[2009] | 1 | MODULE co2condens_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
[2184] | 5 | logical, save :: scavco2cond = .false. ! flag for using scavenging_by_co2 |
---|
[2616] | 6 | !$OMP THREADPRIVATE(scavco2cond) |
---|
[2184] | 7 | |
---|
[2009] | 8 | CONTAINS |
---|
| 9 | |
---|
[2953] | 10 | SUBROUTINE co2condens(ngrid,nlayer,nq,nslope,ptimestep, |
---|
[38] | 11 | $ pcapcal,pplay,pplev,ptsrf,pt, |
---|
| 12 | $ pphi,pdt,pdu,pdv,pdtsrf,pu,pv,pq,pdq, |
---|
[2999] | 13 | $ piceco2,perenial_co2ice, |
---|
| 14 | $ psolaralb,pemisurf,rdust, |
---|
[38] | 15 | $ pdtc,pdtsrfc,pdpsrf,pduc,pdvc,pdqc, |
---|
[1996] | 16 | $ fluxsurf_sw,zls, |
---|
| 17 | $ zdqssed_co2,pcondicea_co2microp, |
---|
[2524] | 18 | $ pdqsc) |
---|
[38] | 19 | |
---|
[2332] | 20 | use tracer_mod, only: noms, igcm_h2o_ice, igcm_h2o_vap, |
---|
[2184] | 21 | & igcm_dust_mass, igcm_dust_number, |
---|
[2322] | 22 | & igcm_ccn_mass, igcm_ccn_number, |
---|
[2332] | 23 | & igcm_hdo_ice, igcm_hdo_vap, |
---|
| 24 | & nqperes,nqfils, ! MVals: variables isotopes |
---|
[2566] | 25 | & qperemin,masseqmin, |
---|
| 26 | & igcm_co2 |
---|
[2739] | 27 | use surfdat_h, only: emissiv |
---|
[2124] | 28 | use geometry_mod, only: latitude, ! grid point latitudes (rad) |
---|
| 29 | & longitude_deg, latitude_deg |
---|
[2009] | 30 | use planete_h, only: obliquit |
---|
| 31 | use comcstfi_h, only: cpp, g, r, pi |
---|
[2409] | 32 | use dust_param_mod, only: freedust |
---|
[2932] | 33 | use write_output_mod, only: write_output |
---|
[1432] | 34 | #ifndef MESOSCALE |
---|
[2124] | 35 | USE vertical_layers_mod, ONLY: ap, bp |
---|
[1432] | 36 | #endif |
---|
[2953] | 37 | use comslope_mod, ONLY: subslope_dist,def_slope_mean |
---|
[2999] | 38 | USE paleoclimate_mod, ONLY: paleoclimate |
---|
| 39 | |
---|
[38] | 40 | IMPLICIT NONE |
---|
| 41 | c======================================================================= |
---|
| 42 | c subject: |
---|
| 43 | c -------- |
---|
| 44 | c Condensation/sublimation of CO2 ice on the ground and in the |
---|
| 45 | c atmosphere |
---|
| 46 | c (Scheme described in Forget et al., Icarus, 1998) |
---|
| 47 | c |
---|
[2009] | 48 | c author: Francois Forget 1994-1996 ; updated 1996 -- 2018 |
---|
[38] | 49 | c ------ |
---|
[1996] | 50 | c adapted to external CO2 ice clouds scheme by Deborah Bardet (2018) ' |
---|
[38] | 51 | c |
---|
| 52 | c======================================================================= |
---|
| 53 | c |
---|
| 54 | c 0. Declarations : |
---|
| 55 | c ------------------ |
---|
| 56 | c |
---|
[1528] | 57 | include "callkeys.h" |
---|
[38] | 58 | |
---|
| 59 | c----------------------------------------------------------------------- |
---|
| 60 | c Arguments : |
---|
| 61 | c --------- |
---|
[890] | 62 | INTEGER,INTENT(IN) :: ngrid ! number of atmospheric columns |
---|
| 63 | INTEGER,INTENT(IN) :: nlayer ! number of vertical layers |
---|
| 64 | INTEGER,INTENT(IN) :: nq ! number of tracers |
---|
[2953] | 65 | INTEGER,INTENT(IN) :: nslope ! number of subslope |
---|
[38] | 66 | |
---|
[890] | 67 | REAL,INTENT(IN) :: ptimestep ! physics timestep (s) |
---|
[2953] | 68 | REAL,INTENT(IN) :: pcapcal(ngrid,nslope) |
---|
[890] | 69 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) !mid-layer pressure (Pa) |
---|
| 70 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) ! inter-layer pressure (Pa) |
---|
[2953] | 71 | REAL,INTENT(IN) :: ptsrf(ngrid,nslope) ! surface temperature (K) |
---|
[890] | 72 | REAL,INTENT(IN) :: pt(ngrid,nlayer) ! atmospheric temperature (K) |
---|
| 73 | REAL,INTENT(IN) :: pphi(ngrid,nlayer) ! geopotential (m2.s-2) |
---|
| 74 | REAL,INTENT(IN) :: pdt(ngrid,nlayer) ! tendency on temperature from |
---|
| 75 | ! previous physical processes (K/s) |
---|
| 76 | REAL,INTENT(IN) :: pdu(ngrid,nlayer) ! tendency on zonal wind (m/s2) |
---|
| 77 | ! from previous physical processes |
---|
| 78 | REAL,INTENT(IN) :: pdv(ngrid,nlayer) ! tendency on meridional wind (m/s2) |
---|
| 79 | ! from previous physical processes |
---|
[2953] | 80 | REAL,INTENT(IN) :: pdtsrf(ngrid,nslope) ! tendency on surface temperature from |
---|
[890] | 81 | ! previous physical processes (K/s) |
---|
| 82 | REAL,INTENT(IN) :: pu(ngrid,nlayer) ! zonal wind (m/s) |
---|
| 83 | REAL,INTENT(IN) :: pv(ngrid,nlayer) ! meridional wind (m/s) |
---|
| 84 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) ! tracers (../kg_air) |
---|
| 85 | REAL,INTENT(IN) :: pdq(ngrid,nlayer,nq) ! tendency on tracers from |
---|
| 86 | ! previous physical processes |
---|
[1996] | 87 | |
---|
| 88 | REAL,INTENT(IN) :: zdqssed_co2(ngrid) ! CO2 flux at the surface (kg.m-2.s-1) |
---|
| 89 | REAL,INTENT(IN) :: pcondicea_co2microp(ngrid,nlayer)! tendency due to CO2 condensation (kg/kg.s-1) |
---|
| 90 | |
---|
[2953] | 91 | REAL,INTENT(INOUT) :: piceco2(ngrid,nslope) ! CO2 ice on the surface (kg.m-2) |
---|
[2999] | 92 | REAL,INTENT(INOUT) :: perenial_co2ice(ngrid,nslope) ! Perenial CO2 ice on the surface (kg.m-2) |
---|
[2953] | 93 | REAL,INTENT(INOUT) :: psolaralb(ngrid,2,nslope) ! albedo of the surface |
---|
| 94 | REAL,INTENT(INOUT) :: pemisurf(ngrid,nslope) ! emissivity of the surface |
---|
[2184] | 95 | REAL,INTENT(IN) :: rdust(ngrid,nlayer) ! dust effective radius |
---|
[890] | 96 | |
---|
| 97 | ! tendencies due to CO2 condensation/sublimation: |
---|
| 98 | REAL,INTENT(OUT) :: pdtc(ngrid,nlayer) ! tendency on temperature (K/s) |
---|
[2953] | 99 | REAL,INTENT(OUT) :: pdtsrfc(ngrid,nslope) ! tendency on surface temperature (K/s) |
---|
[890] | 100 | REAL,INTENT(OUT) :: pdpsrf(ngrid) ! tendency on surface pressure (Pa/s) |
---|
| 101 | REAL,INTENT(OUT) :: pduc(ngrid,nlayer) ! tendency on zonal wind (m.s-2) |
---|
| 102 | REAL,INTENT(OUT) :: pdvc(ngrid,nlayer) ! tendency on meridional wind (m.s-2) |
---|
| 103 | REAL,INTENT(OUT) :: pdqc(ngrid,nlayer,nq) ! tendency on tracers |
---|
[2184] | 104 | REAL,INTENT(OUT) :: pdqsc(ngrid,nq) ! tendency on surface tracers |
---|
[890] | 105 | |
---|
| 106 | ! added to calculate flux dependent albedo: |
---|
| 107 | REAL,intent(in) :: fluxsurf_sw(ngrid,2) |
---|
| 108 | real,intent(in) :: zls ! solar longitude (rad) |
---|
[38] | 109 | |
---|
| 110 | c |
---|
| 111 | c Local variables : |
---|
| 112 | c ----------------- |
---|
| 113 | |
---|
| 114 | INTEGER i,j |
---|
[2009] | 115 | INTEGER l,ig,iq,icap |
---|
[890] | 116 | REAL zt(ngrid,nlayer) |
---|
[38] | 117 | REAL zcpi |
---|
[1114] | 118 | REAL ztcond (ngrid,nlayer+1) ! CO2 condensation temperature (atm) |
