |
|---|
| 262 | c ------------------------------------- |
|---|
| 263 | DO l=1,nlayer |
|---|
| 264 | DO ig=1,ngrid |
|---|
| 265 | zt(ig,l)=pt(ig,l)+ pdt(ig,l)*ptimestep |
|---|
| 266 | do iq=1,nq |
|---|
| 267 | zq(ig,l,iq)=pq(ig,l,iq)+pdq(ig,l,iq)*ptimestep |
|---|
| 268 | enddo |
|---|
| 269 | ENDDO |
|---|
| 270 | ENDDO |
|---|
| 271 | |
|---|
| 272 | c ************************* |
|---|
| 273 | c ATMOSPHERIC CONDENSATION |
|---|
| 274 | c ************************* |
|---|
| 275 | |
|---|
| 276 | c Compute CO2 Volume mixing ratio |
|---|
| 277 | c ------------------------------- |
|---|
| 278 | if (improved_ztcond.and.(ico2.ne.0)) then |
|---|
| 279 | DO l=1,nlayer |
|---|
| 280 | DO ig=1,ngrid |
|---|
| 281 | qco2=pq(ig,l,ico2)+pdq(ig,l,ico2)*ptimestep |
|---|
| 282 | c Mean air molecular mass = 1/(q(ico2)/m_co2 + (1-q(ico2))/m_noco2) |
|---|
| 283 | mmean=1/(A*qco2 +B) |
|---|
| 284 | vmr_co2(ig,l) = qco2*mmean/m_co2 |
|---|
| 285 | ENDDO |
|---|
| 286 | ENDDO |
|---|
| 287 | else |
|---|
| 288 | DO l=1,nlayer |
|---|
| 289 | DO ig=1,ngrid |
|---|
| 290 | vmr_co2(ig,l)=0.95 |
|---|
| 291 | ENDDO |
|---|
| 292 | ENDDO |
|---|
| 293 | endif |
|---|
| 294 | |
|---|
| 295 | IF (.NOT. co2clouds) then |
|---|
| 296 | c forecast of atmospheric temperature zt and frost temperature ztcond |
|---|
| 297 | c -------------------------------------------------------------------- |
|---|
| 298 | |
|---|
| 299 | DO l=1,nlayer |
|---|
| 300 | DO ig=1,ngrid |
|---|
| 301 | ! ztcond(ig,l)=1./(bcond-acond*log(.0095*pplay(ig,l))) |
|---|
| 302 | if (pplay(ig,l).ge.1e-4) then |
|---|
| 303 | ztcond(ig,l)= |
|---|
| 304 | & 1./(bcond-acond*log(.01*vmr_co2(ig,l)*pplay(ig,l))) |
|---|
| 305 | else |
|---|
| 306 | ztcond(ig,l)=0.0 !mars Monica |
|---|
| 307 | endif |
|---|
| 308 | ENDDO |
|---|
| 309 | ENDDO |
|---|
| 310 | |
|---|
| 311 | ztcond(:,nlayer+1)=ztcond(:,nlayer) |
|---|
| 312 | |
|---|
| 313 | c Condensation/sublimation in the atmosphere |
|---|
| 314 | c ------------------------------------------ |
|---|
| 315 | c (calcul of zcondicea , zfallice and pdtc) |
|---|
| 316 | c |
|---|
| 317 | DO l=nlayer , 1, -1 |
|---|
| 318 | DO ig=1,ngrid |
|---|
| 319 | pdtc(ig,l)=0. |
|---|
| 320 | IF((zt(ig,l).LT.ztcond(ig,l)).or.(zfallice(ig,l+1).gt.0))THEN |
|---|
| 321 | condsub(ig,:)=.true. |
|---|
| 322 | IF (zfallice(ig,l+1).gt.0) then |
|---|
| 323 | zfallheat=zfallice(ig,l+1)* |
|---|
| 324 | & (pphi(ig,l+1)-pphi(ig,l) + |
|---|
| 325 | & cpice*(ztcond(ig,l+1)-ztcond(ig,l)))/latcond |
|---|
| 326 | ELSE |
|---|
| 327 | zfallheat=0. |
|---|
| 328 | ENDIF |
|---|
| 329 | pdtc(ig,l)=(ztcond(ig,l) - zt(ig,l))/ptimestep |
|---|
| 330 | zcondicea(ig,l)=(pplev(ig,l)-pplev(ig,l+1)) |
|---|
| 331 | & *ccond*pdtc(ig,l)- zfallheat |
|---|
| 332 | c Case when the ice from above sublimes entirely |
|---|
| 333 | c """"""""""""""""""""""""""""""""""""""""""""""" |
|---|
| 334 | IF (zfallice(ig,l+1).lt.- zcondicea(ig,l)) then |
|---|
| 335 | pdtc(ig,l)=(-zfallice(ig,l+1)+zfallheat)/ |
|---|
| 336 | & (ccond*(pplev(ig,l)-pplev(ig,l+1))) |
|---|
| 337 | zcondicea(ig,l)= -zfallice(ig,l+1) |
|---|
| 338 | END IF |
|---|
| 339 | |
|---|
| 340 | zfallice(ig,l) = zcondicea(ig,l)+zfallice(ig,l+1) |
|---|
| 341 | END IF |
|---|
| 342 | ENDDO |
|---|
| 343 | ENDDO |
|---|
| 344 | |
|---|
| 345 | condens_layer(:,:) = zcondicea(:,:) |
|---|
| 346 | condens_column(:) = 0. |
|---|
| 347 | |
|---|
| 348 | if (scavco2cond) then |
|---|
| 349 | call scavenging_by_co2(ngrid,nlayer,nq,ptimestep,pplev,zq, |
|---|
| 350 | & rdust,zcondicea,zfallice,zdq_scav,pdqsc) |
|---|
| 351 | endif |
|---|
| 352 | call write_output("co2condens_zfallice", |
|---|
| 353 | & "CO2 ice tendency on the surface", |
|---|
| 354 | & "kg.m-2.s-1",zfallice(:,1)) |
|---|
| 355 | ELSE ! if co2 clouds |
|---|
| 356 | condens_layer(:,:) = 0. |
|---|
| 357 | condens_column(:) = 0. |
|---|
| 358 | DO l=nlayer , 1, -1 |
|---|
| 359 | DO ig=1,ngrid |
|---|
| 360 | condens_layer(ig,l) = pcondicea_co2microp(ig,l)* |
|---|
| 361 | & (pplev(ig,l) - pplev(ig,l+1))/g |
|---|
| 362 | ENDDO |
|---|
| 363 | ENDDO |
|---|
| 364 | DO ig=1,ngrid |
|---|
| 365 | condens_column(ig) = sum(condens_layer(ig,:)) |
|---|
| 366 | zfallice(ig,1) = zdqssed_co2(ig) |
|---|
| 367 | DO islope = 1,nslope |
|---|
| 368 | piceco2(ig,islope) = piceco2(ig,islope) + |
|---|
| 369 | & zdqssed_co2(ig)*ptimestep * |
|---|
| 370 | & cos(pi*def_slope_mean(islope)/180.) |
|---|
| 371 | ENDDO |
|---|
| 372 | ENDDO |
|---|
| 373 | call write_output("co2condens_zfallice", |
|---|
| 374 | & "CO2 ice tendency on the surface", |
|---|
| 375 | & "kg.m-2.s-1",zdqssed_co2(:)) ! otherwise we have not 1 day(1proc) = 1 day (24procs) test |
