1 | !======================================================================================================================! |
---|
2 | ! Module: CO2 clouds formation ========================================================================================! |
---|
3 | !----------------------------------------------------------------------------------------------------------------------! |
---|
4 | ! Authors: Joachim Audouard, Constantino Listowski, Anni Määttänen |
---|
5 | ! Date: 09/2016 |
---|
6 | !----------------------------------------------------------------------------------------------------------------------! |
---|
7 | ! Contains subroutines: |
---|
8 | ! - co2cloud: of co2 cloud microphysics |
---|
9 | !======================================================================================================================! |
---|
10 | module co2cloud_mod |
---|
11 | |
---|
12 | implicit none |
---|
13 | |
---|
14 | contains |
---|
15 | !======================================================================================================================! |
---|
16 | ! SUBROUTINE: co2cloud ================================================================================================! |
---|
17 | !======================================================================================================================! |
---|
18 | ! Subject: |
---|
19 | !--------- |
---|
20 | ! Main subroutine of co2 cloud microphysics |
---|
21 | !----------------------------------------------------------------------------------------------------------------------! |
---|
22 | ! Comments: |
---|
23 | !---------- |
---|
24 | ! - Adaptation of the water ice clouds scheme (with specific microphysics) of Montmessin, Navarro et al. |
---|
25 | ! |
---|
26 | ! - Microphysics subroutine is improvedCO2clouds.F |
---|
27 | ! |
---|
28 | ! - There is a time loop specific to cloud formation due to timescales smaller than the GCM integration timestep |
---|
29 | ! |
---|
30 | ! - The microphysics time step is a fraction of the physical one |
---|
31 | ! |
---|
32 | ! - The CO2 clouds tracers (co2_ice, ccn mass and concentration) are sedimented at each microtimestep. pdqs_sedco2 |
---|
33 | ! keeps track of the CO2 flux at the surface |
---|
34 | ! |
---|
35 | ! - The subgrid Temperature distribution is modulated (0 or 1) by Spiga et al. (GRL 2012) |
---|
36 | ! |
---|
37 | ! - Saturation Index to account for GW propagation or dissipation upwards |
---|
38 | ! |
---|
39 | ! - 4D and column opacities are computed using Qext values at 1µm |
---|
40 | !----------------------------------------------------------------------------------------------------------------------! |
---|
41 | ! Papers: |
---|
42 | !-------- |
---|
43 | ! "Near-pure vapor condensation in the Martian atmosphere: CO2 ice crystal growth", Listowski et al. (2013), JGRE |
---|
44 | ! "Modeling the microphysics of CO2 ice clouds within wave-induced cold pockets in the martian mesosphere", Listowski |
---|
45 | ! et al. (2014), Icarus |
---|
46 | ! "Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice |
---|
47 | ! clouds", Navarro et al. (2014), JGRE |
---|
48 | ! "Martian GCM with complete CO2 clouds microphysics", Audouard et al. (2017), EPSC abstract |
---|
49 | !----------------------------------------------------------------------------------------------------------------------! |
---|
50 | ! Algorithm: |
---|
51 | !----------- |
---|
52 | ! 0. Firstcall |
---|
53 | ! 0.1. Initialization of microtimestep from imicroco2 |
---|
54 | ! 0.2. Compute the radius grid of CO2 ice particles (rb_cldco2) |
---|
55 | ! 0.3. Read file 'optprop_co2ice_1mic.dat' to extract optical properties of CO2 ice at 1 micron (Qext) |
---|
56 | ! 0.4. Interpole the radius grid (rb_cldco2) to get the corresponding exctinction coefficients (Qext1bins) |
---|
57 | ! 0.5. Save the radius grid of CO2 particles (rb_cldco2) |
---|
58 | ! 1. Initialization |
---|
59 | ! 2. Compute mass and thickness layers |
---|
60 | ! 3. Define the sub-grid cloud (CLFvaryingCO2) |
---|