---|
| 119 | REAL ztcondsol(ngrid) ! CO2 condensation temperature (surface) |
---|
[2953] | 120 | REAL zdiceco2(ngrid,nslope) |
---|
| 121 | REAL zdiceco2_mesh_avg(ngrid) |
---|
[2009] | 122 | REAL zcondicea(ngrid,nlayer) ! condensation rate in layer l (kg/m2/s) |
---|
[2953] | 123 | REAL zcondices(ngrid,nslope) ! condensation rate on the ground (kg/m2/s) |
---|
| 124 | REAL zcondices_mesh_avg(ngrid) ! condensation rate on the ground (kg/m2/s) |
---|
[2009] | 125 | REAL zfallice(ngrid,nlayer+1) ! amount of ice falling from layer l (kg/m2/s) |
---|
[2566] | 126 | REAL condens_layer(ngrid,nlayer) ! co2clouds: condensation rate in layer l (kg/m2/s) |
---|
| 127 | REAL condens_column(ngrid) ! co2clouds: sum(condens_layer(ig,:)) (kg/m2/s) |
---|
[2009] | 128 | REAL zfallheat |
---|
[890] | 129 | REAL zmflux(nlayer+1) |
---|
| 130 | REAL zu(nlayer),zv(nlayer) |
---|
[2184] | 131 | REAL zqc(nlayer,nq),zq1(nlayer) |
---|
[2953] | 132 | REAL ztsrf(ngrid,nslope) |
---|
[890] | 133 | REAL ztc(nlayer), ztm(nlayer+1) |
---|
| 134 | REAL zum(nlayer+1) , zvm(nlayer+1) |
---|
| 135 | REAL zqm(nlayer+1,nq),zqm1(nlayer+1) |
---|
| 136 | REAL masse(nlayer),w(nlayer+1) |
---|
| 137 | REAL Sm(nlayer),Smq(nlayer,nq),mixmas,qmix |
---|
[2124] | 138 | REAL availco2 |
---|
[2953] | 139 | LOGICAL condsub(ngrid,nslope) |
---|
[38] | 140 | |
---|
[2953] | 141 | real :: emisref(ngrid,nslope) |
---|
[2184] | 142 | |
---|
[2601] | 143 | REAL zdq_scav(ngrid,nlayer,nq) ! tendency due to scavenging by co2 |
---|
[2184] | 144 | REAL zq(ngrid,nlayer,nq) |
---|
[1224] | 145 | |
---|
[38] | 146 | c variable speciale diagnostique |
---|
[890] | 147 | real tconda1(ngrid,nlayer) |
---|
| 148 | real tconda2(ngrid,nlayer) |
---|
| 149 | c REAL zdiceco2a(ngrid) ! for diagnostic only |
---|
| 150 | real zdtsig (ngrid,nlayer) |
---|
| 151 | real zdt (ngrid,nlayer) |
---|
| 152 | real vmr_co2(ngrid,nlayer) ! co2 volume mixing ratio |
---|
[38] | 153 | ! improved_ztcond flag: If set to .true. (AND running with a 'co2' tracer) |
---|
| 154 | ! then condensation temperature is computed using partial pressure of CO2 |
---|
| 155 | logical,parameter :: improved_ztcond=.true. |
---|
| 156 | |
---|
| 157 | c local saved variables |
---|
[890] | 158 | integer,save :: ico2 ! index of CO2 tracer |
---|
[2124] | 159 | real,save :: qco2,mmean |
---|
[890] | 160 | real,parameter :: latcond=5.9e5 ! (J/kg) Latent heat of solid CO2 ice |
---|
| 161 | real,parameter :: tcond1mb=136.27 ! condensation temperature (K) at 1 mbar |
---|
| 162 | real,parameter :: cpice=1000. ! (J.kg-1.K-1) specific heat of CO2 ice |
---|
| 163 | REAL,SAVE :: acond,bcond,ccond |
---|
| 164 | real,save :: m_co2, m_noco2, A , B |
---|
[38] | 165 | |
---|
[890] | 166 | LOGICAL,SAVE :: firstcall = .true. !,firstcall2=.true. |
---|
[2616] | 167 | |
---|
| 168 | !$OMP THREADPRIVATE(ico2,qco2,mmean,acond,bcond,ccond,m_co2,m_noco2) |
---|
| 169 | !$OMP THREADPRIVATE(A,B,firstcall) |
---|
[38] | 170 | |
---|
[2124] | 171 | c D.BARDET: for debug |
---|
[1996] | 172 | real ztc3D(ngrid,nlayer) |
---|
| 173 | REAL ztm3D(ngrid,nlayer) |
---|
| 174 | REAL zmflux3D(ngrid,nlayer) |
---|
[2322] | 175 | |
---|
| 176 | c MVals: variables isotopes |
---|
| 177 | REAL Ratio1(nlayer),Ratiom1(nlayer+1) |
---|
| 178 | REAL masseq(nlayer),wq(nlayer+1) |
---|
| 179 | INTEGER ifils,iq2 |
---|
[2953] | 180 | |
---|
| 181 | c Subslope: |
---|
| 182 | |
---|
| 183 | REAL :: emisref_tmp(ngrid) |
---|
| 184 | REAL :: alb_tmp(ngrid,2) ! local |
---|
| 185 | REAL :: zcondices_tmp(ngrid) ! local |
---|
[2999] | 186 | REAL :: piceco2_tmp(ngrid) ! local |
---|
| 187 | REAL :: perenial_co2ice_tmp(ngrid) ! perenial ice on one subslope (kg/m^2) |
---|
[2953] | 188 | REAL :: pemisurf_tmp(ngrid)! local |
---|
| 189 | LOGICAL :: condsub_tmp(ngrid) !local |
---|
| 190 | REAL :: zfallice_tmp(ngrid,nlayer+1) |
---|
| 191 | REAL :: condens_layer_tmp(ngrid,nlayer) ! co2clouds: condensation rate in layer l (kg/m2/s) |
---|
| 192 | INTEGER :: islope |
---|
[38] | 193 | c---------------------------------------------------------------------- |
---|
| 194 | |
---|
| 195 | c Initialisation |
---|
| 196 | c -------------- |
---|
| 197 | c |
---|
[1779] | 198 | ! AS: firstcall OK absolute |
---|
[38] | 199 | IF (firstcall) THEN |
---|
[890] | 200 | |
---|
[38] | 201 | bcond=1./tcond1mb |
---|
| 202 | ccond=cpp/(g*latcond) |
---|
| 203 | acond=r/latcond |
---|
| 204 | |
---|
| 205 | firstcall=.false. |
---|
[2124] | 206 | write(*,*) 'CO2condens: improved_ztcond=',improved_ztcond |
---|
| 207 | PRINT*,'In co2condens:Tcond(P=1mb)=',tcond1mb,' Lcond=',latcond |
---|
[38] | 208 | PRINT*,'acond,bcond,ccond',acond,bcond,ccond |
---|
| 209 | |
---|
| 210 | ico2=0 |
---|
| 211 | |
---|
[2823] | 212 | c Prepare Special treatment if one of the tracer is CO2 gas |
---|
| 213 | do iq=1,nq |
---|
[38] | 214 | if (noms(iq).eq."co2") then |
---|
| 215 | ico2=iq |
---|
| 216 | m_co2 = 44.01E-3 ! CO2 molecular mass (kg/mol) |
---|
| 217 | m_noco2 = 33.37E-3 ! Non condensible mol mass (kg/mol) |
---|
| 218 | c Compute A and B coefficient use to compute |
---|
| 219 | c mean molecular mass Mair defined by |
---|
| 220 | c 1/Mair = q(ico2)/m_co2 + (1-q(ico2))/m_noco2 |
---|
| 221 | c 1/Mair = A*q(ico2) + B |
---|
| 222 | A =(1/m_co2 - 1/m_noco2) |
---|
| 223 | B=1/m_noco2 |
---|
| 224 | endif |
---|
[2823] | 225 | enddo |
---|
[890] | 226 | ENDIF ! of IF (firstcall) |
---|
[38] | 227 | zcpi=1./cpp |
---|
[1130] | 228 | |
---|
[38] | 229 | c |
---|
| 230 | c====================================================================== |
---|
| 231 | c Calcul of CO2 condensation sublimation |
---|
| 232 | c ============================================================ |
---|
| 233 | c |
---|
| 234 | c Used variable : |
---|
| 235 | c piceco2(ngrid) : amount of co2 ice on the ground (kg/m2) |
---|
| 236 | c zcondicea(ngrid,l): condensation rate in layer l (kg/m2/s) |
---|
| 237 | c zcondices(ngrid): condensation rate on the ground (kg/m2/s) |
---|
| 238 | c zfallice(ngrid,l):amount of ice falling from layer l (kg/m2/s) |
---|
| 239 | c |
---|
[1047] | 240 | c pdtc(ngrid,nlayer) : dT/dt due to cond/sub |
---|
[38] | 241 | c |
---|
| 242 | c |
---|
[2184] | 243 | c Tendencies set to 0 |
---|
[38] | 244 | c ------------------------------------- |
---|
[2189] | 245 | zcondicea(1:ngrid,1:nlayer) = 0. |
---|
| 246 | zfallice(1:ngrid,1:nlayer+1) = 0. |
---|
| 247 | pduc(1:ngrid,1:nlayer) = 0 |
---|
| 248 | pdvc(1:ngrid,1:nlayer) = 0 |
---|