|---|
| 376 | ENDIF ! end of if co2clouds |
|---|
| 377 | |
|---|
| 378 | call write_output("co2condens_pdtc", |
|---|
| 379 | & "Temperature tendency due to CO2 condensation", |
|---|
| 380 | & "K.s-1",pdtc(:,:)) |
|---|
| 381 | |
|---|
| 382 | ! call write_output("condens_layer", |
|---|
| 383 | ! & "", |
|---|
| 384 | ! & " ",condens_layer(:,:)) |
|---|
| 385 | |
|---|
| 386 | c ************************* |
|---|
| 387 | c SURFACE CONDENSATION |
|---|
| 388 | c ************************* |
|---|
| 389 | |
|---|
| 390 | c forecast of ground temperature ztsrf and frost temperature ztcondsol |
|---|
| 391 | c -------------------------------------------------------------------- |
|---|
| 392 | DO ig=1,ngrid |
|---|
| 393 | ztcondsol(ig)= |
|---|
| 394 | & 1./(bcond-acond*log(.01*vmr_co2(ig,1)*pplev(ig,1))) |
|---|
| 395 | DO islope = 1,nslope |
|---|
| 396 | ztsrf(ig,islope) = ptsrf(ig,islope) + |
|---|
| 397 | & pdtsrf(ig,islope)*ptimestep |
|---|
| 398 | ENDDO |
|---|
| 399 | ENDDO |
|---|
| 400 | |
|---|
| 401 | c |
|---|
| 402 | c Condensation/sublimation on the ground |
|---|
| 403 | c -------------------------------------- |
|---|
| 404 | c (compute zcondices and pdtsrfc) |
|---|
| 405 | c |
|---|
| 406 | c No microphysics of CO2 clouds |
|---|
| 407 | DO ig=1,ngrid |
|---|
| 408 | IF(latitude(ig).lt.0) THEN |
|---|
| 409 | ! Southern hemisphere |
|---|
| 410 | icap=2 |
|---|
| 411 | ELSE |
|---|
| 412 | ! Northern hemisphere |
|---|
| 413 | icap=1 |
|---|
| 414 | ENDIF |
|---|
| 415 | |
|---|
| 416 | DO islope = 1,nslope |
|---|
| 417 | c Need first to put piceco2_slope(ig,islope) in kg/m^2 flat |
|---|
| 418 | |
|---|
| 419 | piceco2(ig,islope) = piceco2(ig,islope) |
|---|
| 420 | & /cos(pi*def_slope_mean(islope)/180.) |
|---|
| 421 | |
|---|
| 422 | c |
|---|
| 423 | c Loop on where we have condensation/ sublimation |
|---|
| 424 | IF ((ztsrf(ig,islope) .LT. ztcondsol(ig)) .OR. ! ground cond |
|---|
| 425 | $ (zfallice(ig,1).NE.0.) .OR. ! falling snow |
|---|
| 426 | $ ((ztsrf(ig,islope) .GT. ztcondsol(ig)) .AND. ! ground sublim. |
|---|
| 427 | $ ((piceco2(ig,islope)+zfallice(ig,1)*ptimestep) |
|---|
| 428 | $ .NE. 0.))) THEN |
|---|
| 429 | condsub(ig,islope) = .true. |
|---|
| 430 | |
|---|
| 431 | IF (zfallice(ig,1).gt.0 .and. .not. co2clouds) then |
|---|
| 432 | ! potential eneregy release due to the impact of the snowfall |
|---|
| 433 | ! appendix of forget et al. 1999 |
|---|
| 434 | zfallheat = zfallice(ig,1) * (pphi(ig,1) + |
|---|
| 435 | & cpice*(ztcond(ig,1)-ztcondsol(ig)))/latcond |
|---|
| 436 | ELSE |
|---|
| 437 | zfallheat = 0. |
|---|
| 438 | ENDIF |
|---|
| 439 | c condensation or partial sublimation of CO2 ice |
|---|
| 440 | c """"""""""""""""""""""""""""""""""""""""""""""" |
|---|
| 441 | if(ztsrf(ig,islope).LT. ztcondsol(ig)) then |
|---|
| 442 | c condensation |
|---|
| 443 | zcondices(ig,islope)=pcapcal(ig,islope) |
|---|
| 444 | & *(ztcondsol(ig)-ztsrf(ig,islope)) |
|---|
| 445 | c & /((latcond+cpp*(zt(ig,1)-ztcondsol(ig)))*ptimestep) |
|---|
| 446 | & /(latcond*ptimestep) |
|---|
| 447 | & - zfallheat |
|---|
| 448 | else |
|---|
| 449 | c sublimation |
|---|
| 450 | zcondices(ig,islope)=pcapcal(ig,islope) |
|---|
| 451 | & *(ztcondsol(ig)-ztsrf(ig,islope)) |
|---|
| 452 | & /(latcond*ptimestep) |
|---|
| 453 | & - zfallheat |
|---|
| 454 | endif |
|---|
| 455 | pdtsrfc(ig,islope) = (ztcondsol(ig) - ztsrf(ig,islope)) |
|---|
| 456 | & /ptimestep |
|---|
| 457 | #ifdef MESOSCALE |
|---|
| 458 | print*, "not enough CO2 tracer in 1st layer to condense" |
|---|
| 459 | print*, ">>> to be implemented in the mesoscale case" |
|---|
| 460 | print*, "because this uses ap levels..." |
|---|
| 461 | #else |
|---|
| 462 | c If there is not enough CO2 tracer in 1st layer to condense |
|---|
| 463 | c """""""""""""""""""""""""""""""""""""""""""""""""""""" |
|---|
| 464 | IF(ico2.ne.0) then |
|---|
| 465 | c Available CO2 tracer in layer 1 at end of timestep (kg/m2) |
|---|
| 466 | #ifndef MESOSCALE |
|---|
| 467 | availco2 = pq(ig,1,ico2)*((ap(1)-ap(2))+ |
|---|
| 468 | & (bp(1)-bp(2))*(pplev(ig,1)/g - |
|---|
| 469 | & (zcondices(ig,islope) + zfallice(ig,1)) |
|---|
| 470 | & *ptimestep)) |
|---|
| 471 | if ((zcondices(ig,islope) + condens_layer(ig,1)) |
|---|
| 472 | & *ptimestep |
|---|
| 473 | & .gt.availco2) then |
|---|
| 474 | zcondices(ig,islope) = availco2/ptimestep - |
|---|
| 475 | & condens_layer(ig,1) |
|---|
| 476 | pdtsrfc(ig,islope) = (latcond/pcapcal(ig,islope))* |
|---|
| 477 | & (zcondices(ig,islope)+zfallheat) |
|---|
| 478 | end if |
|---|
| 479 | #else |
|---|
| 480 | availco2 = pq(ig,1,igcm_co2) |
|---|
