[2009] | 1 | MODULE co2condens_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
| 7 | SUBROUTINE co2condens(ngrid,nlayer,nq,ptimestep, |
---|
[38] | 8 | $ pcapcal,pplay,pplev,ptsrf,pt, |
---|
| 9 | $ pphi,pdt,pdu,pdv,pdtsrf,pu,pv,pq,pdq, |
---|
| 10 | $ piceco2,psolaralb,pemisurf, |
---|
| 11 | $ pdtc,pdtsrfc,pdpsrf,pduc,pdvc,pdqc, |
---|
[1996] | 12 | $ fluxsurf_sw,zls, |
---|
| 13 | $ zdqssed_co2,pcondicea_co2microp, |
---|
| 14 | $ zdtcloudco2) |
---|
[38] | 15 | |
---|
[1036] | 16 | use tracer_mod, only: noms |
---|
[1047] | 17 | use surfdat_h, only: emissiv, phisfi |
---|
[2124] | 18 | use geometry_mod, only: latitude, ! grid point latitudes (rad) |
---|
| 19 | & longitude_deg, latitude_deg |
---|
[2009] | 20 | use planete_h, only: obliquit |
---|
| 21 | use comcstfi_h, only: cpp, g, r, pi |
---|
[1432] | 22 | #ifndef MESOSCALE |
---|
[2124] | 23 | USE vertical_layers_mod, ONLY: ap, bp |
---|
[1432] | 24 | #endif |
---|
[38] | 25 | IMPLICIT NONE |
---|
| 26 | c======================================================================= |
---|
| 27 | c subject: |
---|
| 28 | c -------- |
---|
| 29 | c Condensation/sublimation of CO2 ice on the ground and in the |
---|
| 30 | c atmosphere |
---|
| 31 | c (Scheme described in Forget et al., Icarus, 1998) |
---|
| 32 | c |
---|
[2009] | 33 | c author: Francois Forget 1994-1996 ; updated 1996 -- 2018 |
---|
[38] | 34 | c ------ |
---|
[1996] | 35 | c adapted to external CO2 ice clouds scheme by Deborah Bardet (2018) ' |
---|
[38] | 36 | c |
---|
| 37 | c======================================================================= |
---|
| 38 | c |
---|
| 39 | c 0. Declarations : |
---|
| 40 | c ------------------ |
---|
| 41 | c |
---|
[1528] | 42 | include "callkeys.h" |
---|
[38] | 43 | |
---|
| 44 | c----------------------------------------------------------------------- |
---|
| 45 | c Arguments : |
---|
| 46 | c --------- |
---|
[890] | 47 | INTEGER,INTENT(IN) :: ngrid ! number of atmospheric columns |
---|
| 48 | INTEGER,INTENT(IN) :: nlayer ! number of vertical layers |
---|
| 49 | INTEGER,INTENT(IN) :: nq ! number of tracers |
---|
[38] | 50 | |
---|
[890] | 51 | REAL,INTENT(IN) :: ptimestep ! physics timestep (s) |
---|
| 52 | REAL,INTENT(IN) :: pcapcal(ngrid) |
---|
| 53 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) !mid-layer pressure (Pa) |
---|
| 54 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) ! inter-layer pressure (Pa) |
---|
| 55 | REAL,INTENT(IN) :: ptsrf(ngrid) ! surface temperature (K) |
---|
| 56 | REAL,INTENT(IN) :: pt(ngrid,nlayer) ! atmospheric temperature (K) |
---|
| 57 | REAL,INTENT(IN) :: pphi(ngrid,nlayer) ! geopotential (m2.s-2) |
---|
| 58 | REAL,INTENT(IN) :: pdt(ngrid,nlayer) ! tendency on temperature from |
---|
| 59 | ! previous physical processes (K/s) |
---|
| 60 | REAL,INTENT(IN) :: pdu(ngrid,nlayer) ! tendency on zonal wind (m/s2) |
---|
| 61 | ! from previous physical processes |
---|
| 62 | REAL,INTENT(IN) :: pdv(ngrid,nlayer) ! tendency on meridional wind (m/s2) |
---|
| 63 | ! from previous physical processes |
---|
| 64 | REAL,INTENT(IN) :: pdtsrf(ngrid) ! tendency on surface temperature from |
---|
| 65 | ! previous physical processes (K/s) |
---|
| 66 | REAL,INTENT(IN) :: pu(ngrid,nlayer) ! zonal wind (m/s) |
---|
| 67 | REAL,INTENT(IN) :: pv(ngrid,nlayer) ! meridional wind (m/s) |
---|
| 68 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) ! tracers (../kg_air) |
---|
| 69 | REAL,INTENT(IN) :: pdq(ngrid,nlayer,nq) ! tendency on tracers from |
---|
| 70 | ! previous physical processes |
---|
[1996] | 71 | |
---|
| 72 | REAL,INTENT(IN) :: zdqssed_co2(ngrid) ! CO2 flux at the surface (kg.m-2.s-1) |
---|
| 73 | REAL,INTENT(IN) :: pcondicea_co2microp(ngrid,nlayer)! tendency due to CO2 condensation (kg/kg.s-1) |
---|
| 74 | REAL,INTENT(IN) :: zdtcloudco2(ngrid,nlayer) ! tendency on temperature due to latent heat |
---|
| 75 | |
---|
[890] | 76 | REAL,INTENT(INOUT) :: piceco2(ngrid) ! CO2 ice on the surface (kg.m-2) |
---|
| 77 | REAL,INTENT(INOUT) :: psolaralb(ngrid,2) ! albedo of the surface |
---|
| 78 | REAL,INTENT(INOUT) :: pemisurf(ngrid) ! emissivity of the surface |
---|
| 79 | |
---|
| 80 | ! tendencies due to CO2 condensation/sublimation: |
---|
| 81 | REAL,INTENT(OUT) :: pdtc(ngrid,nlayer) ! tendency on temperature (K/s) |