| 249 | pdtc(1:ngrid,1:nlayer) = 0. |
---|
| 250 | pdqsc(1:ngrid,1:nq) = 0 |
---|
[38] | 251 | |
---|
[2189] | 252 | pdqc(1:ngrid,1:nlayer,1:nq) = 0 |
---|
[38] | 253 | |
---|
[2953] | 254 | zcondices(1:ngrid,1:nslope) = 0. |
---|
| 255 | zcondices_mesh_avg(1:ngrid)=0. |
---|
| 256 | pdtsrfc(1:ngrid,1:nslope) = 0. |
---|
[2189] | 257 | pdpsrf(1:ngrid) = 0. |
---|
[2953] | 258 | condsub(1:ngrid,1:nslope) = .false. |
---|
| 259 | zdiceco2(1:ngrid,1:nslope) = 0. |
---|
| 260 | zdiceco2_mesh_avg(1:ngrid)=0. |
---|
[2189] | 261 | |
---|
[38] | 262 | zfallheat=0 |
---|
[2184] | 263 | |
---|
| 264 | zdq_scav(:,:,:)=0. |
---|
[38] | 265 | |
---|
[2184] | 266 | c Update tendencies from previous processes |
---|
| 267 | c ------------------------------------- |
---|
| 268 | DO l=1,nlayer |
---|
| 269 | DO ig=1,ngrid |
---|
| 270 | zt(ig,l)=pt(ig,l)+ pdt(ig,l)*ptimestep |
---|
| 271 | do iq=1,nq |
---|
| 272 | zq(ig,l,iq)=pq(ig,l,iq)+pdq(ig,l,iq)*ptimestep |
---|
| 273 | enddo |
---|
| 274 | ENDDO |
---|
| 275 | ENDDO |
---|
| 276 | |
---|
[38] | 277 | c ************************* |
---|
| 278 | c ATMOSPHERIC CONDENSATION |
---|
| 279 | c ************************* |
---|
| 280 | |
---|
| 281 | c Compute CO2 Volume mixing ratio |
---|
| 282 | c ------------------------------- |
---|
| 283 | if (improved_ztcond.and.(ico2.ne.0)) then |
---|
| 284 | DO l=1,nlayer |
---|
| 285 | DO ig=1,ngrid |
---|
| 286 | qco2=pq(ig,l,ico2)+pdq(ig,l,ico2)*ptimestep |
---|
| 287 | c Mean air molecular mass = 1/(q(ico2)/m_co2 + (1-q(ico2))/m_noco2) |
---|
| 288 | mmean=1/(A*qco2 +B) |
---|
| 289 | vmr_co2(ig,l) = qco2*mmean/m_co2 |
---|
| 290 | ENDDO |
---|
| 291 | ENDDO |
---|
| 292 | else |
---|
| 293 | DO l=1,nlayer |
---|
| 294 | DO ig=1,ngrid |
---|
| 295 | vmr_co2(ig,l)=0.95 |
---|
| 296 | ENDDO |
---|
| 297 | ENDDO |
---|
[2184] | 298 | endif |
---|
[38] | 299 | |
---|
[1996] | 300 | IF (.NOT. co2clouds) then |
---|
[38] | 301 | c forecast of atmospheric temperature zt and frost temperature ztcond |
---|
| 302 | c -------------------------------------------------------------------- |
---|
| 303 | |
---|
| 304 | DO l=1,nlayer |
---|
| 305 | DO ig=1,ngrid |
---|
| 306 | ! ztcond(ig,l)=1./(bcond-acond*log(.0095*pplay(ig,l))) |
---|
[1263] | 307 | if (pplay(ig,l).ge.1e-4) then |
---|
| 308 | ztcond(ig,l)= |
---|
[38] | 309 | & 1./(bcond-acond*log(.01*vmr_co2(ig,l)*pplay(ig,l))) |
---|
[1263] | 310 | else |
---|
| 311 | ztcond(ig,l)=0.0 !mars Monica |
---|
| 312 | endif |
---|
[38] | 313 | ENDDO |
---|
| 314 | ENDDO |
---|
[327] | 315 | |
---|
[328] | 316 | ztcond(:,nlayer+1)=ztcond(:,nlayer) |
---|
[38] | 317 | |
---|
| 318 | c Condensation/sublimation in the atmosphere |
---|
| 319 | c ------------------------------------------ |
---|
| 320 | c (calcul of zcondicea , zfallice and pdtc) |
---|
| 321 | c |
---|
| 322 | DO l=nlayer , 1, -1 |
---|
| 323 | DO ig=1,ngrid |
---|
| 324 | pdtc(ig,l)=0. |
---|
| 325 | IF((zt(ig,l).LT.ztcond(ig,l)).or.(zfallice(ig,l+1).gt.0))THEN |
---|
[2953] | 326 | condsub(ig,:)=.true. |
---|
[38] | 327 | IF (zfallice(ig,l+1).gt.0) then |
---|
| 328 | zfallheat=zfallice(ig,l+1)* |
---|
| 329 | & (pphi(ig,l+1)-pphi(ig,l) + |
---|
| 330 | & cpice*(ztcond(ig,l+1)-ztcond(ig,l)))/latcond |
---|
| 331 | ELSE |
---|
| 332 | zfallheat=0. |
---|
| 333 | ENDIF |
---|
| 334 | pdtc(ig,l)=(ztcond(ig,l) - zt(ig,l))/ptimestep |
---|
| 335 | zcondicea(ig,l)=(pplev(ig,l)-pplev(ig,l+1)) |
---|
| 336 | & *ccond*pdtc(ig,l)- zfallheat |
---|
| 337 | c Case when the ice from above sublimes entirely |
---|
| 338 | c """"""""""""""""""""""""""""""""""""""""""""""" |
---|
| 339 | IF (zfallice(ig,l+1).lt.- zcondicea(ig,l)) then |
---|
| 340 | pdtc(ig,l)=(-zfallice(ig,l+1)+zfallheat)/ |
---|
| 341 | & (ccond*(pplev(ig,l)-pplev(ig,l+1))) |
---|
| 342 | zcondicea(ig,l)= -zfallice(ig,l+1) |
---|
| 343 | END IF |
---|
| 344 | |
---|
| 345 | zfallice(ig,l) = zcondicea(ig,l)+zfallice(ig,l+1) |
---|
| 346 | END IF |
---|
| 347 | ENDDO |
---|
| 348 | ENDDO |
---|
[1996] | 349 | |
---|
[2599] | 350 | condens_layer(:,:) = zcondicea(:,:) |
---|
| 351 | condens_column(:) = 0. |
---|
| 352 | |
---|
[2184] | 353 | if (scavco2cond) then |
---|
| 354 | call scavenging_by_co2(ngrid,nlayer,nq,ptimestep,pplev,zq, |
---|
| 355 | & rdust,zcondicea,zfallice,zdq_scav,pdqsc) |
---|
| 356 | endif |
---|
[2934] | 357 | call write_output("co2condens_zfallice", |
---|
| 358 | & "CO2 ice tendency on the surface", |
---|
| 359 | & "kg.m-2.s-1",zfallice(:,1)) |
---|
[2184] | 360 | ELSE ! if co2 clouds |
---|
[2566] | 361 | condens_layer(:,:) = 0. |
---|
| 362 | condens_column(:) = 0. |
---|
[1996] | 363 | DO l=nlayer , 1, -1 |
---|
| 364 | DO ig=1,ngrid |
---|
[2566] | 365 | condens_layer(ig,l) = pcondicea_co2microp(ig,l)* |
---|
| 366 | & (pplev(ig,l) - pplev(ig,l+1))/g |
---|
[1996] | 367 | ENDDO |
---|
| 368 | ENDDO |
---|
[2566] | 369 | DO ig=1,ngrid |
---|
| 370 | condens_column(ig) = sum(condens_layer(ig,:)) |
---|
[2599] | 371 | zfallice(ig,1) = zdqssed_co2(ig) |
---|
[2953] | 372 | DO islope = 1,nslope |
---|
| 373 | piceco2(ig,islope) = piceco2(ig,islope) + |
---|
| 374 | & zdqssed_co2(ig)*ptimestep * |
---|
| 375 | & cos(pi*def_slope_mean(islope)/180.) |
---|
| 376 | ENDDO |
---|
[2566] | 377 | ENDDO |
---|
[2934] | 378 | call write_output("co2condens_zfallice", |
---|
| 379 | & "CO2 ice tendency on the surface", |
---|
| 380 | & "kg.m-2.s-1",zdqssed_co2(:)) ! otherwise we have not 1 day(1proc) = 1 day (24procs) test |
---|
[2184] | 381 | ENDIF ! end of if co2clouds |
---|
[38] | 382 | |
---|
[2934] | 383 | call write_output("co2condens_pdtc", |
---|
| 384 | & "Temperature tendency due to CO2 condensation", |
---|
| 385 | & "K.s-1",pdtc(:,:)) |
---|
[1996] | 386 | |
---|
[2934] | 387 | ! call write_output("condens_layer", |
---|
| 388 | ! & "", |
---|
| 389 | ! & " ",condens_layer(:,:)) |
---|
[1996] | 390 | |
---|
[38] | 391 | c ************************* |
---|
| 392 | c SURFACE CONDENSATION |
---|
| 393 | c ************************* |
---|
| 394 | |
---|
| 395 | c forecast of ground temperature ztsrf and frost temperature ztcondsol |
---|
| 396 | c -------------------------------------------------------------------- |
---|
| 397 | DO ig=1,ngrid |
---|
| 398 | ztcondsol(ig)= |
---|
| 399 | & 1./(bcond-acond*log(.01*vmr_co2(ig,1)*pplev(ig,1))) |
---|
[2953] | 400 | DO islope = 1,nslope |
---|
| 401 | ztsrf(ig,islope) = ptsrf(ig,islope) + |
---|
| 402 | & pdtsrf(ig,islope)*ptimestep |
---|
| 403 | ENDDO |
---|
[38] | 404 | ENDDO |
---|
| 405 | |
---|
| 406 | c |