| 481 | PRINT*, "MESOSCALE: CO2 tracer AT FIRST LEVEL IS NOT' |
|---|
| 482 | & ' CORRECTED FROM SIGMA LEVELS" |
|---|
| 483 | #endif |
|---|
| 484 | ENDIF |
|---|
| 485 | #endif |
|---|
| 486 | |
|---|
| 487 | c If the entire CO2 ice layer sublimes on the slope |
|---|
| 488 | c """""""""""""""""""""""""""""""""""""""""""""""""""" |
|---|
| 489 | c (including what has just condensed in the atmosphere) |
|---|
| 490 | if (co2clouds) then |
|---|
| 491 | IF((piceco2(ig,islope)/ptimestep).LE. |
|---|
| 492 | & -zcondices(ig,islope))THEN |
|---|
| 493 | zcondices(ig,islope) = -piceco2(ig,islope)/ptimestep |
|---|
| 494 | pdtsrfc(ig,islope)=(latcond/pcapcal(ig,islope)) * |
|---|
| 495 | & (zcondices(ig,islope)+zfallheat) |
|---|
| 496 | END IF |
|---|
| 497 | else |
|---|
| 498 | IF((piceco2(ig,islope)/ptimestep+zfallice(ig,1)).LE. |
|---|
| 499 | & -zcondices(ig,islope))THEN |
|---|
| 500 | zcondices(ig,islope) = -piceco2(ig,islope) |
|---|
| 501 | & /ptimestep - zfallice(ig,1) |
|---|
| 502 | pdtsrfc(ig,islope)=(latcond/pcapcal(ig,islope)) * |
|---|
| 503 | & (zcondices(ig,islope)+zfallheat) |
|---|
| 504 | END IF |
|---|
| 505 | end if |
|---|
| 506 | |
|---|
| 507 | c Changing CO2 ice amount and pressure per slope: |
|---|
| 508 | c """""""""""""""""""""""""""""""""""" |
|---|
| 509 | zdiceco2(ig,islope) = zcondices(ig,islope)+zfallice(ig,1) |
|---|
| 510 | & + condens_column(ig) |
|---|
| 511 | if (co2clouds) then |
|---|
| 512 | ! add here only direct condensation/sublimation |
|---|
| 513 | piceco2(ig,islope) = piceco2(ig,islope) + |
|---|
| 514 | & zcondices(ig,islope)*ptimestep |
|---|
| 515 | else |
|---|
| 516 | ! add here also CO2 ice in the atmosphere |
|---|
| 517 | piceco2(ig,islope) = piceco2(ig,islope) + |
|---|
| 518 | & zdiceco2(ig,islope)*ptimestep |
|---|
| 519 | end if |
|---|
| 520 | |
|---|
| 521 | zcondices_mesh_avg(ig) = zcondices_mesh_avg(ig) + |
|---|
| 522 | & zcondices(ig,islope)* subslope_dist(ig,islope) |
|---|
| 523 | |
|---|
| 524 | zdiceco2_mesh_avg(ig) = zdiceco2_mesh_avg(ig) + |
|---|
| 525 | & zdiceco2(ig,islope)* subslope_dist(ig,islope) |
|---|
| 526 | |
|---|
| 527 | END IF ! if there is condensation/sublimation |
|---|
| 528 | |
|---|
| 529 | piceco2(ig,islope) = piceco2(ig,islope) |
|---|
| 530 | & * cos(pi*def_slope_mean(islope)/180.) |
|---|
| 531 | |
|---|
| 532 | ENDDO !islope |
|---|
| 533 | |
|---|
| 534 | pdpsrf(ig) = -zdiceco2_mesh_avg(ig)*g |
|---|
| 535 | |
|---|
| 536 | IF(ABS(pdpsrf(ig)*ptimestep).GT.pplev(ig,1)) THEN |
|---|
| 537 | PRINT*,'STOP in condens' |
|---|
| 538 | PRINT*,'condensing more than total mass' |
|---|
| 539 | PRINT*,'Grid point ',ig |
|---|
| 540 | PRINT*,'Longitude(degrees): ',longitude_deg(ig) |
|---|
| 541 | PRINT*,'Latitude(degrees): ',latitude_deg(ig) |
|---|
| 542 | PRINT*,'Ps = ',pplev(ig,1) |
|---|
| 543 | PRINT*,'d Ps = ',pdpsrf(ig) |
|---|
| 544 | CALL abort_physic('co2condens', |
|---|
| 545 | & 'condensing more than total mass', 1) |
|---|
| 546 | ENDIF |
|---|
| 547 | |
|---|
| 548 | ENDDO ! of DO ig=1,ngrid |
|---|
| 549 | |
|---|
| 550 | |
|---|
| 551 | c ******************************************************************** |
|---|
| 552 | c Surface albedo and emissivity of the surface below the snow (emisref) |
|---|
| 553 | c ******************************************************************** |
|---|
| 554 | |
|---|
| 555 | ! Check that amont of CO2 ice is not problematic |
|---|
| 556 | DO ig=1,ngrid |
|---|
| 557 | DO islope = 1,nslope |
|---|
| 558 | if(.not.piceco2(ig,islope).ge.0.) THEN |
|---|
| 559 | if(piceco2(ig,islope).le.-5.e-8) print*, |
|---|
| 560 | $ 'WARNING co2condens piceco2(',ig,')=', piceco2(ig,islope) |
|---|
| 561 | piceco2(ig,islope)=0. |
|---|
| 562 | endif |
|---|
| 563 | ENDDO |
|---|
| 564 | ENDDO |
|---|
| 565 | |
|---|
| 566 | ! Set albedo and emissivity of the surface |
|---|
| 567 | ! ---------------------------------------- |
|---|
| 568 | DO islope = 1,nslope |
|---|
| 569 | piceco2_tmp(:) = piceco2(:,islope) |
|---|
| 570 | alb_tmp(:,:) = psolaralb(:,:,islope) |
|---|
| 571 | emisref_tmp(:) = 0. |
|---|
| 572 | CALL albedocaps(zls,ngrid,piceco2_tmp,alb_tmp,emisref_tmp) |
|---|
| 573 | psolaralb(:,1,islope) = alb_tmp(:,1) |
|---|
| 574 | psolaralb(:,2,islope) = alb_tmp(:,2) |
|---|
| 575 | emisref(:,islope) = emisref_tmp(:) |
|---|
| 576 | ENDDO |
|---|
| 577 | |
|---|
| 578 | ! set pemisurf() to emissiv when there is bare surface (needed for co2snow) |
|---|
| 579 | DO ig=1,ngrid |
|---|
| 580 | DO islope = 1,nslope |
|---|
| 581 | if (piceco2(ig,islope).eq.0) then |
|---|
| 582 | pemisurf(ig,islope)=emissiv |
|---|
| 583 | endif |
|---|
| 584 | ENDDO |
|---|