61 | ! 3.1. Representation of sub-grid CO2 ice clouds (CLFvaryingCO2 = True) |
---|
62 | ! 3.1.a. Saturation index CO2 |
---|
63 | ! 3.1.b. Compute tcond |
---|
64 | ! 3.1.c. Compute cloud fraction in cells |
---|
65 | ! 3.2. No sub-grid cloud representation (CLFvaryingCO2 = False) |
---|
66 | ! 4. Microphysics of CO2 cloud formation |
---|
67 | ! 4.1. Effective tracers quantities in the cloud |
---|
68 | ! 4.2. Stepped entry for tendancies: At each micro timestep we add pdt in order to have a stepped entry |
---|
69 | ! 4.3. Main call to the cloud scheme |
---|
70 | ! 4.4. Updating tendencies after cloud scheme |
---|
71 | ! 4.5. Gravitational sedimentation |
---|
72 | ! 4.5.a. Compute cloud density |
---|
73 | ! 4.5.b. Save actualized tracer values to compute sedimentation tendancies |
---|
74 | ! 4.5.c. Sedimentation of co2 ice |
---|
75 | ! 4.5.d. Sedimentation for other tracers |
---|
76 | ! 4.5.e. Compute tendencies due to the sedimation process |
---|
77 | ! 5. Compute final tendencies after time loop |
---|
78 | ! 6. Update clouds physical values in the cloud (for output) |
---|
79 | ! 6.1. Update density of co2 ice, riceco2 and opacity |
---|
80 | ! 6.2. Update rice and rdust |
---|
81 | ! 7. Correction if a lot of subliming CO2 fills the 1st layer |
---|
82 | ! 8. CO2 saturated quantities |
---|
83 | ! 8.1 Compute CO2 saturation in layers |
---|
84 | ! 8.2 Compute CO2 saturated quantities in layers |
---|
85 | ! 9. Everything modified by CO2 microphysics must be wrt co2cloudfrac |
---|
86 | ! 10. Compute opacity at 1 micron |
---|
87 | ! 11. Write outputs in diagfi.nc |
---|
88 | !======================================================================================================================! |
---|
89 | subroutine co2cloud(ngrid, nlay, ptimestep, pplev, pplay, pdpsrf, pzlay, pt, pdt, pq, pdq, pdqcloudco2, pdtcloudco2, & |
---|
90 | nq, tau, tauscaling, rdust, rice, riceco2, nuice, rhocloud, rsedcloudco2, rhocloudco2, pzlev,& |
---|
91 | pdqs_sedco2, pdqs_sedccn, pdu, pu, pcondicea) |
---|
92 | |
---|
93 | use ioipsl_getincom, only: getin |
---|
94 | use dimradmars_mod, only: naerkind |
---|
95 | use comcstfi_h, only: pi, g, cpp |
---|
96 | use updaterad, only: updaterice_microco2, updaterice_micro, updaterdust |
---|
97 | use conc_mod, only: mmean, rnew |
---|
98 | use tracer_mod, only: igcm_co2, igcm_co2_ice, igcm_dust_mass, igcm_dust_number, igcm_h2o_ice, & |
---|
99 | igcm_ccn_mass, igcm_ccn_number, igcm_ccnco2_mass, igcm_ccnco2_number, & |
---|
100 | igcm_ccnco2_h2o_number, igcm_ccnco2_h2o_mass_ice, igcm_ccnco2_h2o_mass_ccn, rho_dust, & |
---|
101 | nuiceco2_sed, nuiceco2_ref, r3n_q, rho_ice, nuice_sed, igcm_ccnco2_meteor_mass, & |
---|
102 | igcm_ccnco2_meteor_number |
---|
103 | |
---|
104 | use newsedim_mod, only: newsedim |
---|
105 | |
---|
106 | use datafile_mod, only: datadir |
---|
107 | use density_co2_ice_mod, only: density_co2_ice |
---|
108 | |
---|
109 | use improvedCO2clouds_mod, only: improvedCO2clouds |
---|
110 | use microphys_h, only: nbinco2_cld, rad_cldco2, mco2 |
---|
111 | use write_output_mod, only: write_output |
---|
112 | #ifndef MESOSCALE |
---|
113 | use vertical_layers_mod, only: ap, bp |
---|
114 | #endif |
---|
115 | |
---|
116 | implicit none |
---|
117 | |
---|
118 | include "callkeys.h" |
---|
119 | !----------------------------------------------------------------------------------------------------------------------! |
---|
120 | ! VARIABLES DECLARATION |
---|
121 | !----------------------------------------------------------------------------------------------------------------------! |
---|
122 | ! Input arguments: |
---|
123 | !----------------- |
---|
124 | integer, intent(in) ::& |
---|
125 | ngrid, &! Number of grid points |
---|
126 | nlay, &! Number of layers |
---|
127 | nq ! Number of tracers |
---|
128 | |
---|
129 | real, intent(in) :: & |
---|
130 | ptimestep, &! Physical time step (s) |
---|
131 | pplev(ngrid,nlay+1), &! Inter-layer pressures (Pa) |
---|
132 | pplay(ngrid,nlay), &! Mid-layer pressures (Pa) |
---|