---|
| 407 | c Condensation/sublimation on the ground |
---|
| 408 | c -------------------------------------- |
---|
[1114] | 409 | c (compute zcondices and pdtsrfc) |
---|
[38] | 410 | c |
---|
[2566] | 411 | c No microphysics of CO2 clouds |
---|
[38] | 412 | DO ig=1,ngrid |
---|
[1541] | 413 | IF(latitude(ig).lt.0) THEN |
---|
[1114] | 414 | ! Southern hemisphere |
---|
[38] | 415 | icap=2 |
---|
| 416 | ELSE |
---|
[1114] | 417 | ! Northern hemisphere |
---|
[38] | 418 | icap=1 |
---|
| 419 | ENDIF |
---|
[2953] | 420 | |
---|
| 421 | DO islope = 1,nslope |
---|
| 422 | c Need first to put piceco2_slope(ig,islope) in kg/m^2 flat |
---|
| 423 | |
---|
| 424 | piceco2(ig,islope) = piceco2(ig,islope) |
---|
| 425 | & /cos(pi*def_slope_mean(islope)/180.) |
---|
| 426 | |
---|
[38] | 427 | c |
---|
| 428 | c Loop on where we have condensation/ sublimation |
---|
[2953] | 429 | IF ((ztsrf(ig,islope) .LT. ztcondsol(ig)) .OR. ! ground cond |
---|
[38] | 430 | $ (zfallice(ig,1).NE.0.) .OR. ! falling snow |
---|
[2953] | 431 | $ ((ztsrf(ig,islope) .GT. ztcondsol(ig)) .AND. ! ground sublim. |
---|
| 432 | $ ((piceco2(ig,islope)+zfallice(ig,1)*ptimestep) |
---|
| 433 | $ .NE. 0.))) THEN |
---|
| 434 | condsub(ig,islope) = .true. |
---|
[38] | 435 | |
---|
[2599] | 436 | IF (zfallice(ig,1).gt.0 .and. .not. co2clouds) then |
---|
[2739] | 437 | ! potential eneregy release due to the impact of the snowfall |
---|
| 438 | ! appendix of forget et al. 1999 |
---|
| 439 | zfallheat = zfallice(ig,1) * (pphi(ig,1) + |
---|
[2599] | 440 | & cpice*(ztcond(ig,1)-ztcondsol(ig)))/latcond |
---|
[38] | 441 | ELSE |
---|
[2599] | 442 | zfallheat = 0. |
---|
[38] | 443 | ENDIF |
---|
| 444 | c condensation or partial sublimation of CO2 ice |
---|
| 445 | c """"""""""""""""""""""""""""""""""""""""""""""" |
---|
[2953] | 446 | if(ztsrf(ig,islope).LT. ztcondsol(ig)) then |
---|
| 447 | c condensation |
---|
| 448 | zcondices(ig,islope)=pcapcal(ig,islope) |
---|
| 449 | & *(ztcondsol(ig)-ztsrf(ig,islope)) |
---|
[2977] | 450 | & /((latcond+cpp*(zt(ig,1)-ztcondsol(ig)))*ptimestep) |
---|
[2953] | 451 | & - zfallheat |
---|
| 452 | else |
---|
| 453 | c sublimation |
---|
| 454 | zcondices(ig,islope)=pcapcal(ig,islope) |
---|
| 455 | & *(ztcondsol(ig)-ztsrf(ig,islope)) |
---|
| 456 | & /(latcond*ptimestep) |
---|
| 457 | & - zfallheat |
---|
| 458 | endif |
---|
| 459 | pdtsrfc(ig,islope) = (ztcondsol(ig) - ztsrf(ig,islope)) |
---|
| 460 | & /ptimestep |
---|
[2153] | 461 | #ifdef MESOSCALE |
---|
| 462 | print*, "not enough CO2 tracer in 1st layer to condense" |
---|
| 463 | print*, ">>> to be implemented in the mesoscale case" |
---|
| 464 | print*, "because this uses ap levels..." |
---|
| 465 | #else |
---|
[2124] | 466 | c If there is not enough CO2 tracer in 1st layer to condense |
---|
| 467 | c """""""""""""""""""""""""""""""""""""""""""""""""""""" |
---|
| 468 | IF(ico2.ne.0) then |
---|
[2599] | 469 | c Available CO2 tracer in layer 1 at end of timestep (kg/m2) |
---|
[2566] | 470 | #ifndef MESOSCALE |
---|
[2599] | 471 | availco2 = pq(ig,1,ico2)*((ap(1)-ap(2))+ |
---|
| 472 | & (bp(1)-bp(2))*(pplev(ig,1)/g - |
---|
[2953] | 473 | & (zcondices(ig,islope) + zfallice(ig,1)) |
---|
| 474 | & *ptimestep)) |
---|
| 475 | if ((zcondices(ig,islope) + condens_layer(ig,1)) |
---|
| 476 | & *ptimestep |
---|
[2599] | 477 | & .gt.availco2) then |
---|
[2953] | 478 | zcondices(ig,islope) = availco2/ptimestep - |
---|
[2599] | 479 | & condens_layer(ig,1) |
---|
[2953] | 480 | pdtsrfc(ig,islope) = (latcond/pcapcal(ig,islope))* |
---|
| 481 | & (zcondices(ig,islope)+zfallheat) |
---|
[2599] | 482 | end if |
---|
[2566] | 483 | #else |
---|
| 484 | availco2 = pq(ig,1,igcm_co2) |
---|
| 485 | PRINT*, "MESOSCALE: CO2 tracer AT FIRST LEVEL IS NOT' |
---|
| 486 | & ' CORRECTED FROM SIGMA LEVELS" |
---|
| 487 | #endif |
---|
| 488 | ENDIF |
---|
[2153] | 489 | #endif |
---|
[2124] | 490 | |
---|
[2953] | 491 | c If the entire CO2 ice layer sublimes on the slope |
---|
[38] | 492 | c """""""""""""""""""""""""""""""""""""""""""""""""""" |
---|
| 493 | c (including what has just condensed in the atmosphere) |
---|
[2660] | 494 | if (co2clouds) then |
---|
[2953] | 495 | IF((piceco2(ig,islope)/ptimestep).LE. |
---|
| 496 | & -zcondices(ig,islope))THEN |
---|
| 497 | zcondices(ig,islope) = -piceco2(ig,islope)/ptimestep |
---|
| 498 | pdtsrfc(ig,islope)=(latcond/pcapcal(ig,islope)) * |
---|
| 499 | & (zcondices(ig,islope)+zfallheat) |
---|
[2660] | 500 | END IF |
---|
| 501 | else |
---|
[2953] | 502 | IF((piceco2(ig,islope)/ptimestep+zfallice(ig,1)).LE. |
---|
| 503 | & -zcondices(ig,islope))THEN |
---|
| 504 | zcondices(ig,islope) = -piceco2(ig,islope) |
---|
| 505 | & /ptimestep - zfallice(ig,1) |
---|
| 506 | pdtsrfc(ig,islope)=(latcond/pcapcal(ig,islope)) * |
---|
| 507 | & (zcondices(ig,islope)+zfallheat) |
---|
[38] | 508 | END IF |
---|
[2660] | 509 | end if |
---|
[38] | 510 | |
---|
[2953] | 511 | c Changing CO2 ice amount and pressure per slope: |
---|
[38] | 512 | c """""""""""""""""""""""""""""""""""" |
---|
[2953] | 513 | zdiceco2(ig,islope) = zcondices(ig,islope)+zfallice(ig,1) |
---|
[2599] | 514 | & + condens_column(ig) |
---|
| 515 | if (co2clouds) then |
---|
| 516 | ! add here only direct condensation/sublimation |
---|
[2953] | 517 | piceco2(ig,islope) = piceco2(ig,islope) + |
---|
| 518 | & zcondices(ig,islope)*ptimestep |
---|
[2599] | 519 | else |
---|
| 520 | ! add here also CO2 ice in the atmosphere |
---|
[2953] | 521 | piceco2(ig,islope) = piceco2(ig,islope) + |
---|
| 522 | & zdiceco2(ig,islope)*ptimestep |
---|
[2599] | 523 | end if |
---|
[38] | 524 | |
---|
[2953] | 525 | zcondices_mesh_avg(ig) = zcondices_mesh_avg(ig) + |
---|
| 526 | & zcondices(ig,islope)* subslope_dist(ig,islope) |
---|
| 527 | |
---|
| 528 | zdiceco2_mesh_avg(ig) = zdiceco2_mesh_avg(ig) + |
---|
| 529 | & zdiceco2(ig,islope)* subslope_dist(ig,islope) |
---|
| 530 | |
---|
| 531 | END IF ! if there is condensation/sublimation |
---|
| 532 | |
---|
| 533 | piceco2(ig,islope) = piceco2(ig,islope) |
---|
| 534 | & * cos(pi*def_slope_mean(islope)/180.) |
---|
| 535 | |
---|
| 536 | ENDDO !islope |
---|
| 537 | |
---|
| 538 | pdpsrf(ig) = -zdiceco2_mesh_avg(ig)*g |
---|
| 539 | |
---|
[38] | 540 | IF(ABS(pdpsrf(ig)*ptimestep).GT.pplev(ig,1)) THEN |
---|
| 541 | PRINT*,'STOP in condens' |
---|
| 542 | PRINT*,'condensing more than total mass' |
---|
| 543 | PRINT*,'Grid point ',ig |
---|
[2124] | 544 | PRINT*,'Longitude(degrees): ',longitude_deg(ig) |