| 585 | ENDDO |
|---|
| 586 | |
|---|
| 587 | ! firstcall2=.false. |
|---|
| 588 | c *************************************************************** |
|---|
| 589 | c Correction to account for redistribution between sigma or hybrid |
|---|
| 590 | c layers when changing surface pressure (and warming/cooling |
|---|
| 591 | c of the CO2 currently changing phase). |
|---|
| 592 | c ************************************************************* |
|---|
| 593 | |
|---|
| 594 | DO ig=1,ngrid |
|---|
| 595 | if (any(condsub(ig,:))) then |
|---|
| 596 | do l=1,nlayer |
|---|
| 597 | ztc(l) =zt(ig,l) +pdtc(ig,l) *ptimestep |
|---|
| 598 | zu(l) =pu(ig,l) +pdu( ig,l) *ptimestep |
|---|
| 599 | zv(l) =pv(ig,l) +pdv( ig,l) *ptimestep |
|---|
| 600 | do iq=1,nq |
|---|
| 601 | zqc(l,iq)=zq(ig,l,iq)+zdq_scav(ig,l,iq)*ptimestep ! zdq_scav=0 if co2clouds=true |
|---|
| 602 | enddo |
|---|
| 603 | enddo |
|---|
| 604 | |
|---|
| 605 | c Mass fluxes through the sigma levels (kg.m-2.s-1) (>0 when up) |
|---|
| 606 | c """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" |
|---|
| 607 | zmflux(1) = -zcondices_mesh_avg(ig) - zdqssed_co2(ig) |
|---|
| 608 | DO l=1,nlayer |
|---|
| 609 | zmflux(l+1) = zmflux(l) - condens_layer(ig,l) |
|---|
| 610 | #ifndef MESOSCALE |
|---|
| 611 | & + (bp(l)-bp(l+1))*(-pdpsrf(ig)/g) |
|---|
| 612 | c zmflux set to 0 if very low to avoid: top layer is disappearing in v1ld |
|---|
| 613 | if (abs(zmflux(l+1)).lt.1E-13.OR.bp(l+1).eq.0.) then |
|---|
| 614 | zmflux(l+1)=0. |
|---|
| 615 | end if |
|---|
| 616 | #else |
|---|
| 617 | zmflux(l+1) = zmflux(l) - condens_layer(ig,l) |
|---|
| 618 | if (abs(zmflux(l+1)).lt.1E-13) zmflux(l+1)=0. |
|---|
| 619 | PRINT*, "MESOSCALE: FLUX THROUGH SIGMA LEVELS from"// |
|---|
| 620 | & "dPS HAVE TO BE IMPLEMENTED" |
|---|
| 621 | #endif |
|---|
| 622 | END DO |
|---|
| 623 | #ifdef MESOSCALE |
|---|
| 624 | print*,"absurd mass set because bp not available" |
|---|
| 625 | print*,"TO BE FIXED" |
|---|
| 626 | #else |
|---|
| 627 | c Mass of each layer at the end of timestep |
|---|
| 628 | c ----------------------------------------- |
|---|
| 629 | DO l=1,nlayer |
|---|
| 630 | masse(l)=( pplev(ig,l) - pplev(ig,l+1) + |
|---|
| 631 | & (bp(l)-bp(l+1))*pdpsrf(ig)*ptimestep)/g |
|---|
| 632 | END DO |
|---|
| 633 | #endif |
|---|
| 634 | |
|---|
| 635 | c Corresponding fluxes for T,U,V,Q |
|---|
| 636 | c """""""""""""""""""""""""""""""" |
|---|
| 637 | |
|---|
| 638 | c averaging operator for TRANSPORT |
|---|
| 639 | c """""""""""""""""""""""""""""""" |
|---|
| 640 | c Value transfert at the surface interface when condensation |
|---|
| 641 | c sublimation: |
|---|
| 642 | ztm(1) = ztcondsol(ig) |
|---|
| 643 | zum(1) = 0 |
|---|
| 644 | zvm(1) = 0 |
|---|
| 645 | do iq=1,nq |
|---|
| 646 | zqm(1,iq)=0. ! most tracer do not condense ! |
|---|
| 647 | enddo |
|---|
| 648 | c Special case if one of the tracer is CO2 gas |
|---|
| 649 | if (ico2.ne.0) zqm(1,ico2)=1. ! flux is 100% CO2 |
|---|
| 650 | |
|---|
| 651 | c Van Leer scheme: |
|---|
| 652 | DO l=1,nlayer+1 |
|---|
| 653 | w(l)=-zmflux(l)*ptimestep |
|---|
| 654 | END DO |
|---|
| 655 | call vl1d(nlayer,ztc,2.,masse,w,ztm) |
|---|
| 656 | call vl1d(nlayer,zu ,2.,masse,w,zum) |
|---|
| 657 | call vl1d(nlayer,zv ,2.,masse,w,zvm) |
|---|
| 658 | ! MVals: loop over the fathers ("peres") |
|---|
| 659 | do iq=1,nqperes |
|---|
| 660 | do l=1,nlayer |
|---|
| 661 | zq1(l)=zqc(l,iq) |
|---|
| 662 | enddo |
|---|
| 663 | zqm1(1)=zqm(1,iq) |
|---|
| 664 | call vl1d(nlayer,zq1,2.,masse,w,zqm1) |
|---|
| 665 | do l=2,nlayer |
|---|
| 666 | zqc(l,iq)=zq1(l) |
|---|
| 667 | zqm(l,iq)=zqm1(l) |
|---|
| 668 | enddo |
|---|
| 669 | ! MVals: loop over the sons ("fils") |
|---|
| 670 | if (nqfils(iq).gt.0) then |
|---|
| 671 | if (iq.eq.igcm_h2o_ice) then |
|---|
| 672 | iq2=igcm_hdo_ice |
|---|
| 673 | else if (iq.eq.igcm_h2o_vap) then |
|---|
| 674 | iq2=igcm_hdo_vap |
|---|
| 675 | else |
|---|
| 676 | call abort_physic("co2condens_mod","invalid isotope",1) |
|---|
| 677 | endif |
|---|
| 678 | do l=1,nlayer |
|---|
| 679 | if (zqc(l,iq).gt.qperemin) then |
|---|
| 680 | Ratio1(l)=zqc(l,iq2)/zqc(l,iq) |
|---|
| 681 | else |
|---|
| 682 | Ratio1(l)=0. |
|---|
| 683 | endif |
|---|
| 684 | masseq(l)=max(masse(l)*zqc(l,iq),masseqmin) |
|---|
| 685 | wq(l)=w(l)*zqm(l,iq) |
|---|
| 686 | enddo |
|---|
| 687 | Ratiom1(1)=zqm(1,iq2) |
|---|
| 688 | call vl1d(nlayer,Ratio1,2.,masseq,wq,Ratiom1) |
|---|
| 689 | zqm(1,iq2)=Ratiom1(1)*zqc(1,iq) |
|---|
| 690 | do l=2,nlayer |
|---|
| 691 | zqm(l,iq2)=Ratiom1(l)*zqm(l,iq) |
|---|
| 692 | enddo |
|---|
| 693 | endif !if (nqfils(iq).gt.0) then |
|---|