---|
| 82 | REAL,INTENT(OUT) :: pdtsrfc(ngrid) ! tendency on surface temperature (K/s) |
---|
| 83 | REAL,INTENT(OUT) :: pdpsrf(ngrid) ! tendency on surface pressure (Pa/s) |
---|
| 84 | REAL,INTENT(OUT) :: pduc(ngrid,nlayer) ! tendency on zonal wind (m.s-2) |
---|
| 85 | REAL,INTENT(OUT) :: pdvc(ngrid,nlayer) ! tendency on meridional wind (m.s-2) |
---|
| 86 | REAL,INTENT(OUT) :: pdqc(ngrid,nlayer,nq) ! tendency on tracers |
---|
| 87 | |
---|
| 88 | ! added to calculate flux dependent albedo: |
---|
| 89 | REAL,intent(in) :: fluxsurf_sw(ngrid,2) |
---|
| 90 | real,intent(in) :: zls ! solar longitude (rad) |
---|
[38] | 91 | |
---|
| 92 | c |
---|
| 93 | c Local variables : |
---|
| 94 | c ----------------- |
---|
| 95 | |
---|
| 96 | INTEGER i,j |
---|
[2009] | 97 | INTEGER l,ig,iq,icap |
---|
[890] | 98 | REAL zt(ngrid,nlayer) |
---|
[38] | 99 | REAL zcpi |
---|
[1114] | 100 | REAL ztcond (ngrid,nlayer+1) ! CO2 condensation temperature (atm) |
---|
| 101 | REAL ztcondsol(ngrid) ! CO2 condensation temperature (surface) |
---|
[890] | 102 | REAL zdiceco2(ngrid) |
---|
[2009] | 103 | REAL zcondicea(ngrid,nlayer) ! condensation rate in layer l (kg/m2/s) |
---|
| 104 | REAL zcondices(ngrid) ! condensation rate on the ground (kg/m2/s) |
---|
| 105 | REAL zfallice(ngrid,nlayer+1) ! amount of ice falling from layer l (kg/m2/s) |
---|
| 106 | REAL zfallheat |
---|
[890] | 107 | REAL zmflux(nlayer+1) |
---|
| 108 | REAL zu(nlayer),zv(nlayer) |
---|
| 109 | REAL zq(nlayer,nq),zq1(nlayer) |
---|
| 110 | REAL ztsrf(ngrid) |
---|
| 111 | REAL ztc(nlayer), ztm(nlayer+1) |
---|
| 112 | REAL zum(nlayer+1) , zvm(nlayer+1) |
---|
| 113 | REAL zqm(nlayer+1,nq),zqm1(nlayer+1) |
---|
| 114 | REAL masse(nlayer),w(nlayer+1) |
---|
| 115 | REAL Sm(nlayer),Smq(nlayer,nq),mixmas,qmix |
---|
[2124] | 116 | REAL availco2 |
---|
[890] | 117 | LOGICAL condsub(ngrid) |
---|
[38] | 118 | |
---|
[1224] | 119 | real :: emisref(ngrid) |
---|
| 120 | |
---|
[38] | 121 | c variable speciale diagnostique |
---|
[890] | 122 | real tconda1(ngrid,nlayer) |
---|
| 123 | real tconda2(ngrid,nlayer) |
---|
| 124 | c REAL zdiceco2a(ngrid) ! for diagnostic only |
---|
| 125 | real zdtsig (ngrid,nlayer) |
---|
| 126 | real zdt (ngrid,nlayer) |
---|
| 127 | real vmr_co2(ngrid,nlayer) ! co2 volume mixing ratio |
---|
[38] | 128 | ! improved_ztcond flag: If set to .true. (AND running with a 'co2' tracer) |
---|
| 129 | ! then condensation temperature is computed using partial pressure of CO2 |
---|
| 130 | logical,parameter :: improved_ztcond=.true. |
---|
| 131 | |
---|
| 132 | c local saved variables |
---|
[890] | 133 | integer,save :: ico2 ! index of CO2 tracer |
---|
[2124] | 134 | real,save :: qco2,mmean |
---|
[890] | 135 | real,parameter :: latcond=5.9e5 ! (J/kg) Latent heat of solid CO2 ice |
---|
| 136 | real,parameter :: tcond1mb=136.27 ! condensation temperature (K) at 1 mbar |
---|
| 137 | real,parameter :: cpice=1000. ! (J.kg-1.K-1) specific heat of CO2 ice |
---|
| 138 | REAL,SAVE :: acond,bcond,ccond |
---|
| 139 | real,save :: m_co2, m_noco2, A , B |
---|
[38] | 140 | |
---|
[890] | 141 | LOGICAL,SAVE :: firstcall = .true. !,firstcall2=.true. |
---|
[38] | 142 | |
---|
[2124] | 143 | c D.BARDET: for debug |
---|
[1996] | 144 | real ztc3D(ngrid,nlayer) |
---|
| 145 | REAL ztm3D(ngrid,nlayer) |
---|
| 146 | REAL zmflux3D(ngrid,nlayer) |
---|
[38] | 147 | c---------------------------------------------------------------------- |
---|
| 148 | |
---|
| 149 | c Initialisation |
---|
| 150 | c -------------- |
---|
| 151 | c |
---|
[1779] | 152 | ! AS: firstcall OK absolute |
---|
[38] | 153 | IF (firstcall) THEN |
---|
[890] | 154 | |
---|
[38] | 155 | bcond=1./tcond1mb |
---|
| 156 | ccond=cpp/(g*latcond) |
---|
| 157 | acond=r/latcond |
---|
| 158 | |
---|
| 159 | firstcall=.false. |
---|
[2124] | 160 | write(*,*) 'CO2condens: improved_ztcond=',improved_ztcond |
---|
| 161 | PRINT*,'In co2condens:Tcond(P=1mb)=',tcond1mb,' Lcond=',latcond |
---|
[38] | 162 | PRINT*,'acond,bcond,ccond',acond,bcond,ccond |
---|
| 163 | |
---|
| 164 | ico2=0 |
---|
| 165 | |
---|
| 166 | if (tracer) then |
---|
| 167 | c Prepare Special treatment if one of the tracer is CO2 gas |
---|
[1036] | 168 | do iq=1,nq |
---|
[38] | 169 | if (noms(iq).eq."co2") then |