---|
| 545 | PRINT*,'Latitude(degrees): ',latitude_deg(ig) |
---|
[38] | 546 | PRINT*,'Ps = ',pplev(ig,1) |
---|
| 547 | PRINT*,'d Ps = ',pdpsrf(ig) |
---|
[2399] | 548 | CALL abort_physic('co2condens', |
---|
| 549 | & 'condensing more than total mass', 1) |
---|
[38] | 550 | ENDIF |
---|
[2953] | 551 | |
---|
[38] | 552 | ENDDO ! of DO ig=1,ngrid |
---|
[2953] | 553 | |
---|
[38] | 554 | |
---|
| 555 | c ******************************************************************** |
---|
| 556 | c Surface albedo and emissivity of the surface below the snow (emisref) |
---|
| 557 | c ******************************************************************** |
---|
| 558 | |
---|
| 559 | ! Check that amont of CO2 ice is not problematic |
---|
| 560 | DO ig=1,ngrid |
---|
[2953] | 561 | DO islope = 1,nslope |
---|
| 562 | if(.not.piceco2(ig,islope).ge.0.) THEN |
---|
| 563 | if(piceco2(ig,islope).le.-5.e-8) print*, |
---|
| 564 | $ 'WARNING co2condens piceco2(',ig,')=', piceco2(ig,islope) |
---|
| 565 | piceco2(ig,islope)=0. |
---|
[38] | 566 | endif |
---|
[2953] | 567 | ENDDO |
---|
[38] | 568 | ENDDO |
---|
| 569 | |
---|
| 570 | ! Set albedo and emissivity of the surface |
---|
| 571 | ! ---------------------------------------- |
---|
[2953] | 572 | DO islope = 1,nslope |
---|
| 573 | piceco2_tmp(:) = piceco2(:,islope) |
---|
| 574 | alb_tmp(:,:) = psolaralb(:,:,islope) |
---|
[2999] | 575 | emisref_tmp(:) = 0. |
---|
| 576 | perenial_co2ice_tmp(:) = perenial_co2ice(:,islope) |
---|
| 577 | CALL albedocaps(zls,ngrid,piceco2_tmp,perenial_co2ice_tmp, |
---|
| 578 | & alb_tmp,emisref_tmp) |
---|
| 579 | perenial_co2ice(:,islope) = perenial_co2ice_tmp(:) |
---|
[2953] | 580 | psolaralb(:,1,islope) = alb_tmp(:,1) |
---|
| 581 | psolaralb(:,2,islope) = alb_tmp(:,2) |
---|
| 582 | emisref(:,islope) = emisref_tmp(:) |
---|
| 583 | ENDDO |
---|
[38] | 584 | |
---|
| 585 | ! set pemisurf() to emissiv when there is bare surface (needed for co2snow) |
---|
| 586 | DO ig=1,ngrid |
---|
[2953] | 587 | DO islope = 1,nslope |
---|
| 588 | if (piceco2(ig,islope).eq.0) then |
---|
| 589 | pemisurf(ig,islope)=emissiv |
---|
| 590 | endif |
---|
| 591 | ENDDO |
---|
[38] | 592 | ENDDO |
---|
| 593 | |
---|
| 594 | ! firstcall2=.false. |
---|
| 595 | c *************************************************************** |
---|
| 596 | c Correction to account for redistribution between sigma or hybrid |
---|
| 597 | c layers when changing surface pressure (and warming/cooling |
---|
| 598 | c of the CO2 currently changing phase). |
---|
| 599 | c ************************************************************* |
---|
| 600 | |
---|
| 601 | DO ig=1,ngrid |
---|
[2953] | 602 | if (any(condsub(ig,:))) then |
---|
[38] | 603 | do l=1,nlayer |
---|
| 604 | ztc(l) =zt(ig,l) +pdtc(ig,l) *ptimestep |
---|
| 605 | zu(l) =pu(ig,l) +pdu( ig,l) *ptimestep |
---|
| 606 | zv(l) =pv(ig,l) +pdv( ig,l) *ptimestep |
---|
[1036] | 607 | do iq=1,nq |
---|
[2601] | 608 | zqc(l,iq)=zq(ig,l,iq)+zdq_scav(ig,l,iq)*ptimestep ! zdq_scav=0 if co2clouds=true |
---|
[38] | 609 | enddo |
---|
[2184] | 610 | enddo |
---|
[38] | 611 | |
---|
| 612 | c Mass fluxes through the sigma levels (kg.m-2.s-1) (>0 when up) |
---|
| 613 | c """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" |
---|
[2953] | 614 | zmflux(1) = -zcondices_mesh_avg(ig) - zdqssed_co2(ig) |
---|
[2566] | 615 | DO l=1,nlayer |
---|
[2599] | 616 | zmflux(l+1) = zmflux(l) - condens_layer(ig,l) |
---|
[1438] | 617 | #ifndef MESOSCALE |
---|
[2599] | 618 | & + (bp(l)-bp(l+1))*(-pdpsrf(ig)/g) |
---|
[2566] | 619 | c zmflux set to 0 if very low to avoid: top layer is disappearing in v1ld |
---|
| 620 | if (abs(zmflux(l+1)).lt.1E-13.OR.bp(l+1).eq.0.) then |
---|
| 621 | zmflux(l+1)=0. |
---|
| 622 | end if |
---|
[1438] | 623 | #else |
---|
[2599] | 624 | zmflux(l+1) = zmflux(l) - condens_layer(ig,l) |
---|
[2566] | 625 | if (abs(zmflux(l+1)).lt.1E-13) zmflux(l+1)=0. |
---|
| 626 | PRINT*, "MESOSCALE: FLUX THROUGH SIGMA LEVELS from"// |
---|
| 627 | & "dPS HAVE TO BE IMPLEMENTED" |
---|
[1438] | 628 | #endif |
---|
[2566] | 629 | END DO |
---|
[2155] | 630 | #ifdef MESOSCALE |
---|
| 631 | print*,"absurd mass set because bp not available" |
---|
| 632 | print*,"TO BE FIXED" |
---|
| 633 | #else |
---|
[2124] | 634 | c Mass of each layer at the end of timestep |
---|
| 635 | c ----------------------------------------- |
---|
[38] | 636 | DO l=1,nlayer |
---|
[2124] | 637 | masse(l)=( pplev(ig,l) - pplev(ig,l+1) + |
---|
| 638 | & (bp(l)-bp(l+1))*pdpsrf(ig)*ptimestep)/g |
---|
[38] | 639 | END DO |
---|
[2155] | 640 | #endif |
---|
[38] | 641 | |
---|
| 642 | c Corresponding fluxes for T,U,V,Q |
---|
| 643 | c """""""""""""""""""""""""""""""" |
---|
| 644 | |
---|
| 645 | c averaging operator for TRANSPORT |
---|
| 646 | c """""""""""""""""""""""""""""""" |
---|
| 647 | c Value transfert at the surface interface when condensation |
---|
| 648 | c sublimation: |
---|
[3013] | 649 | if (zmflux(1).lt.0) then |
---|
| 650 | c Surface condensation |
---|
| 651 | ztm(1) = ztc(1) |
---|
| 652 | else |
---|
| 653 | c Surface sublimation: |
---|
| 654 | ztm(1) = ztcondsol(ig) |
---|
| 655 | endif |
---|
[38] | 656 | zum(1) = 0 |
---|
| 657 | zvm(1) = 0 |
---|
[1036] | 658 | do iq=1,nq |
---|
[38] | 659 | zqm(1,iq)=0. ! most tracer do not condense ! |
---|
| 660 | enddo |
---|
| 661 | c Special case if one of the tracer is CO2 gas |
---|
| 662 | if (ico2.ne.0) zqm(1,ico2)=1. ! flux is 100% CO2 |
---|
| 663 | |
---|
| 664 | c Van Leer scheme: |
---|
| 665 | DO l=1,nlayer+1 |
---|
| 666 | w(l)=-zmflux(l)*ptimestep |
---|
| 667 | END DO |
---|
[1269] | 668 | call vl1d(nlayer,ztc,2.,masse,w,ztm) |
---|
| 669 | call vl1d(nlayer,zu ,2.,masse,w,zum) |
---|
| 670 | call vl1d(nlayer,zv ,2.,masse,w,zvm) |
---|
[2322] | 671 | ! MVals: loop over the fathers ("peres") |
---|
| 672 | do iq=1,nqperes |
---|
[38] | 673 | do l=1,nlayer |
---|
[2184] | 674 | zq1(l)=zqc(l,iq) |
---|
[38] | 675 | enddo |
---|
| 676 | zqm1(1)=zqm(1,iq) |
---|
[1269] | 677 | call vl1d(nlayer,zq1,2.,masse,w,zqm1) |
---|
[38] | 678 | do l=2,nlayer |
---|
[2184] | 679 | zqc(l,iq)=zq1(l) |
---|
[38] | 680 | zqm(l,iq)=zqm1(l) |
---|
| 681 | enddo |
---|
[2322] | 682 | ! MVals: loop over the sons ("fils") |
---|
| 683 | if (nqfils(iq).gt.0) then |
---|
[2332] | 684 | if (iq.eq.igcm_h2o_ice) then |
---|
| 685 | iq2=igcm_hdo_ice |
---|
| 686 | else if (iq.eq.igcm_h2o_vap) then |
---|
| 687 | iq2=igcm_hdo_vap |
---|
| 688 | else |
---|