| 694 | enddo !iq=1,nqperes |
|---|
| 695 | |
|---|
| 696 | c Surface condensation affects low winds |
|---|
| 697 | if (zmflux(1).lt.0) then |
|---|
| 698 | zum(1)= zu(1) * (w(1)/masse(1)) |
|---|
| 699 | zvm(1)= zv(1) * (w(1)/masse(1)) |
|---|
| 700 | if (w(1).gt.masse(1)) then ! ensure numerical stability |
|---|
| 701 | zum(1)= (zu(1)-zum(2))*masse(1)/w(1) + zum(2) |
|---|
| 702 | zvm(1)= (zv(1)-zvm(2))*masse(1)/w(1) + zvm(2) |
|---|
| 703 | end if |
|---|
| 704 | end if |
|---|
| 705 | |
|---|
| 706 | ztm(nlayer+1)= ztc(nlayer) ! should not be used, but... |
|---|
| 707 | zum(nlayer+1)= zu(nlayer) ! should not be used, but... |
|---|
| 708 | zvm(nlayer+1)= zv(nlayer) ! should not be used, but... |
|---|
| 709 | do iq=1,nq |
|---|
| 710 | zqm(nlayer+1,iq)= zqc(nlayer,iq) |
|---|
| 711 | enddo |
|---|
| 712 | |
|---|
| 713 | #ifdef MESOSCALE |
|---|
| 714 | !!!! AS: This part must be commented in the mesoscale model |
|---|
| 715 | !!!! AS: ... to avoid instabilities. |
|---|
| 716 | !!!! AS: you have to compile with -DMESOSCALE to do so |
|---|
| 717 | #else |
|---|
| 718 | c Tendencies on T, U, V, Q |
|---|
| 719 | c """""""""""""""""""""""" |
|---|
| 720 | DO l=1,nlayer |
|---|
| 721 | IF(.not. co2clouds) THEN |
|---|
| 722 | c Tendencies on T |
|---|
| 723 | zdtsig(ig,l) = (1/masse(l)) * |
|---|
| 724 | & ( zmflux(l)*(ztm(l) - ztc(l)) |
|---|
| 725 | & - zmflux(l+1)*(ztm(l+1) - ztc(l)) |
|---|
| 726 | & + condens_layer(ig,l)*(ztcond(ig,l)-ztc(l)) ) |
|---|
| 727 | ELSE |
|---|
| 728 | zdtsig(ig,l) = (1/masse(l)) * |
|---|
| 729 | & ( zmflux(l)*(ztm(l) - ztc(l)) |
|---|
| 730 | & - zmflux(l+1)*(ztm(l+1) - ztc(l))) |
|---|
| 731 | ENDIF |
|---|
| 732 | c D.BARDET: for diagnotics |
|---|
| 733 | zmflux3D(ig,l)=zmflux(l) |
|---|
| 734 | ztm3D(ig,l)=ztm(l) |
|---|
| 735 | ztc3D(ig,l)=ztc(l) |
|---|
| 736 | |
|---|
| 737 | pdtc(ig,l) = pdtc(ig,l) + zdtsig(ig,l) |
|---|
| 738 | |
|---|
| 739 | c Tendencies on U |
|---|
| 740 | pduc(ig,l) = (1/masse(l)) * |
|---|
| 741 | & ( zmflux(l)*(zum(l) - zu(l)) |
|---|
| 742 | & - zmflux(l+1)*(zum(l+1) - zu(l)) ) |
|---|
| 743 | |
|---|
| 744 | |
|---|
| 745 | c Tendencies on V |
|---|
| 746 | pdvc(ig,l) = (1/masse(l)) * |
|---|
| 747 | & ( zmflux(l)*(zvm(l) - zv(l)) |
|---|
| 748 | & - zmflux(l+1)*(zvm(l+1) - zv(l)) ) |
|---|
| 749 | |
|---|
| 750 | END DO |
|---|
| 751 | |
|---|
| 752 | #endif |
|---|
| 753 | |
|---|
| 754 | do iq=1,nq |
|---|
| 755 | ! if (noms(iq).eq.'co2') then |
|---|
| 756 | if (iq.eq.ico2) then |
|---|
| 757 | c SPECIAL Case when the tracer IS CO2 : |
|---|
| 758 | DO l=1,nlayer |
|---|
| 759 | pdqc(ig,l,iq)= (1/masse(l)) * |
|---|
| 760 | & ( zmflux(l)*(zqm(l,iq) - zqc(l,iq)) |
|---|
| 761 | & - zmflux(l+1)*(zqm(l+1,iq) - zqc(l,iq)) |
|---|
| 762 | & + condens_layer(ig,l)*(zqc(l,iq)-1.) ) |
|---|
| 763 | END DO |
|---|
| 764 | else |
|---|
| 765 | DO l=1,nlayer |
|---|
| 766 | pdqc(ig,l,iq)= (1/masse(l)) * |
|---|
| 767 | & ( zmflux(l)*(zqm(l,iq) - zqc(l,iq)) |
|---|
| 768 | & - zmflux(l+1)*(zqm(l+1,iq) - zqc(l,iq)) |
|---|
| 769 | & + condens_layer(ig,l)*zqc(l,iq) ) |
|---|
| 770 | |
|---|
| 771 | pdqc(ig,l,iq)=pdqc(ig,l,iq)+zdq_scav(ig,l,iq) ! zdq_scav=0 if co2clouds=true |
|---|
| 772 | END DO |
|---|
| 773 | end if |
|---|
| 774 | enddo |
|---|
| 775 | |
|---|
| 776 | end if ! if (condsub) |
|---|
| 777 | END DO ! loop on ig |
|---|
| 778 | |
|---|
| 779 | c *************************************************************** |
|---|
| 780 | c CO2 snow / clouds scheme |
|---|
| 781 | c *************************************************************** |
|---|
| 782 | DO islope = 1,nslope |
|---|
| 783 | emisref_tmp(:) = emisref(:,islope) |
|---|
| 784 | condsub_tmp(:) = condsub(:,islope) |
|---|
| 785 | condens_layer_tmp(:,:) = condens_layer(:,:)* |
|---|
| 786 | & cos(pi*def_slope_mean(islope)/180.) |
|---|
| 787 | zcondices_tmp(:) = zcondices(:,islope)* |
|---|
| 788 | & cos(pi*def_slope_mean(islope)/180.) |
|---|
| 789 | zfallice_tmp(:,:) = zfallice(:,:)* |
|---|
| 790 | & cos(pi*def_slope_mean(islope)/180.) |
|---|
| 791 | pemisurf_tmp(:) = pemisurf(:,islope) |
|---|
| 792 | |
|---|
| 793 | call co2snow(ngrid,nlayer,ptimestep,emisref_tmp,condsub_tmp, |
|---|
| 794 | & pplev,condens_layer_tmp,zcondices_tmp,zfallice_tmp, |
|---|
| 795 | & pemisurf_tmp) |
|---|
| 796 | pemisurf(:,islope) = pemisurf_tmp(:) |
|---|
| 797 | |
|---|
| 798 | ENDDO |
|---|
| 799 | c *************************************************************** |
|---|
| 800 | c Ecriture des diagnostiques |
|---|
| 801 | c *************************************************************** |
|---|
| 802 | |
|---|
| 803 | c DO l=1,nlayer |
|---|
| 804 | c DO ig=1,ngrid |