---|
| 170 | ico2=iq |
---|
| 171 | m_co2 = 44.01E-3 ! CO2 molecular mass (kg/mol) |
---|
| 172 | m_noco2 = 33.37E-3 ! Non condensible mol mass (kg/mol) |
---|
| 173 | c Compute A and B coefficient use to compute |
---|
| 174 | c mean molecular mass Mair defined by |
---|
| 175 | c 1/Mair = q(ico2)/m_co2 + (1-q(ico2))/m_noco2 |
---|
| 176 | c 1/Mair = A*q(ico2) + B |
---|
| 177 | A =(1/m_co2 - 1/m_noco2) |
---|
| 178 | B=1/m_noco2 |
---|
| 179 | endif |
---|
| 180 | enddo |
---|
| 181 | end if |
---|
[890] | 182 | ENDIF ! of IF (firstcall) |
---|
[38] | 183 | zcpi=1./cpp |
---|
[1130] | 184 | |
---|
[38] | 185 | c |
---|
| 186 | c====================================================================== |
---|
| 187 | c Calcul of CO2 condensation sublimation |
---|
| 188 | c ============================================================ |
---|
| 189 | c |
---|
| 190 | c Used variable : |
---|
| 191 | c piceco2(ngrid) : amount of co2 ice on the ground (kg/m2) |
---|
| 192 | c zcondicea(ngrid,l): condensation rate in layer l (kg/m2/s) |
---|
| 193 | c zcondices(ngrid): condensation rate on the ground (kg/m2/s) |
---|
| 194 | c zfallice(ngrid,l):amount of ice falling from layer l (kg/m2/s) |
---|
| 195 | c |
---|
[1047] | 196 | c pdtc(ngrid,nlayer) : dT/dt due to cond/sub |
---|
[38] | 197 | c |
---|
| 198 | c |
---|
| 199 | c Tendencies set to 0 (except pdtc) |
---|
| 200 | c ------------------------------------- |
---|
| 201 | DO l=1,nlayer |
---|
| 202 | DO ig=1,ngrid |
---|
| 203 | zcondicea(ig,l) = 0. |
---|
| 204 | zfallice(ig,l) = 0. |
---|
| 205 | pduc(ig,l) = 0 |
---|
| 206 | pdvc(ig,l) = 0 |
---|
| 207 | END DO |
---|
| 208 | END DO |
---|
| 209 | |
---|
[1036] | 210 | DO iq=1,nq |
---|
[38] | 211 | DO l=1,nlayer |
---|
| 212 | DO ig=1,ngrid |
---|
| 213 | pdqc(ig,l,iq) = 0 |
---|
| 214 | END DO |
---|
| 215 | END DO |
---|
| 216 | END DO |
---|
| 217 | |
---|
| 218 | DO ig=1,ngrid |
---|
| 219 | zfallice(ig,nlayer+1) = 0. |
---|
| 220 | zcondices(ig) = 0. |
---|
| 221 | pdtsrfc(ig) = 0. |
---|
| 222 | pdpsrf(ig) = 0. |
---|
| 223 | condsub(ig) = .false. |
---|
| 224 | zdiceco2(ig) = 0. |
---|
| 225 | ENDDO |
---|
| 226 | zfallheat=0 |
---|
| 227 | |
---|
| 228 | c ************************* |
---|
| 229 | c ATMOSPHERIC CONDENSATION |
---|
| 230 | c ************************* |
---|
| 231 | |
---|
| 232 | c Compute CO2 Volume mixing ratio |
---|
| 233 | c ------------------------------- |
---|
| 234 | if (improved_ztcond.and.(ico2.ne.0)) then |
---|
| 235 | DO l=1,nlayer |
---|
| 236 | DO ig=1,ngrid |
---|
| 237 | qco2=pq(ig,l,ico2)+pdq(ig,l,ico2)*ptimestep |
---|
| 238 | c Mean air molecular mass = 1/(q(ico2)/m_co2 + (1-q(ico2))/m_noco2) |
---|
| 239 | mmean=1/(A*qco2 +B) |
---|
| 240 | vmr_co2(ig,l) = qco2*mmean/m_co2 |
---|
| 241 | ENDDO |
---|
| 242 | ENDDO |
---|
| 243 | else |
---|
| 244 | DO l=1,nlayer |
---|
| 245 | DO ig=1,ngrid |
---|
| 246 | vmr_co2(ig,l)=0.95 |
---|
| 247 | ENDDO |
---|
| 248 | ENDDO |
---|
| 249 | end if |
---|
| 250 | |
---|
[1996] | 251 | IF (.NOT. co2clouds) then |
---|
[38] | 252 | c forecast of atmospheric temperature zt and frost temperature ztcond |
---|
| 253 | c -------------------------------------------------------------------- |
---|
| 254 | |
---|
| 255 | DO l=1,nlayer |
---|
| 256 | DO ig=1,ngrid |
---|
| 257 | zt(ig,l)=pt(ig,l)+ pdt(ig,l)*ptimestep |
---|
| 258 | ! ztcond(ig,l)=1./(bcond-acond*log(.0095*pplay(ig,l))) |
---|
[1263] | 259 | if (pplay(ig,l).ge.1e-4) then |
---|
| 260 | ztcond(ig,l)= |
---|
[38] | 261 | & 1./(bcond-acond*log(.01*vmr_co2(ig,l)*pplay(ig,l))) |
---|
[1263] | 262 | else |
---|
| 263 | ztcond(ig,l)=0.0 !mars Monica |
---|
| 264 | endif |
---|
[38] | 265 | ENDDO |
---|
| 266 | ENDDO |
---|
[327] | 267 | |
---|
[328] | 268 | ztcond(:,nlayer+1)=ztcond(:,nlayer) |
---|
[38] | 269 | |
---|
| 270 | c Condensation/sublimation in the atmosphere |
---|
| 271 | c ------------------------------------------ |
---|
| 272 | c (calcul of zcondicea , zfallice and pdtc) |
---|
| 273 | c |
---|
| 274 | DO l=nlayer , 1, -1 |
---|
| 275 | DO ig=1,ngrid |
---|
| 276 | pdtc(ig,l)=0. |
---|
| 277 | IF((zt(ig,l).LT.ztcond(ig,l)).or.(zfallice(ig,l+1).gt.0))THEN |
---|
| 278 | condsub(ig)=.true. |
---|
| 279 | IF (zfallice(ig,l+1).gt.0) then |
---|
| 280 | zfallheat=zfallice(ig,l+1)* |