133 | pdpsrf(ngrid), &! Tendency on surface pressure |
---|
134 | pzlay(ngrid,nlay), &! Altitude at the middle of the layers |
---|
135 | pt(ngrid,nlay), &! Temperature at the middle of the layers (K) |
---|
136 | pdt(ngrid,nlay), &! Tendency on temperature from other parametrizations |
---|
137 | pq(ngrid,nlay,nq), &! Tracers (kg/kg) |
---|
138 | pdq(ngrid,nlay,nq), &! Tendencies before condensation (kg/kg.s-1) |
---|
139 | tau(ngrid,naerkind), &! Column dust optical depth at each point |
---|
140 | tauscaling(ngrid), &! Convertion factor for dust amount |
---|
141 | pu(ngrid,nlay), &! Zonal Wind: zu = pu + (pdu * ptimestep) |
---|
142 | pdu(ngrid,nlay), &! Tendency of zonal wind before condensation |
---|
143 | pzlev(ngrid,nlay+1), &! Altitude at the boundaries of the layers |
---|
144 | nuice(ngrid,nlay) ! Estimated effective variance of the size distribution |
---|
145 | !----------------------------------------------------------------------------------------------------------------------! |
---|
146 | ! Output arguments: |
---|
147 | !------------------ |
---|
148 | real, intent(out) :: & |
---|
149 | rice(ngrid,nlay), & ! Water Ice mass mean radius (m) |
---|
150 | ! rsedcloud(ngrid,nlay), & ! Water Cloud sedimentation radius |
---|
151 | rhocloud(ngrid,nlay), & ! Water Cloud density (kg.m-3) |
---|
152 | pdqs_sedco2(ngrid), & ! CO2 flux at the surface |
---|
153 | pdqs_sedccn(ngrid,nq), & ! CCN flux at the surface |
---|
154 | pdqcloudco2(ngrid,nlay,nq),& ! Tendency due to CO2 condensation (kg/kg.s-1) |
---|
155 | pcondicea(ngrid,nlay), & ! Rate of condensation/sublimation of co2 ice in layers |
---|
156 | pdtcloudco2(ngrid,nlay), & ! Tendency on temperature due to latent heat |
---|
157 | rsedcloudco2(ngrid,nlay) ! Cloud sedimentation radius |
---|
158 | |
---|
159 | real, intent(inout) :: & |
---|
160 | rdust(ngrid,nlay) ! Dust geometric mean radius (m) |
---|
161 | |
---|
162 | double precision, intent(out) :: & |
---|
163 | riceco2(ngrid,nlay) ! Ice mass mean radius (m) r_c in Montmessin et al. (2004) |
---|
164 | !----------------------------------------------------------------------------------------------------------------------! |
---|
165 | ! Local: |
---|
166 | !------- |
---|
167 | !-----1) Parameters: |
---|
168 | !------------------- |
---|
169 | integer, parameter :: & |
---|
170 | uQext = 555, &! file_qext unit ID |
---|
171 | var_dim_qext = 10000 ! Exact dimension of radv and qextv1mic from file_qext |
---|
172 | |
---|
173 | real, parameter :: & |
---|
174 | mincloud = 0.1, &! Minimum cloud fraction |
---|
175 | beta = 0.85, &! correction for the shape of the particles (see Murphy et al. JGR 1990 vol.95): |
---|
176 | ! beta = 1 for spheres |
---|
177 | ! beta = 0.85 for irregular particles |
---|
178 | ! beta = 0.5 for disk shaped particles |
---|
179 | threshold = 1e-30, & ! limit value considering as zero |
---|
180 | threshold_2 = 1e-13 ! limit value considering the value is physical (below this value => computer noise for dble) |
---|
181 | |
---|
182 | double precision, parameter :: & |
---|
183 | rmin_cld = 1.e-9, &! Minimum radius (m) |
---|
184 | rmax_cld = 5.e-6, &! Maximum radius (m) |
---|
185 | rbmin_cld = 1.e-10,&! Minimum boundary radius (m) |
---|
186 | rbmax_cld = 2.e-4, &! Maximum boundary radius (m) |
---|
187 | Fo = 7.5e-7, &! for sat index (J.m-3) |
---|
188 | lambdaH = 150.e3 ! for sat index (km) |
---|
189 | |
---|
190 | character(len=23), parameter :: & |
---|
191 | file_qext = 'optprop_co2ice_1mic.dat' ! File extinction coefficients of CO2 particles |
---|
192 | !----------------------------------------------------------------------------------------------------------------------! |
---|
193 | !-----2) Saved: |
---|
194 | !-------------- |
---|
195 | integer, save :: & |
---|
196 | imicroco2 ! Time subsampling for coupled water microphysics sedimentation microtimestep timeloop for microphysics: |
---|
197 | ! if imicroco2 = 1, subpdt is the same as pdt |
---|
198 | real, save :: & |
---|
199 | sigma_iceco2, &! Variance of the ice and CCN distributions |