| 689 | call abort_physic("co2condens_mod","invalid isotope",1) |
---|
| 690 | endif |
---|
[2322] | 691 | do l=1,nlayer |
---|
| 692 | if (zqc(l,iq).gt.qperemin) then |
---|
| 693 | Ratio1(l)=zqc(l,iq2)/zqc(l,iq) |
---|
| 694 | else |
---|
| 695 | Ratio1(l)=0. |
---|
| 696 | endif |
---|
| 697 | masseq(l)=max(masse(l)*zqc(l,iq),masseqmin) |
---|
| 698 | wq(l)=w(l)*zqm(l,iq) |
---|
| 699 | enddo |
---|
| 700 | Ratiom1(1)=zqm(1,iq2) |
---|
| 701 | call vl1d(nlayer,Ratio1,2.,masseq,wq,Ratiom1) |
---|
| 702 | zqm(1,iq2)=Ratiom1(1)*zqc(1,iq) |
---|
| 703 | do l=2,nlayer |
---|
| 704 | zqm(l,iq2)=Ratiom1(l)*zqm(l,iq) |
---|
| 705 | enddo |
---|
| 706 | endif !if (nqfils(iq).gt.0) then |
---|
| 707 | enddo !iq=1,nqperes |
---|
[38] | 708 | |
---|
| 709 | c Surface condensation affects low winds |
---|
| 710 | if (zmflux(1).lt.0) then |
---|
| 711 | zum(1)= zu(1) * (w(1)/masse(1)) |
---|
| 712 | zvm(1)= zv(1) * (w(1)/masse(1)) |
---|
| 713 | if (w(1).gt.masse(1)) then ! ensure numerical stability |
---|
| 714 | zum(1)= (zu(1)-zum(2))*masse(1)/w(1) + zum(2) |
---|
| 715 | zvm(1)= (zv(1)-zvm(2))*masse(1)/w(1) + zvm(2) |
---|
| 716 | end if |
---|
| 717 | end if |
---|
| 718 | |
---|
| 719 | ztm(nlayer+1)= ztc(nlayer) ! should not be used, but... |
---|
| 720 | zum(nlayer+1)= zu(nlayer) ! should not be used, but... |
---|
| 721 | zvm(nlayer+1)= zv(nlayer) ! should not be used, but... |
---|
[1036] | 722 | do iq=1,nq |
---|
[2184] | 723 | zqm(nlayer+1,iq)= zqc(nlayer,iq) |
---|
[38] | 724 | enddo |
---|
[86] | 725 | |
---|
| 726 | #ifdef MESOSCALE |
---|
| 727 | !!!! AS: This part must be commented in the mesoscale model |
---|
| 728 | !!!! AS: ... to avoid instabilities. |
---|
| 729 | !!!! AS: you have to compile with -DMESOSCALE to do so |
---|
| 730 | #else |
---|
[38] | 731 | c Tendencies on T, U, V, Q |
---|
| 732 | c """""""""""""""""""""""" |
---|
| 733 | DO l=1,nlayer |
---|
[1996] | 734 | IF(.not. co2clouds) THEN |
---|
[38] | 735 | c Tendencies on T |
---|
| 736 | zdtsig(ig,l) = (1/masse(l)) * |
---|
| 737 | & ( zmflux(l)*(ztm(l) - ztc(l)) |
---|
| 738 | & - zmflux(l+1)*(ztm(l+1) - ztc(l)) |
---|
[2599] | 739 | & + condens_layer(ig,l)*(ztcond(ig,l)-ztc(l)) ) |
---|
[1996] | 740 | ELSE |
---|
| 741 | zdtsig(ig,l) = (1/masse(l)) * |
---|
| 742 | & ( zmflux(l)*(ztm(l) - ztc(l)) |
---|
| 743 | & - zmflux(l+1)*(ztm(l+1) - ztc(l))) |
---|
| 744 | ENDIF |
---|
| 745 | c D.BARDET: for diagnotics |
---|
| 746 | zmflux3D(ig,l)=zmflux(l) |
---|
| 747 | ztm3D(ig,l)=ztm(l) |
---|
| 748 | ztc3D(ig,l)=ztc(l) |
---|
| 749 | |
---|
[38] | 750 | pdtc(ig,l) = pdtc(ig,l) + zdtsig(ig,l) |
---|
| 751 | |
---|
| 752 | c Tendencies on U |
---|
| 753 | pduc(ig,l) = (1/masse(l)) * |
---|
| 754 | & ( zmflux(l)*(zum(l) - zu(l)) |
---|
| 755 | & - zmflux(l+1)*(zum(l+1) - zu(l)) ) |
---|
| 756 | |
---|
| 757 | |
---|
| 758 | c Tendencies on V |
---|
| 759 | pdvc(ig,l) = (1/masse(l)) * |
---|
| 760 | & ( zmflux(l)*(zvm(l) - zv(l)) |
---|
| 761 | & - zmflux(l+1)*(zvm(l+1) - zv(l)) ) |
---|
| 762 | |
---|
| 763 | END DO |
---|
[1114] | 764 | |
---|
[86] | 765 | #endif |
---|
[38] | 766 | |
---|
[2566] | 767 | do iq=1,nq |
---|
| 768 | ! if (noms(iq).eq.'co2') then |
---|
| 769 | if (iq.eq.ico2) then |
---|
| 770 | c SPECIAL Case when the tracer IS CO2 : |
---|
| 771 | DO l=1,nlayer |
---|
| 772 | pdqc(ig,l,iq)= (1/masse(l)) * |
---|
| 773 | & ( zmflux(l)*(zqm(l,iq) - zqc(l,iq)) |
---|
| 774 | & - zmflux(l+1)*(zqm(l+1,iq) - zqc(l,iq)) |
---|
[2599] | 775 | & + condens_layer(ig,l)*(zqc(l,iq)-1.) ) |
---|
[2566] | 776 | END DO |
---|
| 777 | else |
---|
| 778 | DO l=1,nlayer |
---|
| 779 | pdqc(ig,l,iq)= (1/masse(l)) * |
---|
| 780 | & ( zmflux(l)*(zqm(l,iq) - zqc(l,iq)) |
---|
| 781 | & - zmflux(l+1)*(zqm(l+1,iq) - zqc(l,iq)) |
---|
[2599] | 782 | & + condens_layer(ig,l)*zqc(l,iq) ) |
---|
[2566] | 783 | |
---|
[2601] | 784 | pdqc(ig,l,iq)=pdqc(ig,l,iq)+zdq_scav(ig,l,iq) ! zdq_scav=0 if co2clouds=true |
---|
[2566] | 785 | END DO |
---|
| 786 | end if |
---|
| 787 | enddo |
---|
[38] | 788 | |
---|
| 789 | end if ! if (condsub) |
---|
| 790 | END DO ! loop on ig |
---|
| 791 | |
---|
| 792 | c *************************************************************** |
---|
| 793 | c CO2 snow / clouds scheme |
---|
| 794 | c *************************************************************** |
---|
[2953] | 795 | DO islope = 1,nslope |
---|
| 796 | emisref_tmp(:) = emisref(:,islope) |
---|
| 797 | condsub_tmp(:) = condsub(:,islope) |
---|
| 798 | condens_layer_tmp(:,:) = condens_layer(:,:)* |
---|
| 799 | & cos(pi*def_slope_mean(islope)/180.) |
---|
| 800 | zcondices_tmp(:) = zcondices(:,islope)* |
---|
| 801 | & cos(pi*def_slope_mean(islope)/180.) |
---|
| 802 | zfallice_tmp(:,:) = zfallice(:,:)* |
---|
| 803 | & cos(pi*def_slope_mean(islope)/180.) |
---|
| 804 | pemisurf_tmp(:) = pemisurf(:,islope) |
---|
| 805 | |
---|
| 806 | call co2snow(ngrid,nlayer,ptimestep,emisref_tmp,condsub_tmp, |
---|
| 807 | & pplev,condens_layer_tmp,zcondices_tmp,zfallice_tmp, |
---|
| 808 | & pemisurf_tmp) |
---|
| 809 | pemisurf(:,islope) = pemisurf_tmp(:) |
---|
| 810 | |
---|
| 811 | ENDDO |
---|
[38] | 812 | c *************************************************************** |
---|
| 813 | c Ecriture des diagnostiques |
---|
| 814 | c *************************************************************** |
---|
| 815 | |
---|
| 816 | c DO l=1,nlayer |
---|
| 817 | c DO ig=1,ngrid |
---|
| 818 | c Taux de cond en kg.m-2.pa-1.s-1 |
---|
| 819 | c tconda1(ig,l)=zcondicea(ig,l)/(pplev(ig,l)-pplev(ig,l+1)) |
---|
| 820 | c Taux de cond en kg.m-3.s-1 |
---|
| 821 | c tconda2(ig,l)=tconda1(ig,l)*pplay(ig,l)*g/(r*pt(ig,l)) |
---|
| 822 | c END DO |
---|
| 823 | c END DO |
---|
[2932] | 824 | c call write_output('tconda1', |
---|
[38] | 825 | c &'Taux de condensation CO2 atmospherique /Pa', |
---|
[2932] | 826 | c & 'kg.m-2.Pa-1.s-1',tconda1) |
---|
| 827 | c call write_output('tconda2', |
---|
[38] | 828 | c &'Taux de condensation CO2 atmospherique /m', |
---|
[2932] | 829 | c & 'kg.m-3.s-1',tconda2) |
---|
[38] | 830 | |
---|
| 831 | ! output falling co2 ice in 1st layer: |
---|
[2932] | 832 | ! call write_output('fallice', |
---|
[38] | 833 | ! &'Precipitation of co2 ice', |
---|
[2932] | 834 | ! & 'kg.m-2.s-1',zfallice(1,1)) |
---|
[38] | 835 | |
---|
[1114] | 836 | #ifndef MESOSCALE |
---|
| 837 | ! Extra special case for surface temperature tendency pdtsrfc: |
---|
| 838 | ! we want to fix the south pole temperature to CO2 condensation temperature |
---|