---|
| 281 | & (pphi(ig,l+1)-pphi(ig,l) + |
---|
| 282 | & cpice*(ztcond(ig,l+1)-ztcond(ig,l)))/latcond |
---|
| 283 | ELSE |
---|
| 284 | zfallheat=0. |
---|
| 285 | ENDIF |
---|
| 286 | pdtc(ig,l)=(ztcond(ig,l) - zt(ig,l))/ptimestep |
---|
| 287 | zcondicea(ig,l)=(pplev(ig,l)-pplev(ig,l+1)) |
---|
| 288 | & *ccond*pdtc(ig,l)- zfallheat |
---|
| 289 | c Case when the ice from above sublimes entirely |
---|
| 290 | c """"""""""""""""""""""""""""""""""""""""""""""" |
---|
| 291 | IF (zfallice(ig,l+1).lt.- zcondicea(ig,l)) then |
---|
| 292 | pdtc(ig,l)=(-zfallice(ig,l+1)+zfallheat)/ |
---|
| 293 | & (ccond*(pplev(ig,l)-pplev(ig,l+1))) |
---|
| 294 | zcondicea(ig,l)= -zfallice(ig,l+1) |
---|
| 295 | END IF |
---|
| 296 | |
---|
| 297 | zfallice(ig,l) = zcondicea(ig,l)+zfallice(ig,l+1) |
---|
| 298 | END IF |
---|
| 299 | ENDDO |
---|
| 300 | ENDDO |
---|
[1996] | 301 | |
---|
| 302 | ELSE |
---|
| 303 | |
---|
| 304 | DO ig=1,ngrid |
---|
| 305 | zfallice(ig,1) = zdqssed_co2(ig) |
---|
| 306 | ENDDO |
---|
| 307 | DO l=nlayer , 1, -1 |
---|
| 308 | DO ig=1,ngrid |
---|
| 309 | zcondicea(ig,l) = pcondicea_co2microp(ig,l)* |
---|
| 310 | & (pplev(ig,l) - pplev(ig,l+1))/g |
---|
| 311 | ENDDO |
---|
| 312 | ENDDO |
---|
| 313 | DO l=nlayer, 1, -1 |
---|
| 314 | DO ig=1, ngrid |
---|
| 315 | zt(ig,l)=pt(ig,l)+ pdt(ig,l)*ptimestep |
---|
| 316 | pdtc(ig,l)=0. |
---|
| 317 | ENDDO |
---|
| 318 | ENDDO |
---|
| 319 | ENDIF ! if not co2clouds |
---|
[38] | 320 | |
---|
[1996] | 321 | call WRITEdiagfi(ngrid,"pdtc_atm", |
---|
| 322 | & "temperature tendency due to CO2 condensation", |
---|
| 323 | & " ",3,pdtc) |
---|
| 324 | |
---|
| 325 | call WRITEdiagfi(ngrid,"zcondicea", |
---|
| 326 | & "", |
---|
| 327 | & " ",3,zcondicea) |
---|
| 328 | |
---|
| 329 | call WRITEdiagfi(ngrid,"zfallice", |
---|
| 330 | & "", |
---|
| 331 | & " ",2,zfallice(ngrid,1)) |
---|
| 332 | |
---|
[38] | 333 | c ************************* |
---|
| 334 | c SURFACE CONDENSATION |
---|
| 335 | c ************************* |
---|
| 336 | |
---|
| 337 | c forecast of ground temperature ztsrf and frost temperature ztcondsol |
---|
| 338 | c -------------------------------------------------------------------- |
---|
| 339 | DO ig=1,ngrid |
---|
| 340 | ztcondsol(ig)= |
---|
| 341 | & 1./(bcond-acond*log(.01*vmr_co2(ig,1)*pplev(ig,1))) |
---|
| 342 | ztsrf(ig) = ptsrf(ig) + pdtsrf(ig)*ptimestep |
---|
| 343 | ENDDO |
---|
| 344 | |
---|
| 345 | c |
---|
| 346 | c Condensation/sublimation on the ground |
---|
| 347 | c -------------------------------------- |
---|
[1114] | 348 | c (compute zcondices and pdtsrfc) |
---|
[38] | 349 | c |
---|
| 350 | DO ig=1,ngrid |
---|
[1541] | 351 | IF(latitude(ig).lt.0) THEN |
---|
[1114] | 352 | ! Southern hemisphere |
---|
[38] | 353 | icap=2 |
---|
| 354 | ELSE |
---|
[1114] | 355 | ! Northern hemisphere |
---|
[38] | 356 | icap=1 |
---|
| 357 | ENDIF |
---|
| 358 | |
---|
| 359 | c |
---|
| 360 | c Loop on where we have condensation/ sublimation |
---|
| 361 | IF ((ztsrf(ig) .LT. ztcondsol(ig)) .OR. ! ground cond |
---|
| 362 | $ (zfallice(ig,1).NE.0.) .OR. ! falling snow |
---|
| 363 | $ ((ztsrf(ig) .GT. ztcondsol(ig)) .AND. ! ground sublim. |
---|
| 364 | $ ((piceco2(ig)+zfallice(ig,1)*ptimestep) .NE. 0.))) THEN |
---|
| 365 | condsub(ig) = .true. |
---|
| 366 | |
---|
| 367 | IF (zfallice(ig,1).gt.0) then |
---|
| 368 | zfallheat=zfallice(ig,1)* |
---|
| 369 | & (pphi(ig,1)- phisfi(ig) + |
---|
[890] | 370 | & cpice*(ztcond(ig,1)-ztcondsol(ig)))/latcond |
---|
[38] | 371 | ELSE |
---|
| 372 | zfallheat=0. |
---|
| 373 | ENDIF |
---|
| 374 | |
---|
| 375 | c condensation or partial sublimation of CO2 ice |
---|
| 376 | c """"""""""""""""""""""""""""""""""""""""""""""" |
---|
| 377 | zcondices(ig)=pcapcal(ig)*(ztcondsol(ig)-ztsrf(ig)) |
---|
| 378 | & /(latcond*ptimestep) - zfallheat |
---|
| 379 | pdtsrfc(ig) = (ztcondsol(ig) - ztsrf(ig))/ptimestep |
---|
[2124] | 380 | zdiceco2(ig) = zcondices(ig) + zfallice(ig,1) |
---|
| 381 | |
---|
[2153] | 382 | #ifdef MESOSCALE |
---|
| 383 | print*, "not enough CO2 tracer in 1st layer to condense" |
---|
| 384 | print*, ">>> to be implemented in the mesoscale case" |
---|
| 385 | print*, "because this uses ap levels..." |
---|
| 386 | #else |
---|