|---|
| 805 | c Taux de cond en kg.m-2.pa-1.s-1 |
|---|
| 806 | c tconda1(ig,l)=zcondicea(ig,l)/(pplev(ig,l)-pplev(ig,l+1)) |
|---|
| 807 | c Taux de cond en kg.m-3.s-1 |
|---|
| 808 | c tconda2(ig,l)=tconda1(ig,l)*pplay(ig,l)*g/(r*pt(ig,l)) |
|---|
| 809 | c END DO |
|---|
| 810 | c END DO |
|---|
| 811 | c call write_output('tconda1', |
|---|
| 812 | c &'Taux de condensation CO2 atmospherique /Pa', |
|---|
| 813 | c & 'kg.m-2.Pa-1.s-1',tconda1) |
|---|
| 814 | c call write_output('tconda2', |
|---|
| 815 | c &'Taux de condensation CO2 atmospherique /m', |
|---|
| 816 | c & 'kg.m-3.s-1',tconda2) |
|---|
| 817 | |
|---|
| 818 | ! output falling co2 ice in 1st layer: |
|---|
| 819 | ! call write_output('fallice', |
|---|
| 820 | ! &'Precipitation of co2 ice', |
|---|
| 821 | ! & 'kg.m-2.s-1',zfallice(1,1)) |
|---|
| 822 | |
|---|
| 823 | #ifndef MESOSCALE |
|---|
| 824 | ! Extra special case for surface temperature tendency pdtsrfc: |
|---|
| 825 | ! we want to fix the south pole temperature to CO2 condensation temperature |
|---|
| 826 | if (caps.and.(obliquit.lt.27.)) then |
|---|
| 827 | ! check if last grid point is the south pole |
|---|
| 828 | if (abs(latitude(ngrid)-(-pi/2.)).lt.1.e-5) then |
|---|
| 829 | ! NB: Updated surface pressure, at grid point 'ngrid', is |
|---|
| 830 | ! ps(ngrid)=pplev(ngrid,1)+pdpsrf(ngrid)*ptimestep |
|---|
| 831 | ztcondsol(ngrid)= |
|---|
| 832 | & 1./(bcond-acond*log(.01*vmr_co2(ngrid,1)* |
|---|
| 833 | & (pplev(ngrid,1)+pdpsrf(ngrid)*ptimestep))) |
|---|
| 834 | DO islope = 1,nslope |
|---|
| 835 | pdtsrfc(ngrid,islope)=(ztcondsol(ngrid)- |
|---|
| 836 | & ztsrf(ngrid,islope))/ptimestep |
|---|
| 837 | ENDDO ! islope = 1,nslope |
|---|
| 838 | endif |
|---|
| 839 | endif |
|---|
| 840 | #endif |
|---|
| 841 | |
|---|
| 842 | END SUBROUTINE co2condens |
|---|
| 843 | |
|---|
| 844 | |
|---|
| 845 | |
|---|
| 846 | c ***************************************************************** |
|---|
| 847 | SUBROUTINE vl1d(nlayer,q,pente_max,masse,w,qm) |
|---|
| 848 | c |
|---|
| 849 | c |
|---|
| 850 | c Operateur de moyenne inter-couche pour calcul de transport type |
|---|
| 851 | c Van-Leer " pseudo amont " dans la verticale |
|---|
| 852 | c q,w sont des arguments d'entree pour le s-pg .... |
|---|
| 853 | c masse : masse de la couche Dp/g |
|---|
| 854 | c w : masse d'atm ``transferee'' a chaque pas de temps (kg.m-2) |
|---|
| 855 | c pente_max = 2 conseillee |
|---|
| 856 | c |
|---|
| 857 | c |
|---|
| 858 | c -------------------------------------------------------------------- |
|---|
| 859 | IMPLICIT NONE |
|---|
| 860 | |
|---|
| 861 | c |
|---|
| 862 | c |
|---|
| 863 | c |
|---|
| 864 | c Arguments: |
|---|
| 865 | c ---------- |
|---|
| 866 | integer nlayer |
|---|
| 867 | real masse(nlayer),pente_max |
|---|
| 868 | REAL q(nlayer),qm(nlayer+1) |
|---|
| 869 | REAL w(nlayer+1) |
|---|
| 870 | c |
|---|
| 871 | c Local |
|---|
| 872 | c --------- |
|---|
| 873 | c |
|---|
| 874 | INTEGER l |
|---|
| 875 | c |
|---|
| 876 | real dzq(nlayer),dzqw(nlayer),adzqw(nlayer),dzqmax |
|---|
| 877 | real sigw, Mtot, MQtot |
|---|
| 878 | integer m |
|---|
| 879 | c integer ismax,ismin |
|---|
| 880 | |
|---|
| 881 | |
|---|
| 882 | c On oriente tout dans le sens de la pression |
|---|
| 883 | c W > 0 WHEN DOWN !!!!!!!!!!!!! |
|---|
| 884 | |
|---|
| 885 | do l=2,nlayer |
|---|
| 886 | dzqw(l)=q(l-1)-q(l) |
|---|
| 887 | adzqw(l)=abs(dzqw(l)) |
|---|
| 888 | enddo |
|---|
| 889 | |
|---|
| 890 | do l=2,nlayer-1 |
|---|
| 891 | if(dzqw(l)*dzqw(l+1).gt.0.) then |
|---|
| 892 | dzq(l)=0.5*(dzqw(l)+dzqw(l+1)) |
|---|
| 893 | else |
|---|
| 894 | dzq(l)=0. |
|---|
| 895 | endif |
|---|
| 896 | dzqmax=pente_max*min(adzqw(l),adzqw(l+1)) |
|---|
| 897 | dzq(l)=sign(min(abs(dzq(l)),dzqmax),dzq(l)) |
|---|
| 898 | enddo |
|---|
| 899 | |
|---|
| 900 | dzq(1)=0. |
|---|
| 901 | dzq(nlayer)=0. |
|---|
| 902 | |
|---|
| 903 | do l = 1,nlayer-1 |
|---|
| 904 | |
|---|
| 905 | c Regular scheme (transfered mass < layer mass) |
|---|
| 906 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 907 | if(w(l+1).gt.0. .and. w(l+1).le.masse(l+1)) then |
|---|
| 908 | sigw=w(l+1)/masse(l+1) |
|---|
| 909 | qm(l+1)=(q(l+1)+0.5*(1.-sigw)*dzq(l+1)) |
|---|
| 910 | else if(w(l+1).le.0. .and. -w(l+1).le.masse(l)) then |
|---|
| 911 | sigw=w(l+1)/masse(l) |
|---|
| 912 | qm(l+1)=(q(l)-0.5*(1.+sigw)*dzq(l)) |
|---|
| 913 | |
|---|
| 914 | c Extended scheme (transfered mass > layer mass) |
|---|
| 915 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 916 | else if(w(l+1).gt.0.) then |
|---|
| 917 | m=l+1 |
|---|
| 918 | Mtot = masse(m) |
|---|
| 919 | MQtot = masse(m)*q(m) |