[2999] | 839 | if (caps.and.(obliquit.lt.27.).and.(.not.(paleoclimate))) then |
---|
[1114] | 840 | ! check if last grid point is the south pole |
---|
[1541] | 841 | if (abs(latitude(ngrid)-(-pi/2.)).lt.1.e-5) then |
---|
[1114] | 842 | ! NB: Updated surface pressure, at grid point 'ngrid', is |
---|
| 843 | ! ps(ngrid)=pplev(ngrid,1)+pdpsrf(ngrid)*ptimestep |
---|
[2903] | 844 | ztcondsol(ngrid)= |
---|
| 845 | & 1./(bcond-acond*log(.01*vmr_co2(ngrid,1)* |
---|
| 846 | & (pplev(ngrid,1)+pdpsrf(ngrid)*ptimestep))) |
---|
[2953] | 847 | DO islope = 1,nslope |
---|
| 848 | pdtsrfc(ngrid,islope)=(ztcondsol(ngrid)- |
---|
| 849 | & ztsrf(ngrid,islope))/ptimestep |
---|
| 850 | ENDDO ! islope = 1,nslope |
---|
[1114] | 851 | endif |
---|
| 852 | endif |
---|
| 853 | #endif |
---|
| 854 | |
---|
[2009] | 855 | END SUBROUTINE co2condens |
---|
[38] | 856 | |
---|
| 857 | |
---|
| 858 | |
---|
| 859 | c ***************************************************************** |
---|
[1269] | 860 | SUBROUTINE vl1d(nlayer,q,pente_max,masse,w,qm) |
---|
[38] | 861 | c |
---|
| 862 | c |
---|
| 863 | c Operateur de moyenne inter-couche pour calcul de transport type |
---|
| 864 | c Van-Leer " pseudo amont " dans la verticale |
---|
| 865 | c q,w sont des arguments d'entree pour le s-pg .... |
---|
| 866 | c masse : masse de la couche Dp/g |
---|
| 867 | c w : masse d'atm ``transferee'' a chaque pas de temps (kg.m-2) |
---|
| 868 | c pente_max = 2 conseillee |
---|
| 869 | c |
---|
| 870 | c |
---|
| 871 | c -------------------------------------------------------------------- |
---|
| 872 | IMPLICIT NONE |
---|
| 873 | |
---|
| 874 | c |
---|
| 875 | c |
---|
| 876 | c |
---|
| 877 | c Arguments: |
---|
| 878 | c ---------- |
---|
[1270] | 879 | integer nlayer |
---|
[1269] | 880 | real masse(nlayer),pente_max |
---|
| 881 | REAL q(nlayer),qm(nlayer+1) |
---|
| 882 | REAL w(nlayer+1) |
---|
[38] | 883 | c |
---|
| 884 | c Local |
---|
| 885 | c --------- |
---|
| 886 | c |
---|
| 887 | INTEGER l |
---|
| 888 | c |
---|
[1269] | 889 | real dzq(nlayer),dzqw(nlayer),adzqw(nlayer),dzqmax |
---|
[38] | 890 | real sigw, Mtot, MQtot |
---|
| 891 | integer m |
---|
| 892 | c integer ismax,ismin |
---|
| 893 | |
---|
| 894 | |
---|
| 895 | c On oriente tout dans le sens de la pression |
---|
| 896 | c W > 0 WHEN DOWN !!!!!!!!!!!!! |
---|
| 897 | |
---|
[1269] | 898 | do l=2,nlayer |
---|
[38] | 899 | dzqw(l)=q(l-1)-q(l) |
---|
| 900 | adzqw(l)=abs(dzqw(l)) |
---|
| 901 | enddo |
---|
| 902 | |
---|
[1269] | 903 | do l=2,nlayer-1 |
---|
[38] | 904 | if(dzqw(l)*dzqw(l+1).gt.0.) then |
---|
| 905 | dzq(l)=0.5*(dzqw(l)+dzqw(l+1)) |
---|
| 906 | else |
---|
| 907 | dzq(l)=0. |
---|
| 908 | endif |
---|
| 909 | dzqmax=pente_max*min(adzqw(l),adzqw(l+1)) |
---|
| 910 | dzq(l)=sign(min(abs(dzq(l)),dzqmax),dzq(l)) |
---|
| 911 | enddo |
---|
| 912 | |
---|
| 913 | dzq(1)=0. |
---|
[1269] | 914 | dzq(nlayer)=0. |
---|
[38] | 915 | |
---|
[1269] | 916 | do l = 1,nlayer-1 |
---|
[38] | 917 | |
---|
| 918 | c Regular scheme (transfered mass < layer mass) |
---|
| 919 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 920 | if(w(l+1).gt.0. .and. w(l+1).le.masse(l+1)) then |
---|
| 921 | sigw=w(l+1)/masse(l+1) |
---|
| 922 | qm(l+1)=(q(l+1)+0.5*(1.-sigw)*dzq(l+1)) |
---|
| 923 | else if(w(l+1).le.0. .and. -w(l+1).le.masse(l)) then |
---|
| 924 | sigw=w(l+1)/masse(l) |
---|
| 925 | qm(l+1)=(q(l)-0.5*(1.+sigw)*dzq(l)) |
---|
| 926 | |
---|
| 927 | c Extended scheme (transfered mass > layer mass) |
---|
| 928 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 929 | else if(w(l+1).gt.0.) then |
---|
| 930 | m=l+1 |
---|
| 931 | Mtot = masse(m) |
---|
| 932 | MQtot = masse(m)*q(m) |
---|
[1269] | 933 | do while ((m.lt.nlayer).and.(w(l+1).gt.(Mtot+masse(m+1)))) |
---|
[38] | 934 | m=m+1 |
---|
| 935 | Mtot = Mtot + masse(m) |
---|
| 936 | MQtot = MQtot + masse(m)*q(m) |
---|
| 937 | end do |
---|
[1269] | 938 | if (m.lt.nlayer) then |
---|
[38] | 939 | sigw=(w(l+1)-Mtot)/masse(m+1) |
---|
| 940 | qm(l+1)= (1/w(l+1))*(MQtot + (w(l+1)-Mtot)* |
---|
| 941 | & (q(m+1)+0.5*(1.-sigw)*dzq(m+1)) ) |
---|
| 942 | else |
---|
| 943 | w(l+1) = Mtot |
---|
| 944 | qm(l+1) = Mqtot / Mtot |
---|
[2399] | 945 | CALL abort_physic('co2condens', |
---|
| 946 | & 'top layer is disapearing !', 1) |
---|
[38] | 947 | end if |
---|
| 948 | else ! if(w(l+1).lt.0) |
---|
| 949 | m = l-1 |
---|
| 950 | Mtot = masse(m+1) |
---|
| 951 | MQtot = masse(m+1)*q(m+1) |
---|
[120] | 952 | if (m.gt.0) then ! because some compilers will have problems |
---|
| 953 | ! evaluating masse(0) |
---|
| 954 | do while ((m.gt.0).and.(-w(l+1).gt.(Mtot+masse(m)))) |
---|
[38] | 955 | m=m-1 |
---|
| 956 | Mtot = Mtot + masse(m+1) |
---|
| 957 | MQtot = MQtot + masse(m+1)*q(m+1) |
---|
[120] | 958 | if (m.eq.0) exit |
---|
| 959 | end do |
---|
| 960 | endif |
---|
[38] | 961 | if (m.gt.0) then |
---|
| 962 | sigw=(w(l+1)+Mtot)/masse(m) |
---|
| 963 | qm(l+1)= (-1/w(l+1))*(MQtot + (-w(l+1)-Mtot)* |
---|
| 964 | & (q(m)-0.5*(1.+sigw)*dzq(m)) ) |
---|
| 965 | else |
---|
| 966 | qm(l+1)= (-1/w(l+1))*(MQtot + (-w(l+1)-Mtot)*qm(1)) |
---|
| 967 | end if |
---|
| 968 | end if |
---|
| 969 | enddo |
---|
| 970 | |
---|
[2124] | 971 | c boundary conditions (not used in co2condens !!) |
---|
[1269] | 972 | c qm(nlayer+1)=0. |
---|
[38] | 973 | c if(w(1).gt.0.) then |
---|
| 974 | c qm(1)=q(1) |
---|
| 975 | c else |
---|
| 976 | c qm(1)=0. |
---|
| 977 | c end if |
---|
| 978 | |
---|
[2009] | 979 | END SUBROUTINE vl1d |
---|
[2184] | 980 | |
---|
| 981 | c ***************************************************************** |
---|
| 982 | SUBROUTINE scavenging_by_co2(ngrid,nlayer,nq,ptimestep,pplev,pq, |
---|
| 983 | & rdust,pcondicea,pfallice,pdq_scav,pdqsc) |
---|
| 984 | |
---|
| 985 | c |
---|
| 986 | c |
---|
| 987 | c Calcul de la quantite de poussiere lessivee par les nuages de CO2 |
---|
| 988 | c |
---|
| 989 | c -------------------------------------------------------------------- |
---|
| 990 | use tracer_mod, only: nqmx, igcm_h2o_vap, igcm_h2o_ice, |
---|
| 991 | & igcm_dust_mass, igcm_dust_number, |
---|
| 992 | & igcm_ccn_mass, igcm_ccn_number, |
---|
| 993 | & rho_dust, nuice_sed, nuice_ref,r3n_q |
---|
| 994 | use comcstfi_h, only: g |
---|
[2409] | 995 | use dust_param_mod, only: freedust |
---|
[2184] | 996 | IMPLICIT NONE |
---|
[2409] | 997 | include "callkeys.h" ! for the flags water and microphys |
---|
[2184] | 998 | c |
---|
| 999 | c |
---|
| 1000 | c Arguments: |
---|