---|
200 | microtimestep ! Integration timestep for coupled water microphysics & sedimentation |
---|
201 | |
---|
202 | double precision, save :: & |
---|
203 | dev2, &! 1. / ( sqrt(2.) * sigma_iceco2 ) |
---|
204 | Qext1bins(nbinco2_cld), &! Extinction coefficients for rb_cldco2 radius of CO2 ice particles |
---|
205 | Qextv1mic(var_dim_qext), & |
---|
206 | radv(var_dim_qext), & ! radius of CO2 ice at 1 µm (read from file_qext) |
---|
207 | rb_cldco2(nbinco2_cld+1) ! boundary values of each rad_cldco2 bin (m) |
---|
208 | logical, save :: & |
---|
209 | firstcall = .true. ! Used to compute saved variables |
---|
210 | |
---|
211 | !$OMP THREADPRIVATE(imicroco2,sigma_iceco2,microtimestep) |
---|
212 | !$OMP THREADPRIVATE(dev2,Qext1bins,Qextv1mic,radv,rb_cldco2) |
---|
213 | !$OMP THREADPRIVATE(firstcall) |
---|
214 | |
---|
215 | !----------------------------------------------------------------------------------------------------------------------! |
---|
216 | !-----3) Variables: |
---|
217 | !------------------ |
---|
218 | integer :: & |
---|
219 | iq, &! loop on tracers |
---|
220 | ig, &! loop on grid points |
---|
221 | l, &! loop on layers |
---|
222 | i, &! loop on nbinco2_cld |
---|
223 | nelem, &! number of point between lebon1 and lebon2 => interpolation |
---|
224 | lebon1, &! bound limit for the interpolation |
---|
225 | lebon2, &! bound limit for the interpolation |
---|
226 | microstep ! Time subsampling step variable |
---|
227 | |
---|
228 | real :: & |
---|
229 | ! ---Tendency given by clouds inside the micro loop |
---|
230 | subpdqcloudco2(ngrid,nlay,nq), &! On tracers, cf. pdqcloud |
---|
231 | subpdtcloudco2(ngrid,nlay), &! On temperature, cf. pdtcloud |
---|
232 | ! ---Global tendency (clouds+physics) |
---|
233 | sum_subpdq(ngrid,nlay,nq), &! On tracers, cf. pdqcloud |
---|
234 | sum_subpdt(ngrid,nlay), &! On temperature, cf. pdtcloud |
---|
235 | ! ---Sedimentation |
---|
236 | ztsed(ngrid,nlay), &! Temperature with real-time value in microtimeloop |
---|
237 | zqsed(ngrid,nlay,nq), &! Tracers with real-time value in µloop |
---|
238 | zqsed0(ngrid,nlay,nq), &! For sedimentation tendancy |
---|
239 | subpdqsed(ngrid,nlay,nq), &! Tendancy due to sedimentation |
---|
240 | sum_subpdqs_sedco2(ngrid), &! CO2 flux at the surface |
---|
241 | sum_subpdqs_sedccn(ngrid,nq), &! |
---|
242 | ! ---For sub grid T distribution |
---|
243 | zt(ngrid,nlay), &! Local value of temperature |
---|
244 | zq_co2vap(ngrid, nlay), &! Local value of CO2 vap |
---|
245 | rhocloudco2t(ngrid, nlay), &! Cloud density (kg.m-3) |
---|
246 | ! ---For Saturation Index computation |
---|
247 | zdelt, &! Delta T for the temperature distribution |
---|
248 | co2cloudfrac(ngrid,nlay), &! Cloud fraction used only with CLFvarying is true |
---|
249 | ! ---Misc |
---|
250 | rhocloudco2(ngrid, nlay), &! Cloud density (kg.m-3) |
---|
251 | Nccnco2, &! buffer: number of ccn used for co2 condensation |
---|
252 | Qccnco2, &! buffer: mass of ccn used for co2 condensation |
---|
253 | Nccnco2_h2o, & |
---|
254 | Qccnco2_h2o, & |
---|
255 | Niceco2, &! buffer: mmr co2 ice |
---|
256 | epaisseur(ngrid,nlay), &! Layer thickness (m) |
---|
257 | masse(ngrid,nlay), &! Layer mass (kg.m-2) |
---|
258 | pteff(ngrid, nlay), &! Effective temperature in the cloud |
---|
259 | pqeff(ngrid, nlay, nq), &! Effective tracers quantities in the cloud |
---|
260 | wq(ngrid,nlay+1), &! Displaced tracer mass (kg.m-2) during microtimestep |
---|
261 | satuco2(ngrid,nlay), &! CO2 satu ratio for output diagfi |
---|
262 | zqsatco2(ngrid,nlay), &! Saturation co2 |
---|
263 | availco2,& |
---|
264 | masslayer, & |
---|
265 | tmp, a,b, & |
---|
266 | new_pdq(ngrid,nlay) |
---|
267 | |
---|
268 | double precision :: & |
---|
269 | ! ---Extinction coefficients at 1 micron of CO2 particles |
---|
270 | vrat_cld, &! Volume ratio |
---|
271 | n_derf, &! derf( (rb_cldco2(1)-log(riceco2(ig,l))) *dev2) |
---|
272 | Qtemp, &! mean value in the interval during the interpolation |
---|
273 | ltemp1(var_dim_qext), &! abs(radv(:)-rb_cldco2(i)) |