[2124] | 387 | c If there is not enough CO2 tracer in 1st layer to condense |
---|
| 388 | c """""""""""""""""""""""""""""""""""""""""""""""""""""" |
---|
| 389 | IF(ico2.ne.0) then |
---|
| 390 | c Available CO2 tracer in layer 1 at end of timestep (kg/m2) |
---|
| 391 | availco2= pq(ig,1,ico2)*((ap(1)-ap(2))+ |
---|
| 392 | & (bp(1)-bp(2))*(pplev(ig,1)/g-zdiceco2(ig)*ptimestep)) |
---|
| 393 | |
---|
| 394 | IF ((zcondices(ig) + zcondicea(ig,1))*ptimestep |
---|
| 395 | & .gt.availco2) then |
---|
| 396 | zcondices(ig) = availco2/ptimestep -zcondicea(ig,1) |
---|
| 397 | zdiceco2(ig) = zcondices(ig) + zfallice(ig,1) |
---|
| 398 | pdtsrfc(ig)=(latcond/pcapcal(ig))* |
---|
| 399 | & (zcondices(ig)+zfallheat) |
---|
| 400 | ENDIF |
---|
| 401 | ENDIF |
---|
[2153] | 402 | #endif |
---|
[2124] | 403 | |
---|
[38] | 404 | c If the entire CO_2 ice layer sublimes |
---|
| 405 | c """""""""""""""""""""""""""""""""""""""""""""""""""" |
---|
| 406 | c (including what has just condensed in the atmosphere) |
---|
| 407 | |
---|
| 408 | IF((piceco2(ig)/ptimestep+zfallice(ig,1)).LE. |
---|
| 409 | & -zcondices(ig))THEN |
---|
| 410 | zcondices(ig) = -piceco2(ig)/ptimestep - zfallice(ig,1) |
---|
| 411 | pdtsrfc(ig)=(latcond/pcapcal(ig))* |
---|
| 412 | & (zcondices(ig)+zfallheat) |
---|
[2124] | 413 | zdiceco2(ig) = zcondices(ig) + zfallice(ig,1) |
---|
[38] | 414 | END IF |
---|
| 415 | |
---|
| 416 | c Changing CO2 ice amount and pressure : |
---|
| 417 | c """""""""""""""""""""""""""""""""""" |
---|
| 418 | |
---|
| 419 | piceco2(ig) = piceco2(ig) + zdiceco2(ig)*ptimestep |
---|
| 420 | pdpsrf(ig) = -zdiceco2(ig)*g |
---|
| 421 | |
---|
| 422 | IF(ABS(pdpsrf(ig)*ptimestep).GT.pplev(ig,1)) THEN |
---|
| 423 | PRINT*,'STOP in condens' |
---|
| 424 | PRINT*,'condensing more than total mass' |
---|
| 425 | PRINT*,'Grid point ',ig |
---|
[2124] | 426 | PRINT*,'Longitude(degrees): ',longitude_deg(ig) |
---|
| 427 | PRINT*,'Latitude(degrees): ',latitude_deg(ig) |
---|
[38] | 428 | PRINT*,'Ps = ',pplev(ig,1) |
---|
| 429 | PRINT*,'d Ps = ',pdpsrf(ig) |
---|
| 430 | STOP |
---|
| 431 | ENDIF |
---|
| 432 | END IF ! if there is condensation/sublimmation |
---|
| 433 | ENDDO ! of DO ig=1,ngrid |
---|
| 434 | |
---|
| 435 | c ******************************************************************** |
---|
| 436 | c Surface albedo and emissivity of the surface below the snow (emisref) |
---|
| 437 | c ******************************************************************** |
---|
| 438 | |
---|
| 439 | ! Check that amont of CO2 ice is not problematic |
---|
| 440 | DO ig=1,ngrid |
---|
| 441 | if(.not.piceco2(ig).ge.0.) THEN |
---|
| 442 | if(piceco2(ig).le.-5.e-8) print*, |
---|
[2124] | 443 | $ 'WARNING co2condens piceco2(',ig,')=', piceco2(ig) |
---|
[38] | 444 | piceco2(ig)=0. |
---|
| 445 | endif |
---|
| 446 | ENDDO |
---|
| 447 | |
---|
| 448 | ! Set albedo and emissivity of the surface |
---|
| 449 | ! ---------------------------------------- |
---|
| 450 | CALL albedocaps(zls,ngrid,piceco2,psolaralb,emisref) |
---|
| 451 | |
---|
| 452 | ! set pemisurf() to emissiv when there is bare surface (needed for co2snow) |
---|
| 453 | DO ig=1,ngrid |
---|
| 454 | if (piceco2(ig).eq.0) then |
---|
| 455 | pemisurf(ig)=emissiv |
---|
| 456 | endif |
---|
| 457 | ENDDO |
---|
| 458 | |
---|
| 459 | ! firstcall2=.false. |
---|
| 460 | c *************************************************************** |
---|
| 461 | c Correction to account for redistribution between sigma or hybrid |
---|
| 462 | c layers when changing surface pressure (and warming/cooling |
---|
| 463 | c of the CO2 currently changing phase). |
---|
| 464 | c ************************************************************* |
---|
| 465 | |
---|
| 466 | DO ig=1,ngrid |
---|
| 467 | if (condsub(ig)) then |
---|
| 468 | do l=1,nlayer |
---|
| 469 | ztc(l) =zt(ig,l) +pdtc(ig,l) *ptimestep |
---|
| 470 | zu(l) =pu(ig,l) +pdu( ig,l) *ptimestep |
---|
| 471 | zv(l) =pv(ig,l) +pdv( ig,l) *ptimestep |
---|
[1036] | 472 | do iq=1,nq |
---|
[38] | 473 | zq(l,iq)=pq(ig,l,iq)+pdq(ig,l,iq)*ptimestep |
---|
| 474 | enddo |
---|
| 475 | end do |
---|
| 476 | |
---|
| 477 | c Mass fluxes through the sigma levels (kg.m-2.s-1) (>0 when up) |
---|
| 478 | c """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" |
---|