| 1001 | INTEGER,INTENT(IN) :: ngrid ! number of atmospheric columns |
---|
| 1002 | INTEGER,INTENT(IN) :: nlayer ! number of vertical layers |
---|
| 1003 | INTEGER,INTENT(IN) :: nq ! number of tracers |
---|
| 1004 | REAL,INTENT(IN) :: ptimestep ! physics timestep (s) |
---|
| 1005 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) ! inter-layer pressure (Pa) |
---|
| 1006 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) |
---|
| 1007 | REAL,INTENT(IN) :: rdust(ngrid,nlayer) ! dust effective radius |
---|
[2601] | 1008 | REAL,INTENT(IN) :: pcondicea(ngrid,nlayer) ! condensation rate in layer l (kg/m2/s) |
---|
[2184] | 1009 | REAL,INTENT(IN) :: pfallice(ngrid,nlayer+1) ! amount of ice falling from layer l (kg/m2/s) |
---|
| 1010 | |
---|
[2601] | 1011 | REAL,INTENT(OUT) :: pdq_scav(ngrid,nlayer,nq) ! tendency due to scavenging by co2 |
---|
[2184] | 1012 | REAL,INTENT(OUT) :: pdqsc(ngrid,nq) ! tendency on surface tracers |
---|
| 1013 | |
---|
| 1014 | c Locals: |
---|
| 1015 | INTEGER l,ig |
---|
| 1016 | REAL scav_ratio_dust, scav_ratio_wice ! ratio of the dust/water ice mass mixing ratios in condensing CO2 ice and in air |
---|
| 1017 | REAL scav_dust_mass(nlayer+1) ! dust flux (mass) scavenged towards the lower layer (kg/m2/s) (POSITIVE WHEN DOWNWARD) |
---|
| 1018 | REAL scav_dust_number(nlayer+1) ! dust flux (number) scavenged towards the lower layer (kg/m2/s) (POSITIVE WHEN DOWNWARD) |
---|
| 1019 | REAL scav_ccn_mass(nlayer+1) ! ccn flux (mass) scavenged towards the lower layer |
---|
| 1020 | REAL scav_ccn_number(nlayer+1) ! ccn flux (number) scavenged towards the lower layer |
---|
| 1021 | REAL scav_h2o_ice(nlayer+1) ! water ice flux (mass) scavenged towards the lower layer |
---|
| 1022 | REAL massl ! mass of the layer l at point ig (kg/m2) |
---|
| 1023 | |
---|
| 1024 | c Initialization: |
---|
[2669] | 1025 | scav_ratio_dust = 20 !1 !10 !100 !1000 ! the scavenging ratio value of 20 is a good compromise to remove the dust in the polar night |
---|
| 1026 | scav_ratio_wice = scav_ratio_dust ! while not drying up the water cycle (which occurs at scav_ratio_wice values above 50 at least) |
---|
[2184] | 1027 | pdq_scav(:,:,:)=0. |
---|
[2601] | 1028 | pdqsc(:,:)=0. |
---|
| 1029 | |
---|
[2184] | 1030 | DO ig=1,ngrid |
---|
| 1031 | scav_dust_mass(nlayer+1)=0. |
---|
| 1032 | scav_dust_number(nlayer+1)=0. |
---|
| 1033 | scav_ccn_mass(nlayer+1)=0. |
---|
| 1034 | scav_ccn_number(nlayer+1)=0. |
---|
| 1035 | scav_h2o_ice(nlayer+1)=0. |
---|
| 1036 | |
---|
| 1037 | DO l=nlayer , 1, -1 |
---|
| 1038 | massl=(pplev(ig,l)-pplev(ig,l+1))/g |
---|
| 1039 | IF(pcondicea(ig,l).GT.0.)THEN ! if CO2 condenses and traps dust/water ice |
---|
| 1040 | ! Calculation of the tendencies |
---|
| 1041 | if (freedust) then |
---|
| 1042 | pdq_scav(ig,l,igcm_dust_mass)=-pq(ig,l,igcm_dust_mass) |
---|
| 1043 | & /ptimestep*(1-exp( |
---|
| 1044 | & -scav_ratio_dust*pcondicea(ig,l)*ptimestep/massl)) |
---|
| 1045 | |
---|
| 1046 | pdq_scav(ig,l,igcm_dust_number)=pdq_scav(ig,l,igcm_dust_mass) |
---|
| 1047 | & *r3n_q/rdust(ig,l) |
---|
| 1048 | endif |
---|
| 1049 | if (freedust.AND.microphys) then |
---|
| 1050 | pdq_scav(ig,l,igcm_ccn_mass)=-pq(ig,l,igcm_ccn_mass) |
---|
| 1051 | & /ptimestep*(1-exp( |
---|
| 1052 | & -scav_ratio_wice*pcondicea(ig,l)*ptimestep/massl)) |
---|
| 1053 | pdq_scav(ig,l,igcm_ccn_number)=pdq_scav(ig,l,igcm_ccn_mass) |
---|
| 1054 | & *r3n_q/rdust(ig,l) |
---|
| 1055 | endif |
---|
| 1056 | if (water) then |
---|
| 1057 | pdq_scav(ig,l,igcm_h2o_ice)=-pq(ig,l,igcm_h2o_ice) |
---|
| 1058 | & /ptimestep*(1-exp( |
---|
| 1059 | & -scav_ratio_wice*pcondicea(ig,l)*ptimestep/massl)) |
---|
| 1060 | endif |
---|
| 1061 | |
---|
| 1062 | ELSE IF(pcondicea(ig,l).LT.0.)THEN ! if CO2 sublimates and releases dust/water ice |
---|
| 1063 | ! Calculation of the tendencies |
---|
| 1064 | if (freedust) then |
---|
| 1065 | pdq_scav(ig,l,igcm_dust_mass)=-pcondicea(ig,l)/massl* |
---|
| 1066 | & scav_dust_mass(l+1)/pfallice(ig,l+1) |
---|
| 1067 | |
---|
| 1068 | pdq_scav(ig,l,igcm_dust_number)=-pcondicea(ig,l)/massl* |
---|
| 1069 | & scav_dust_number(l+1)/pfallice(ig,l+1) |
---|
| 1070 | endif |
---|
| 1071 | if (freedust.AND.microphys) then |
---|
| 1072 | pdq_scav(ig,l,igcm_ccn_mass)=-pcondicea(ig,l)/massl* |
---|
| 1073 | & scav_ccn_mass(l+1)/pfallice(ig,l+1) |
---|
| 1074 | |
---|
| 1075 | pdq_scav(ig,l,igcm_ccn_number)=-pcondicea(ig,l)/massl* |
---|
| 1076 | & scav_ccn_number(l+1)/pfallice(ig,l+1) |
---|
| 1077 | endif |
---|
| 1078 | if (water) then |
---|
| 1079 | pdq_scav(ig,l,igcm_h2o_ice)=-pcondicea(ig,l)/massl* |
---|
| 1080 | & scav_h2o_ice(l+1)/pfallice(ig,l+1) |
---|
| 1081 | endif |
---|
| 1082 | |
---|
| 1083 | END IF |
---|
| 1084 | ! Calculation of the scavenged dust/wice flux towards the lower layers |
---|
| 1085 | if (freedust) then |
---|
| 1086 | scav_dust_mass(l)=-pdq_scav(ig,l,igcm_dust_mass)*massl |
---|
| 1087 | & +scav_dust_mass(l+1) |
---|
| 1088 | |
---|
| 1089 | scav_dust_number(l)=-pdq_scav(ig,l,igcm_dust_number)*massl |
---|
| 1090 | & +scav_dust_number(l+1) |
---|
| 1091 | endif |
---|
| 1092 | if (freedust.AND.microphys) then |
---|
| 1093 | scav_ccn_mass(l)=-pdq_scav(ig,l,igcm_ccn_mass)*massl |
---|
| 1094 | & +scav_ccn_mass(l+1) |
---|
| 1095 | |
---|
| 1096 | scav_ccn_number(l)=-pdq_scav(ig,l,igcm_ccn_number)*massl |
---|
| 1097 | & +scav_dust_number(l+1) |
---|
| 1098 | endif |
---|
| 1099 | if (water) then |
---|
| 1100 | scav_h2o_ice(l)=-pdq_scav(ig,l,igcm_h2o_ice)*massl |
---|
| 1101 | & +scav_h2o_ice(l+1) |
---|
| 1102 | endif |
---|
| 1103 | |
---|
| 1104 | ENDDO |
---|
| 1105 | ! Calculation of the surface tendencies |
---|
| 1106 | if (freedust) then |
---|
| 1107 | pdqsc(ig,igcm_dust_mass)=pdqsc(ig,igcm_dust_mass) |
---|
| 1108 | & +scav_dust_mass(1) |
---|
| 1109 | pdqsc(ig,igcm_dust_number)=pdqsc(ig,igcm_dust_number) |
---|
| 1110 | & +scav_dust_number(1) |
---|
| 1111 | endif |
---|
| 1112 | if (freedust.AND.microphys) then |
---|
| 1113 | pdqsc(ig,igcm_dust_mass)=pdqsc(ig,igcm_dust_mass) |
---|
| 1114 | & +scav_ccn_mass(1) |
---|
| 1115 | pdqsc(ig,igcm_dust_number)=pdqsc(ig,igcm_dust_number) |
---|
| 1116 | & +scav_ccn_number(1) |
---|
| 1117 | endif |
---|
| 1118 | if (water) then |
---|
| 1119 | pdqsc(ig,igcm_h2o_ice)=scav_h2o_ice(1) |
---|
| 1120 | endif |
---|
[2601] | 1121 | |
---|
| 1122 | ENDDO ! loop on ngrid |
---|
[2184] | 1123 | |
---|
| 1124 | END SUBROUTINE scavenging_by_co2 |
---|
| 1125 | |
---|
[2009] | 1126 | END MODULE co2condens_mod |
---|