|---|
| 920 | do while ((m.lt.nlayer).and.(w(l+1).gt.(Mtot+masse(m+1)))) |
|---|
| 921 | m=m+1 |
|---|
| 922 | Mtot = Mtot + masse(m) |
|---|
| 923 | MQtot = MQtot + masse(m)*q(m) |
|---|
| 924 | end do |
|---|
| 925 | if (m.lt.nlayer) then |
|---|
| 926 | sigw=(w(l+1)-Mtot)/masse(m+1) |
|---|
| 927 | qm(l+1)= (1/w(l+1))*(MQtot + (w(l+1)-Mtot)* |
|---|
| 928 | & (q(m+1)+0.5*(1.-sigw)*dzq(m+1)) ) |
|---|
| 929 | else |
|---|
| 930 | w(l+1) = Mtot |
|---|
| 931 | qm(l+1) = Mqtot / Mtot |
|---|
| 932 | CALL abort_physic('co2condens', |
|---|
| 933 | & 'top layer is disapearing !', 1) |
|---|
| 934 | end if |
|---|
| 935 | else ! if(w(l+1).lt.0) |
|---|
| 936 | m = l-1 |
|---|
| 937 | Mtot = masse(m+1) |
|---|
| 938 | MQtot = masse(m+1)*q(m+1) |
|---|
| 939 | if (m.gt.0) then ! because some compilers will have problems |
|---|
| 940 | ! evaluating masse(0) |
|---|
| 941 | do while ((m.gt.0).and.(-w(l+1).gt.(Mtot+masse(m)))) |
|---|
| 942 | m=m-1 |
|---|
| 943 | Mtot = Mtot + masse(m+1) |
|---|
| 944 | MQtot = MQtot + masse(m+1)*q(m+1) |
|---|
| 945 | if (m.eq.0) exit |
|---|
| 946 | end do |
|---|
| 947 | endif |
|---|
| 948 | if (m.gt.0) then |
|---|
| 949 | sigw=(w(l+1)+Mtot)/masse(m) |
|---|
| 950 | qm(l+1)= (-1/w(l+1))*(MQtot + (-w(l+1)-Mtot)* |
|---|
| 951 | & (q(m)-0.5*(1.+sigw)*dzq(m)) ) |
|---|
| 952 | else |
|---|
| 953 | qm(l+1)= (-1/w(l+1))*(MQtot + (-w(l+1)-Mtot)*qm(1)) |
|---|
| 954 | end if |
|---|
| 955 | end if |
|---|
| 956 | enddo |
|---|
| 957 | |
|---|
| 958 | c boundary conditions (not used in co2condens !!) |
|---|
| 959 | c qm(nlayer+1)=0. |
|---|
| 960 | c if(w(1).gt.0.) then |
|---|
| 961 | c qm(1)=q(1) |
|---|
| 962 | c else |
|---|
| 963 | c qm(1)=0. |
|---|
| 964 | c end if |
|---|
| 965 | |
|---|
| 966 | END SUBROUTINE vl1d |
|---|
| 967 | |
|---|
| 968 | c ***************************************************************** |
|---|
| 969 | SUBROUTINE scavenging_by_co2(ngrid,nlayer,nq,ptimestep,pplev,pq, |
|---|
| 970 | & rdust,pcondicea,pfallice,pdq_scav,pdqsc) |
|---|
| 971 | |
|---|
| 972 | c |
|---|
| 973 | c |
|---|
| 974 | c Calcul de la quantite de poussiere lessivee par les nuages de CO2 |
|---|
| 975 | c |
|---|
| 976 | c -------------------------------------------------------------------- |
|---|
| 977 | use tracer_mod, only: nqmx, igcm_h2o_vap, igcm_h2o_ice, |
|---|
| 978 | & igcm_dust_mass, igcm_dust_number, |
|---|
| 979 | & igcm_ccn_mass, igcm_ccn_number, |
|---|
| 980 | & rho_dust, nuice_sed, nuice_ref,r3n_q |
|---|
| 981 | use comcstfi_h, only: g |
|---|
| 982 | use dust_param_mod, only: freedust |
|---|
| 983 | IMPLICIT NONE |
|---|
| 984 | include "callkeys.h" ! for the flags water and microphys |
|---|
| 985 | c |
|---|
| 986 | c |
|---|
| 987 | c Arguments: |
|---|
| 988 | INTEGER,INTENT(IN) :: ngrid ! number of atmospheric columns |
|---|
| 989 | INTEGER,INTENT(IN) :: nlayer ! number of vertical layers |
|---|
| 990 | INTEGER,INTENT(IN) :: nq ! number of tracers |
|---|
| 991 | REAL,INTENT(IN) :: ptimestep ! physics timestep (s) |
|---|
| 992 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) ! inter-layer pressure (Pa) |
|---|
| 993 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) |
|---|
| 994 | REAL,INTENT(IN) :: rdust(ngrid,nlayer) ! dust effective radius |
|---|
| 995 | REAL,INTENT(IN) :: pcondicea(ngrid,nlayer) ! condensation rate in layer l (kg/m2/s) |
|---|
| 996 | REAL,INTENT(IN) :: pfallice(ngrid,nlayer+1) ! amount of ice falling from layer l (kg/m2/s) |
|---|
| 997 | |
|---|
| 998 | REAL,INTENT(OUT) :: pdq_scav(ngrid,nlayer,nq) ! tendency due to scavenging by co2 |
|---|
| 999 | REAL,INTENT(OUT) :: pdqsc(ngrid,nq) ! tendency on surface tracers |
|---|
| 1000 | |
|---|
| 1001 | c Locals: |
|---|
| 1002 | INTEGER l,ig |
|---|
| 1003 | REAL scav_ratio_dust, scav_ratio_wice ! ratio of the dust/water ice mass mixing ratios in condensing CO2 ice and in air |
|---|
| 1004 | REAL scav_dust_mass(nlayer+1) ! dust flux (mass) scavenged towards the lower layer (kg/m2/s) (POSITIVE WHEN DOWNWARD) |
|---|
| 1005 | REAL scav_dust_number(nlayer+1) ! dust flux (number) scavenged towards the lower layer (kg/m2/s) (POSITIVE WHEN DOWNWARD) |
|---|
| 1006 | REAL scav_ccn_mass(nlayer+1) ! ccn flux (mass) scavenged towards the lower layer |
|---|
| 1007 | REAL scav_ccn_number(nlayer+1) ! ccn flux (number) scavenged towards the lower layer |
|---|
| 1008 | REAL scav_h2o_ice(nlayer+1) ! water ice flux (mass) scavenged towards the lower layer |
|---|
| 1009 | REAL massl ! mass of the layer l at point ig (kg/m2) |
|---|
| 1010 | |
|---|
| 1011 | c Initialization: |
|---|
| 1012 | scav_ratio_dust = 20 !1 !10 !100 !1000 ! the scavenging ratio value of 20 is a good compromise to remove the dust in the polar night |