| 479 | |
---|
| 480 | zmflux(1) = -zcondices(ig) |
---|
| 481 | DO l=1,nlayer |
---|
| 482 | zmflux(l+1) = zmflux(l) -zcondicea(ig,l) |
---|
[1438] | 483 | #ifndef MESOSCALE |
---|
[38] | 484 | & + (bp(l)-bp(l+1))*(zfallice(ig,1)-zmflux(1)) |
---|
| 485 | c zmflux set to 0 if very low to avoid: top layer is disappearing in v1ld |
---|
| 486 | if (abs(zmflux(l+1)).lt.1E-13.OR.bp(l+1).eq.0.) zmflux(l+1)=0. |
---|
[1438] | 487 | #else |
---|
| 488 | if (abs(zmflux(l+1)).lt.1E-13) zmflux(l+1)=0. |
---|
| 489 | #endif |
---|
[38] | 490 | END DO |
---|
| 491 | |
---|
[2155] | 492 | #ifdef MESOSCALE |
---|
| 493 | print*,"absurd mass set because bp not available" |
---|
| 494 | print*,"TO BE FIXED" |
---|
| 495 | #else |
---|
[2124] | 496 | c Mass of each layer at the end of timestep |
---|
| 497 | c ----------------------------------------- |
---|
[38] | 498 | DO l=1,nlayer |
---|
[2124] | 499 | masse(l)=( pplev(ig,l) - pplev(ig,l+1) + |
---|
| 500 | & (bp(l)-bp(l+1))*pdpsrf(ig)*ptimestep)/g |
---|
[38] | 501 | END DO |
---|
[2155] | 502 | #endif |
---|
[38] | 503 | |
---|
| 504 | c Corresponding fluxes for T,U,V,Q |
---|
| 505 | c """""""""""""""""""""""""""""""" |
---|
| 506 | |
---|
| 507 | c averaging operator for TRANSPORT |
---|
| 508 | c """""""""""""""""""""""""""""""" |
---|
| 509 | c Value transfert at the surface interface when condensation |
---|
| 510 | c sublimation: |
---|
| 511 | ztm(1) = ztsrf(ig) + pdtsrfc(ig)*ptimestep |
---|
| 512 | zum(1) = 0 |
---|
| 513 | zvm(1) = 0 |
---|
[1036] | 514 | do iq=1,nq |
---|
[38] | 515 | zqm(1,iq)=0. ! most tracer do not condense ! |
---|
| 516 | enddo |
---|
| 517 | c Special case if one of the tracer is CO2 gas |
---|
| 518 | if (ico2.ne.0) zqm(1,ico2)=1. ! flux is 100% CO2 |
---|
| 519 | |
---|
| 520 | c Van Leer scheme: |
---|
| 521 | DO l=1,nlayer+1 |
---|
| 522 | w(l)=-zmflux(l)*ptimestep |
---|
| 523 | END DO |
---|
[1269] | 524 | call vl1d(nlayer,ztc,2.,masse,w,ztm) |
---|
| 525 | call vl1d(nlayer,zu ,2.,masse,w,zum) |
---|
| 526 | call vl1d(nlayer,zv ,2.,masse,w,zvm) |
---|
[1036] | 527 | do iq=1,nq |
---|
[38] | 528 | do l=1,nlayer |
---|
| 529 | zq1(l)=zq(l,iq) |
---|
| 530 | enddo |
---|
| 531 | zqm1(1)=zqm(1,iq) |
---|
[1269] | 532 | call vl1d(nlayer,zq1,2.,masse,w,zqm1) |
---|
[38] | 533 | do l=2,nlayer |
---|
| 534 | zq( l,iq)=zq1(l) |
---|
| 535 | zqm(l,iq)=zqm1(l) |
---|
| 536 | enddo |
---|
| 537 | enddo |
---|
| 538 | |
---|
| 539 | c Surface condensation affects low winds |
---|
| 540 | if (zmflux(1).lt.0) then |
---|
| 541 | zum(1)= zu(1) * (w(1)/masse(1)) |
---|
| 542 | zvm(1)= zv(1) * (w(1)/masse(1)) |
---|
| 543 | if (w(1).gt.masse(1)) then ! ensure numerical stability |
---|
| 544 | zum(1)= (zu(1)-zum(2))*masse(1)/w(1) + zum(2) |
---|
| 545 | zvm(1)= (zv(1)-zvm(2))*masse(1)/w(1) + zvm(2) |
---|
| 546 | end if |
---|
| 547 | end if |
---|
| 548 | |
---|
| 549 | ztm(nlayer+1)= ztc(nlayer) ! should not be used, but... |
---|
| 550 | zum(nlayer+1)= zu(nlayer) ! should not be used, but... |
---|
| 551 | zvm(nlayer+1)= zv(nlayer) ! should not be used, but... |
---|
[1036] | 552 | do iq=1,nq |
---|
[38] | 553 | zqm(nlayer+1,iq)= zq(nlayer,iq) |
---|
| 554 | enddo |
---|
[86] | 555 | |
---|
| 556 | #ifdef MESOSCALE |
---|
| 557 | !!!! AS: This part must be commented in the mesoscale model |
---|
| 558 | !!!! AS: ... to avoid instabilities. |
---|
| 559 | !!!! AS: you have to compile with -DMESOSCALE to do so |
---|
| 560 | #else |
---|
[38] | 561 | c Tendencies on T, U, V, Q |
---|
| 562 | c """""""""""""""""""""""" |
---|
| 563 | DO l=1,nlayer |
---|
[1996] | 564 | IF(.not. co2clouds) THEN |
---|
[38] | 565 | c Tendencies on T |
---|
| 566 | zdtsig(ig,l) = (1/masse(l)) * |
---|
| 567 | & ( zmflux(l)*(ztm(l) - ztc(l)) |
---|
| 568 | & - zmflux(l+1)*(ztm(l+1) - ztc(l)) |
---|
| 569 | & + zcondicea(ig,l)*(ztcond(ig,l)-ztc(l)) ) |
---|
[1996] | 570 | ELSE |
---|
| 571 | zdtsig(ig,l) = (1/masse(l)) * |
---|
| 572 | & ( zmflux(l)*(ztm(l) - ztc(l)) |
---|
| 573 | & - zmflux(l+1)*(ztm(l+1) - ztc(l))) |
---|
| 574 | ENDIF |
---|
| 575 | c D.BARDET: for diagnotics |
---|
| 576 | zmflux3D(ig,l)=zmflux(l) |
---|
| 577 | ztm3D(ig,l)=ztm(l) |
---|
| 578 | ztc3D(ig,l)=ztc(l) |
---|
| 579 | |
---|
[38] | 580 | pdtc(ig,l) = pdtc(ig,l) + zdtsig(ig,l) |
---|
| 581 | |
---|