---|
274 | ltemp2(var_dim_qext), &! abs(radv(:)-rb_cldco2(i+1)) |
---|
275 | n_aer(nbinco2_cld), &! -0.5 * Nccnco2*tauscaling(ig) * n_derf |
---|
276 | tau1mic(ngrid), &! CO2 ice column opacity at 1µm |
---|
277 | Qext1bins2(ngrid,nlay), &! CO2 ice opacities |
---|
278 | ! ---For Saturation Index computation |
---|
279 | rho, &! background density |
---|
280 | zu, &! absolute value of zonal wind field |
---|
281 | NN, &! N^2 static stability |
---|
282 | gradT, &! thermal gradient |
---|
283 | SatIndex(ngrid,nlay), &! Saturation index S in Spiga 2012 paper, assuming like in the paper GW phase speed |
---|
284 | ! (stationary waves): c = 0 m.s-1, lambdaH = 150 km, Fo = 7.5e-7 J.m-3 |
---|
285 | SatIndexmap(ngrid), &! maxval(SatIndex(ig,12:26)) |
---|
286 | ! ---Misc |
---|
287 | myT, &! Temperature scalar for co2 density computation |
---|
288 | tcond(ngrid,nlay) ! CO2 condensation temperature |
---|
289 | |
---|
290 | logical :: & |
---|
291 | file_qext_ok ! Check if file_qext exists |
---|
292 | !======================================================================================================================! |
---|
293 | ! BEGIN ===============================================================================================================! |
---|
294 | !======================================================================================================================! |
---|
295 | ! 0. Firstcall |
---|
296 | !----------------------------------------------------------------------------------------------------------------------! |
---|
297 | if (firstcall) then |
---|
298 | firstcall=.false. |
---|
299 | !----------------------------------------------------------------------------------------------------------------------! |
---|
300 | ! 0.1. Initialization of microtimestep from imicroco2 |
---|
301 | !----------------------------------------------------------------------------------------------------------------------! |
---|
302 | #ifdef MESOSCALE |
---|
303 | imicroco2 = 2 |
---|
304 | #else |
---|
305 | imicroco2 = 30 |
---|
306 | #endif |
---|
307 | call getin("imicroco2", imicroco2) |
---|
308 | microtimestep = ptimestep/real(imicroco2) |
---|
309 | sigma_iceco2 = sqrt(log(1.+nuiceco2_sed)) |
---|
310 | dev2 = 1. / ( sqrt(2.) * sigma_iceco2 ) |
---|
311 | !----------------------------------------------------------------------------------------------------------------------! |
---|
312 | ! 0.2. Compute the radius grid of CO2 ice particles (rb_cldco2) |
---|
313 | ! > the grid spacing is computed assuming a constant volume ratio between two consecutive bins; i.e. vrat_cld. |
---|
314 | ! - rad_cldco2 is the primary radius grid used for microphysics computation. |
---|
315 | ! - The grid spacing is computed assuming a constant volume ratio between two consecutive bins; i.e. vrat_cld. |
---|
316 | ! - vrat_cld is determined from the boundary values of the size grid: rmin_cld and rmax_cld. |
---|
317 | ! - The rb_cldco2 array contains the boundary values of each rad_cldco2 bin. |
---|
318 | !----------------------------------------------------------------------------------------------------------------------! |
---|
319 | ! vrat_cld is determined from the boundary values of the size grid: rmin_cld and rmax_cld. |
---|
320 | vrat_cld = exp(log(rmax_cld/rmin_cld) / float(nbinco2_cld-1) * 3.) |
---|
321 | |
---|
322 | ! rad_cldco2 is the primary radius grid used for microphysics computation. |
---|
323 | rad_cldco2(1) = rmin_cld |
---|
324 | do i = 1, nbinco2_cld-1 |
---|
325 | rad_cldco2(i+1) = rad_cldco2(i) * vrat_cld**(1./3.) |
---|
326 | end do |
---|
327 | |
---|
328 | ! rb_cldco2 array contains the boundary values of each rad_cldco2 bin. |
---|
329 | rb_cldco2(1) = rbmin_cld |
---|
330 | do i = 1, nbinco2_cld |
---|
331 | rb_cldco2(i+1) = ( (2.*vrat_cld) / (vrat_cld+1.) )**(1./3.) * rad_cldco2(i) |
---|
332 | end do |
---|
333 | rb_cldco2(nbinco2_cld+1) = rbmax_cld |
---|
334 | !----------------------------------------------------------------------------------------------------------------------! |