|---|
| 1013 | scav_ratio_wice = scav_ratio_dust ! while not drying up the water cycle (which occurs at scav_ratio_wice values above 50 at least) |
|---|
| 1014 | pdq_scav(:,:,:)=0. |
|---|
| 1015 | pdqsc(:,:)=0. |
|---|
| 1016 | |
|---|
| 1017 | DO ig=1,ngrid |
|---|
| 1018 | scav_dust_mass(nlayer+1)=0. |
|---|
| 1019 | scav_dust_number(nlayer+1)=0. |
|---|
| 1020 | scav_ccn_mass(nlayer+1)=0. |
|---|
| 1021 | scav_ccn_number(nlayer+1)=0. |
|---|
| 1022 | scav_h2o_ice(nlayer+1)=0. |
|---|
| 1023 | |
|---|
| 1024 | DO l=nlayer , 1, -1 |
|---|
| 1025 | massl=(pplev(ig,l)-pplev(ig,l+1))/g |
|---|
| 1026 | IF(pcondicea(ig,l).GT.0.)THEN ! if CO2 condenses and traps dust/water ice |
|---|
| 1027 | ! Calculation of the tendencies |
|---|
| 1028 | if (freedust) then |
|---|
| 1029 | pdq_scav(ig,l,igcm_dust_mass)=-pq(ig,l,igcm_dust_mass) |
|---|
| 1030 | & /ptimestep*(1-exp( |
|---|
| 1031 | & -scav_ratio_dust*pcondicea(ig,l)*ptimestep/massl)) |
|---|
| 1032 | |
|---|
| 1033 | pdq_scav(ig,l,igcm_dust_number)=pdq_scav(ig,l,igcm_dust_mass) |
|---|
| 1034 | & *r3n_q/rdust(ig,l) |
|---|
| 1035 | endif |
|---|
| 1036 | if (freedust.AND.microphys) then |
|---|
| 1037 | pdq_scav(ig,l,igcm_ccn_mass)=-pq(ig,l,igcm_ccn_mass) |
|---|
| 1038 | & /ptimestep*(1-exp( |
|---|
| 1039 | & -scav_ratio_wice*pcondicea(ig,l)*ptimestep/massl)) |
|---|
| 1040 | pdq_scav(ig,l,igcm_ccn_number)=pdq_scav(ig,l,igcm_ccn_mass) |
|---|
| 1041 | & *r3n_q/rdust(ig,l) |
|---|
| 1042 | endif |
|---|
| 1043 | if (water) then |
|---|
| 1044 | pdq_scav(ig,l,igcm_h2o_ice)=-pq(ig,l,igcm_h2o_ice) |
|---|
| 1045 | & /ptimestep*(1-exp( |
|---|
| 1046 | & -scav_ratio_wice*pcondicea(ig,l)*ptimestep/massl)) |
|---|
| 1047 | endif |
|---|
| 1048 | |
|---|
| 1049 | ELSE IF(pcondicea(ig,l).LT.0.)THEN ! if CO2 sublimates and releases dust/water ice |
|---|
| 1050 | ! Calculation of the tendencies |
|---|
| 1051 | if (freedust) then |
|---|
| 1052 | pdq_scav(ig,l,igcm_dust_mass)=-pcondicea(ig,l)/massl* |
|---|
| 1053 | & scav_dust_mass(l+1)/pfallice(ig,l+1) |
|---|
| 1054 | |
|---|
| 1055 | pdq_scav(ig,l,igcm_dust_number)=-pcondicea(ig,l)/massl* |
|---|
| 1056 | & scav_dust_number(l+1)/pfallice(ig,l+1) |
|---|
| 1057 | endif |
|---|
| 1058 | if (freedust.AND.microphys) then |
|---|
| 1059 | pdq_scav(ig,l,igcm_ccn_mass)=-pcondicea(ig,l)/massl* |
|---|
| 1060 | & scav_ccn_mass(l+1)/pfallice(ig,l+1) |
|---|
| 1061 | |
|---|
| 1062 | pdq_scav(ig,l,igcm_ccn_number)=-pcondicea(ig,l)/massl* |
|---|
| 1063 | & scav_ccn_number(l+1)/pfallice(ig,l+1) |
|---|
| 1064 | endif |
|---|
| 1065 | if (water) then |
|---|
| 1066 | pdq_scav(ig,l,igcm_h2o_ice)=-pcondicea(ig,l)/massl* |
|---|
| 1067 | & scav_h2o_ice(l+1)/pfallice(ig,l+1) |
|---|
| 1068 | endif |
|---|
| 1069 | |
|---|
| 1070 | END IF |
|---|
| 1071 | ! Calculation of the scavenged dust/wice flux towards the lower layers |
|---|
| 1072 | if (freedust) then |
|---|
| 1073 | scav_dust_mass(l)=-pdq_scav(ig,l,igcm_dust_mass)*massl |
|---|
| 1074 | & +scav_dust_mass(l+1) |
|---|
| 1075 | |
|---|
| 1076 | scav_dust_number(l)=-pdq_scav(ig,l,igcm_dust_number)*massl |
|---|
| 1077 | & +scav_dust_number(l+1) |
|---|
| 1078 | endif |
|---|
| 1079 | if (freedust.AND.microphys) then |
|---|
| 1080 | scav_ccn_mass(l)=-pdq_scav(ig,l,igcm_ccn_mass)*massl |
|---|
| 1081 | & +scav_ccn_mass(l+1) |
|---|
| 1082 | |
|---|
| 1083 | scav_ccn_number(l)=-pdq_scav(ig,l,igcm_ccn_number)*massl |
|---|
| 1084 | & +scav_dust_number(l+1) |
|---|
| 1085 | endif |
|---|
| 1086 | if (water) then |
|---|
| 1087 | scav_h2o_ice(l)=-pdq_scav(ig,l,igcm_h2o_ice)*massl |
|---|
| 1088 | & +scav_h2o_ice(l+1) |
|---|
| 1089 | endif |
|---|
| 1090 | |
|---|
| 1091 | ENDDO |
|---|
| 1092 | ! Calculation of the surface tendencies |
|---|
| 1093 | if (freedust) then |
|---|
| 1094 | pdqsc(ig,igcm_dust_mass)=pdqsc(ig,igcm_dust_mass) |
|---|
| 1095 | & +scav_dust_mass(1) |
|---|
| 1096 | pdqsc(ig,igcm_dust_number)=pdqsc(ig,igcm_dust_number) |
|---|
| 1097 | & +scav_dust_number(1) |
|---|
| 1098 | endif |
|---|
| 1099 | if (freedust.AND.microphys) then |
|---|
| 1100 | pdqsc(ig,igcm_dust_mass)=pdqsc(ig,igcm_dust_mass) |
|---|
| 1101 | & +scav_ccn_mass(1) |
|---|
| 1102 | pdqsc(ig,igcm_dust_number)=pdqsc(ig,igcm_dust_number) |
|---|
| 1103 | & +scav_ccn_number(1) |
|---|
| 1104 | endif |
|---|
| 1105 | if (water) then |
|---|
| 1106 | pdqsc(ig,igcm_h2o_ice)=scav_h2o_ice(1) |
|---|
| 1107 | endif |
|---|
| 1108 | |
|---|
| 1109 | ENDDO ! loop on ngrid |
|---|
| 1110 | |
|---|
| 1111 | END SUBROUTINE scavenging_by_co2 |
|---|
| 1112 | |
|---|
| 1113 | END MODULE co2condens_mod |
|---|