| 582 | c Tendencies on U |
---|
| 583 | pduc(ig,l) = (1/masse(l)) * |
---|
| 584 | & ( zmflux(l)*(zum(l) - zu(l)) |
---|
| 585 | & - zmflux(l+1)*(zum(l+1) - zu(l)) ) |
---|
| 586 | |
---|
| 587 | |
---|
| 588 | c Tendencies on V |
---|
| 589 | pdvc(ig,l) = (1/masse(l)) * |
---|
| 590 | & ( zmflux(l)*(zvm(l) - zv(l)) |
---|
| 591 | & - zmflux(l+1)*(zvm(l+1) - zv(l)) ) |
---|
| 592 | |
---|
| 593 | END DO |
---|
[1114] | 594 | |
---|
[86] | 595 | #endif |
---|
[38] | 596 | |
---|
| 597 | c Tendencies on Q |
---|
[1036] | 598 | do iq=1,nq |
---|
[38] | 599 | ! if (noms(iq).eq.'co2') then |
---|
| 600 | if (iq.eq.ico2) then |
---|
| 601 | c SPECIAL Case when the tracer IS CO2 : |
---|
| 602 | DO l=1,nlayer |
---|
| 603 | pdqc(ig,l,iq)= (1/masse(l)) * |
---|
| 604 | & ( zmflux(l)*(zqm(l,iq) - zq(l,iq)) |
---|
| 605 | & - zmflux(l+1)*(zqm(l+1,iq) - zq(l,iq)) |
---|
| 606 | & + zcondicea(ig,l)*(zq(l,iq)-1.) ) |
---|
| 607 | END DO |
---|
| 608 | else |
---|
| 609 | DO l=1,nlayer |
---|
| 610 | pdqc(ig,l,iq)= (1/masse(l)) * |
---|
| 611 | & ( zmflux(l)*(zqm(l,iq) - zq(l,iq)) |
---|
| 612 | & - zmflux(l+1)*(zqm(l+1,iq) - zq(l,iq)) |
---|
| 613 | & + zcondicea(ig,l)*zq(l,iq) ) |
---|
| 614 | END DO |
---|
| 615 | end if |
---|
| 616 | enddo |
---|
| 617 | |
---|
| 618 | end if ! if (condsub) |
---|
| 619 | END DO ! loop on ig |
---|
| 620 | |
---|
| 621 | c *************************************************************** |
---|
| 622 | c CO2 snow / clouds scheme |
---|
| 623 | c *************************************************************** |
---|
| 624 | |
---|
| 625 | call co2snow(ngrid,nlayer,ptimestep,emisref,condsub,pplev, |
---|
| 626 | & zcondicea,zcondices,zfallice,pemisurf) |
---|
| 627 | |
---|
| 628 | c *************************************************************** |
---|
| 629 | c Ecriture des diagnostiques |
---|
| 630 | c *************************************************************** |
---|
| 631 | |
---|
| 632 | c DO l=1,nlayer |
---|
| 633 | c DO ig=1,ngrid |
---|
| 634 | c Taux de cond en kg.m-2.pa-1.s-1 |
---|
| 635 | c tconda1(ig,l)=zcondicea(ig,l)/(pplev(ig,l)-pplev(ig,l+1)) |
---|
| 636 | c Taux de cond en kg.m-3.s-1 |
---|
| 637 | c tconda2(ig,l)=tconda1(ig,l)*pplay(ig,l)*g/(r*pt(ig,l)) |
---|
| 638 | c END DO |
---|
| 639 | c END DO |
---|
[1047] | 640 | c call WRITEDIAGFI(ngrid,'tconda1', |
---|
[38] | 641 | c &'Taux de condensation CO2 atmospherique /Pa', |
---|
| 642 | c & 'kg.m-2.Pa-1.s-1',3,tconda1) |
---|
[1047] | 643 | c call WRITEDIAGFI(ngrid,'tconda2', |
---|
[38] | 644 | c &'Taux de condensation CO2 atmospherique /m', |
---|
| 645 | c & 'kg.m-3.s-1',3,tconda2) |
---|
| 646 | |
---|
| 647 | ! output falling co2 ice in 1st layer: |
---|
[1047] | 648 | ! call WRITEDIAGFI(ngrid,'fallice', |
---|
[38] | 649 | ! &'Precipitation of co2 ice', |
---|
| 650 | ! & 'kg.m-2.s-1',2,zfallice(1,1)) |
---|
| 651 | |
---|
[1114] | 652 | #ifndef MESOSCALE |
---|
| 653 | ! Extra special case for surface temperature tendency pdtsrfc: |
---|
| 654 | ! we want to fix the south pole temperature to CO2 condensation temperature |
---|
| 655 | if (caps.and.(obliquit.lt.27.)) then |
---|
| 656 | ! check if last grid point is the south pole |
---|
[1541] | 657 | if (abs(latitude(ngrid)-(-pi/2.)).lt.1.e-5) then |
---|
[1114] | 658 | ! NB: Updated surface pressure, at grid point 'ngrid', is |
---|
| 659 | ! ps(ngrid)=pplev(ngrid,1)+pdpsrf(ngrid)*ptimestep |
---|
[2124] | 660 | ! write(*,*) "co2condens: South pole: latitude(ngrid)=", |
---|
[1541] | 661 | ! & latitude(ngrid) |
---|
[1114] | 662 | ztcondsol(ngrid)= |
---|
| 663 | & 1./(bcond-acond*log(.01*vmr_co2(ngrid,1)* |
---|
| 664 | & (pplev(ngrid,1)+pdpsrf(ngrid)*ptimestep))) |
---|
| 665 | pdtsrfc(ngrid)=(ztcondsol(ngrid)-ztsrf(ngrid))/ptimestep |
---|
| 666 | endif |
---|
| 667 | endif |
---|
| 668 | #endif |
---|
| 669 | |
---|
[2009] | 670 | END SUBROUTINE co2condens |
---|
[38] | 671 | |
---|
| 672 | |
---|
| 673 | |
---|
| 674 | c ***************************************************************** |
---|
[1269] | 675 | SUBROUTINE vl1d(nlayer,q,pente_max,masse,w,qm) |
---|
[38] | 676 | c |
---|
| 677 | c |
---|
| 678 | c Operateur de moyenne inter-couche pour calcul de transport type |
---|
| 679 | c Van-Leer " pseudo amont " dans la verticale |
---|