---|
335 | ! 0.3. Read file 'optprop_co2ice_1mic.dat' to extract optical properties of CO2 ice at 1 micron (Qext) |
---|
336 | !----------------------------------------------------------------------------------------------------------------------! |
---|
337 | ! get information about file_qext |
---|
338 | inquire(file=trim(datadir)//'/'//file_qext, exist=file_qext_ok) |
---|
339 | |
---|
340 | ! if file_qext is missing then stop |
---|
341 | if (.not. file_qext_ok) then |
---|
342 | write(*,*)'file'//file_qext//'should be in ', trim(datadir) |
---|
343 | call abort_physic('co2cloud', 'file missing', 1) |
---|
344 | end if |
---|
345 | |
---|
346 | ! read file_qext |
---|
347 | open(unit=uQext,file=trim(datadir)//'/'//file_qext, form='formatted') |
---|
348 | |
---|
349 | ! skip 1 line |
---|
350 | read(uQext,*) |
---|
351 | |
---|
352 | ! extract radv |
---|
353 | do i = 1, var_dim_qext |
---|
354 | read(uQext,'(E12.5)')radv(i) |
---|
355 | end do |
---|
356 | |
---|
357 | ! skip 1 line |
---|
358 | read(uQext,*) |
---|
359 | |
---|
360 | ! Qextv1mic |
---|
361 | do i = 1 , var_dim_qext |
---|
362 | read(uQext,'(E12.5)')Qextv1mic(i) |
---|
363 | end do |
---|
364 | |
---|
365 | ! close file_qext |
---|
366 | close(uQext) |
---|
367 | !----------------------------------------------------------------------------------------------------------------------! |
---|
368 | ! 0.4. Interpole the radius grid (rb_cldco2) to get the corresponding exctinction coefficients (Qext1bins), using |
---|
369 | ! file_qext values (radv, Qextv1mic) |
---|
370 | !----------------------------------------------------------------------------------------------------------------------! |
---|
371 | do i = 1, nbinco2_cld |
---|
372 | ltemp1 = abs(radv(:)-rb_cldco2(i)) |
---|
373 | ltemp2 = abs(radv(:)-rb_cldco2(i+1)) |
---|
374 | lebon1 = minloc(ltemp1,DIM=1) |
---|
375 | lebon2 = min(minloc(ltemp2,DIM=1), var_dim_qext) |
---|
376 | nelem = lebon2 - lebon1 + 1. |
---|
377 | |
---|
378 | ! mean value in the interval |
---|
379 | Qtemp = 0d0 |
---|
380 | do l = 0, nelem |
---|
381 | Qtemp = Qtemp + Qextv1mic(min(lebon1+l, var_dim_qext)) |
---|
382 | end do |
---|
383 | |
---|
384 | Qext1bins(i) = Qtemp / nelem |
---|
385 | end do |
---|
386 | |
---|
387 | Qext1bins(:) = Qext1bins(:) * pi * (rad_cldco2(:)**2) |
---|
388 | |
---|
389 | ! print result of the interpolation |
---|
390 | write(*,*)'--------------------------------------------' |
---|
391 | write(*,*)'Microphysics co2: size bin-Qext information:' |
---|
392 | write(*,*)' i, rad_cldco2(i), Qext1bins(i)' |
---|
393 | do i = 1, nbinco2_cld |
---|
394 | write(*,'(i3,3x,3(e13.6,4x))')i, rad_cldco2(i), Qext1bins(i) |
---|
395 | end do |
---|
396 | write(*,*)'--------------------------------------------' |
---|
397 | !----------------------------------------------------------------------------------------------------------------------! |
---|
398 | ! 0.5. Save the radius grid of CO2 particles (rb_cldco2) |
---|
399 | !----------------------------------------------------------------------------------------------------------------------! |
---|
400 | do i = 1, nbinco2_cld+1 |
---|
401 | rb_cldco2(i) = log(rb_cldco2(i)) |
---|
402 | end do |
---|
403 | end if ! of IF (firstcall) |
---|
404 | !----------------------------------------------------------------------------------------------------------------------! |
---|
405 | ! 1. Initialization |
---|
406 | !----------------------------------------------------------------------------------------------------------------------! |
---|
407 | sum_subpdq(1:ngrid,1:nlay,1:nq) = 0. |
---|
408 | sum_subpdt(1:ngrid,1:nlay) = 0. |
---|
409 | |
---|
410 | subpdqcloudco2(1:ngrid,1:nlay,1:nq) = 0. |
---|
411 | subpdtcloudco2(1:ngrid,1:nlay) = 0. |
---|
412 | |
---|
413 | pdqcloudco2(1:ngrid,1:nlay,1:nq) = 0. |
---|
414 | pdtcloudco2(1:ngrid,1:nlay) = 0. |
---|
415 | |
---|
416 | ! default value if no ice |
---|
417 | rhocloudco2(1:ngrid,1:nlay) = rho_dust |
---|
418 | rhocloudco2t(1:ngrid,1:nlay) = rho_dust |
---|
419 | epaisseur(1:ngrid,1:nlay) = 0. |
---|
420 | masse(1:ngrid,1:nlay) = 0. |
---|
421 | riceco2(1:ngrid, 1:nlay) = 0. |
---|
422 | zqsed0(1:ngrid,1:nlay,1:nq) = 0. |
---|
423 | sum_subpdqs_sedco2(1:ngrid) = 0. |
---|
424 | sum_subpdqs_sedccn(1:ngrid,1:nq) = 0. |
---|
425 | subpdqsed(1:ngrid,1:nlay,1:nq) = 0. |
---|
426 | !----------------------------------------------------------------------------------------------------------------------! |
---|
427 | ! 2. Compute mass and thickness layers |
---|
428 | !----------------------------------------------------------------------------------------------------------------------! |
---|
429 | do l = 1, nlay |
---|
430 | do ig = 1, ngrid |
---|
431 | #ifndef MESOSCALE |
---|
432 | masse(ig,l) = (pplev(ig,l) - pplev(ig,l+1) + (bp(l)-bp(l+1)) ) / g |
---|
433 | #else |
---|
434 | masse(ig,l) = (pplev(ig,l) - pplev(ig,l+1)) / g |
---|
435 | #endif |
---|
436 | epaisseur(ig,l) = pzlev(ig,l+1) - pzlev(ig,l) |
---|
437 | end do |
---|
438 | end do |
---|
439 | !----------------------------------------------------------------------------------------------------------------------! |
---|
440 | ! 3. Define the sub-grid cloud (CLFvaryingCO2) |
---|
441 | !----------------------------------------------------------------------------------------------------------------------! |
---|
442 | ! 3.1. Representation of sub-grid CO2 ice clouds (CLFvaryingCO2 = True) |
---|
443 | !----------------------------------------------------------------------------------------------------------------------! |
---|
444 | if (CLFvaryingCO2) then |
---|
445 | ! effective temperature |
---|
446 | pteff(:,:) = pt(:,:) |
---|
447 | |
---|
448 | ! min co2cloudfrac when there is ice |
---|
449 | co2cloudfrac(:,:) = mincloud |
---|
450 | |
---|
451 | ! temperature |
---|
452 | do l=1,nlay |
---|
453 | do ig=1,ngrid |
---|
454 | zt(ig,l) = pt(ig,l) + pdt(ig,l)*ptimestep |
---|
455 | end do |
---|
456 | end do |
---|
457 | |
---|
458 | ! Quantities of traceurs |
---|
459 | if (igcm_co2 /= 0) then |
---|
460 | do l = 1, nlay |
---|
461 | do ig = 1, ngrid |
---|
462 | zq_co2vap(ig,l) = pq(ig,l,igcm_co2) + pdq(ig,l,igcm_co2)*ptimestep |
---|
463 | end do |
---|
464 | end do |
---|
465 | end if |
---|
466 | !----------------------------------------------------------------------------------------------------------------------! |
---|
467 | ! 3.1.a. Saturation index CO2 |
---|
468 | !----------------------------------------------------------------------------------------------------------------------! |
---|
469 | ! if saturation index co2 is true |
---|
470 | if (satindexco2) then |
---|
471 | ! layers 12 --> 26 ~ 12->85 km |
---|
472 | do l = 12, 26 |
---|
473 | do ig = 1, ngrid |
---|
474 | ! compute N^2 static stability |
---|
475 | gradT = (zt(ig,l+1)-zt(ig,l))/(pzlev(ig,l+1)-pzlev(ig,l)) |
---|
476 | NN = sqrt(g/zt(iq,l) * (max(gradT,-g/cpp) + g/cpp)) |
---|
477 | |
---|
478 | ! compute absolute value of zonal wind field |
---|
479 | zu = abs(pu(ig,l) + pdu(ig,l)*ptimestep) |
---|
480 | |
---|
481 | ! compute background density |
---|
482 | rho = pplay(ig,l) / (rnew(ig,l)*zt(ig,l)) |
---|
483 | |
---|
484 | ! saturation index: Modulate the DeltaT by GW propagation index: |
---|
485 | ! -------------------------------------------------------------- |
---|
486 | SatIndex(ig,l) = sqrt(Fo*lambdaH/(2.*pi)*NN / (rho*zu**3) ) |
---|
487 | end do |
---|
488 | end do |
---|
489 | |
---|
490 | ! Then compute Satindex map in layers 12 --> 26 ~ 12->85 km |
---|
491 | do ig = 1, ngrid |
---|
492 | SatIndexmap(ig) = maxval(SatIndex(ig,12:26)) |
---|
493 | end do |
---|
494 | |
---|
495 | ! Write outputs in diagfi.nc |
---|
496 | call write_output( "SatIndex", "SatIndex", " ", SatIndex(:,:)) |
---|
497 | |
---|
498 | call write_output( "SatIndexmap", "SatIndexmap", "km", SatIndexmap(:)) |
---|
499 | !------------------------------------------------------------------------------------------------------------------! |
---|
500 | ! if saturation index co2 is false, set saturation index to 0.05 |
---|