| 680 | c q,w sont des arguments d'entree pour le s-pg .... |
---|
| 681 | c masse : masse de la couche Dp/g |
---|
| 682 | c w : masse d'atm ``transferee'' a chaque pas de temps (kg.m-2) |
---|
| 683 | c pente_max = 2 conseillee |
---|
| 684 | c |
---|
| 685 | c |
---|
| 686 | c -------------------------------------------------------------------- |
---|
| 687 | IMPLICIT NONE |
---|
| 688 | |
---|
| 689 | c |
---|
| 690 | c |
---|
| 691 | c |
---|
| 692 | c Arguments: |
---|
| 693 | c ---------- |
---|
[1270] | 694 | integer nlayer |
---|
[1269] | 695 | real masse(nlayer),pente_max |
---|
| 696 | REAL q(nlayer),qm(nlayer+1) |
---|
| 697 | REAL w(nlayer+1) |
---|
[38] | 698 | c |
---|
| 699 | c Local |
---|
| 700 | c --------- |
---|
| 701 | c |
---|
| 702 | INTEGER l |
---|
| 703 | c |
---|
[1269] | 704 | real dzq(nlayer),dzqw(nlayer),adzqw(nlayer),dzqmax |
---|
[38] | 705 | real sigw, Mtot, MQtot |
---|
| 706 | integer m |
---|
| 707 | c integer ismax,ismin |
---|
| 708 | |
---|
| 709 | |
---|
| 710 | c On oriente tout dans le sens de la pression |
---|
| 711 | c W > 0 WHEN DOWN !!!!!!!!!!!!! |
---|
| 712 | |
---|
[1269] | 713 | do l=2,nlayer |
---|
[38] | 714 | dzqw(l)=q(l-1)-q(l) |
---|
| 715 | adzqw(l)=abs(dzqw(l)) |
---|
| 716 | enddo |
---|
| 717 | |
---|
[1269] | 718 | do l=2,nlayer-1 |
---|
[38] | 719 | if(dzqw(l)*dzqw(l+1).gt.0.) then |
---|
| 720 | dzq(l)=0.5*(dzqw(l)+dzqw(l+1)) |
---|
| 721 | else |
---|
| 722 | dzq(l)=0. |
---|
| 723 | endif |
---|
| 724 | dzqmax=pente_max*min(adzqw(l),adzqw(l+1)) |
---|
| 725 | dzq(l)=sign(min(abs(dzq(l)),dzqmax),dzq(l)) |
---|
| 726 | enddo |
---|
| 727 | |
---|
| 728 | dzq(1)=0. |
---|
[1269] | 729 | dzq(nlayer)=0. |
---|
[38] | 730 | |
---|
[1269] | 731 | do l = 1,nlayer-1 |
---|
[38] | 732 | |
---|
| 733 | c Regular scheme (transfered mass < layer mass) |
---|
| 734 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 735 | if(w(l+1).gt.0. .and. w(l+1).le.masse(l+1)) then |
---|
| 736 | sigw=w(l+1)/masse(l+1) |
---|
| 737 | qm(l+1)=(q(l+1)+0.5*(1.-sigw)*dzq(l+1)) |
---|
| 738 | else if(w(l+1).le.0. .and. -w(l+1).le.masse(l)) then |
---|
| 739 | sigw=w(l+1)/masse(l) |
---|
| 740 | qm(l+1)=(q(l)-0.5*(1.+sigw)*dzq(l)) |
---|
| 741 | |
---|
| 742 | c Extended scheme (transfered mass > layer mass) |
---|
| 743 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 744 | else if(w(l+1).gt.0.) then |
---|
| 745 | m=l+1 |
---|
| 746 | Mtot = masse(m) |
---|
| 747 | MQtot = masse(m)*q(m) |
---|
[1269] | 748 | do while ((m.lt.nlayer).and.(w(l+1).gt.(Mtot+masse(m+1)))) |
---|
[38] | 749 | m=m+1 |
---|
| 750 | Mtot = Mtot + masse(m) |
---|
| 751 | MQtot = MQtot + masse(m)*q(m) |
---|
| 752 | end do |
---|
[1269] | 753 | if (m.lt.nlayer) then |
---|
[38] | 754 | sigw=(w(l+1)-Mtot)/masse(m+1) |
---|
| 755 | qm(l+1)= (1/w(l+1))*(MQtot + (w(l+1)-Mtot)* |
---|
| 756 | & (q(m+1)+0.5*(1.-sigw)*dzq(m+1)) ) |
---|
| 757 | else |
---|
| 758 | w(l+1) = Mtot |
---|
| 759 | qm(l+1) = Mqtot / Mtot |
---|
| 760 | write(*,*) 'top layer is disapearing !' |
---|
| 761 | stop |
---|
| 762 | end if |
---|
| 763 | else ! if(w(l+1).lt.0) |
---|
| 764 | m = l-1 |
---|
| 765 | Mtot = masse(m+1) |
---|
| 766 | MQtot = masse(m+1)*q(m+1) |
---|
[120] | 767 | if (m.gt.0) then ! because some compilers will have problems |
---|
| 768 | ! evaluating masse(0) |
---|
| 769 | do while ((m.gt.0).and.(-w(l+1).gt.(Mtot+masse(m)))) |
---|
[38] | 770 | m=m-1 |
---|
| 771 | Mtot = Mtot + masse(m+1) |
---|
| 772 | MQtot = MQtot + masse(m+1)*q(m+1) |
---|
[120] | 773 | if (m.eq.0) exit |
---|
| 774 | end do |
---|
| 775 | endif |
---|
[38] | 776 | if (m.gt.0) then |
---|
| 777 | sigw=(w(l+1)+Mtot)/masse(m) |
---|
| 778 | qm(l+1)= (-1/w(l+1))*(MQtot + (-w(l+1)-Mtot)* |
---|
| 779 | & (q(m)-0.5*(1.+sigw)*dzq(m)) ) |
---|
| 780 | else |
---|
| 781 | qm(l+1)= (-1/w(l+1))*(MQtot + (-w(l+1)-Mtot)*qm(1)) |
---|
| 782 | end if |
---|
| 783 | end if |
---|
| 784 | enddo |
---|
| 785 | |
---|
[2124] | 786 | c boundary conditions (not used in co2condens !!) |
---|
[1269] | 787 | c qm(nlayer+1)=0. |
---|
[38] | 788 | c if(w(1).gt.0.) then |
---|
| 789 | c qm(1)=q(1) |
---|
| 790 | c else |
---|
| 791 | c qm(1)=0. |
---|
| 792 | c end if |
---|
| 793 | |
---|
[2009] | 794 | END SUBROUTINE vl1d |
---|
| 795 | |
---|
| 796 | END MODULE co2condens_mod |
---|