501 | !------------------------------------------------------------------------------------------------------------------! |
---|
502 | else |
---|
503 | do ig = 1, ngrid |
---|
504 | SatIndexmap(ig)=0.05 |
---|
505 | end do |
---|
506 | end if ! of if (satindexco2) |
---|
507 | !----------------------------------------------------------------------------------------------------------------------! |
---|
508 | ! 3.1.b. Compute tcond |
---|
509 | !----------------------------------------------------------------------------------------------------------------------! |
---|
510 | call tcondco2(ngrid,nlay,pplay,zq_co2vap,tcond) |
---|
511 | !----------------------------------------------------------------------------------------------------------------------! |
---|
512 | ! 3.1.c. Compute cloud fraction in cells |
---|
513 | !----------------------------------------------------------------------------------------------------------------------! |
---|
514 | do ig = 1, ngrid |
---|
515 | if (SatIndexmap(ig) <= 0.1) then |
---|
516 | do l = 1, nlay-1 |
---|
517 | |
---|
518 | ! The entire fraction is saturated |
---|
519 | if (tcond(ig,l) >= (zt(ig,l)+zdelt) .or. tcond(ig,l) <= 0.) then |
---|
520 | pteff(ig,l) = zt(ig,l) |
---|
521 | co2cloudfrac(ig,l) = 1. |
---|
522 | |
---|
523 | ! No saturation at all |
---|
524 | else if (tcond(ig,l) <= (zt(ig,l)-zdelt)) then |
---|
525 | pteff(ig,l) = zt(ig,l) - zdelt |
---|
526 | co2cloudfrac(ig,l) = mincloud |
---|
527 | |
---|
528 | ! Mean temperature of the cloud fraction |
---|
529 | else |
---|
530 | pteff(ig,l) = (tcond(ig,l)+zt(ig,l)-zdelt) / 2. |
---|
531 | co2cloudfrac(ig,l) = (tcond(ig,l)-zt(ig,l)+zdelt) / (2.0*zdelt) |
---|
532 | end if |
---|
533 | |
---|
534 | pteff(ig,l) = pteff(ig,l) - pdt(ig,l)*ptimestep |
---|
535 | |
---|
536 | ! check boundary values of co2cloudfrac |
---|
537 | if (co2cloudfrac(ig,l) <= mincloud) then |
---|
538 | co2cloudfrac(ig,l) = mincloud |
---|
539 | else if (co2cloudfrac(ig,l)> 1) then |
---|
540 | co2cloudfrac(ig,l) = 1. |
---|
541 | end if |
---|
542 | end do |
---|
543 | |
---|
544 | ! SatIndex not favorable for GW: leave pt untouched |
---|
545 | else |
---|
546 | pteff(ig,l) = pt(ig,l) |
---|
547 | co2cloudfrac(ig,l) = mincloud |
---|
548 | end if ! of if (SatIndexmap <= 0.1) |
---|
549 | end do ! of ngrid |
---|
550 | ! TODO: Totalcloud frac of the column missing here |
---|
551 | !----------------------------------------------------------------------------------------------------------------------! |
---|
552 | ! 3.2. No sub-grid cloud representation (CLFvaryingCO2 = False) |
---|
553 | !----------------------------------------------------------------------------------------------------------------------! |
---|
554 | else |
---|
555 | do l = 1, nlay |
---|
556 | do ig = 1, ngrid |
---|
557 | pteff(ig,l) = pt(ig,l) |
---|
558 | end do |
---|
559 | end do |
---|
560 | end if ! end if (CLFvaryingco2) |
---|
561 | !----------------------------------------------------------------------------------------------------------------------! |
---|
562 | ! 4. Microphysics of CO2 cloud formation |
---|
563 | !----------------------------------------------------------------------------------------------------------------------! |
---|
564 | pqeff(:,:,:) = pq(:,:,:) |
---|
565 | pteff(:,:) = pt(:,:) |
---|
566 | !----------------------------------------------------------------------------------------------------------------------! |
---|
567 | ! 4.1. Effective tracers quantities in the cloud |
---|
568 | !----------------------------------------------------------------------------------------------------------------------! |
---|
569 | if (CLFvaryingCO2) then |
---|
570 | pqeff(:,:,igcm_ccnco2_mass) = pq(:,:,igcm_ccnco2_mass) / co2cloudfrac(:,:) |
---|
571 | |
---|
572 | pqeff(:,:,igcm_ccnco2_number) = pq(:,:,igcm_ccnco2_number) / co2cloudfrac(:,:) |
---|
573 | |
---|
574 | pqeff(:,:,igcm_co2_ice) = pq(:,:,igcm_co2_ice) / co2cloudfrac(:,:) |
---|
575 | end if |
---|
576 | !----------------------------------------------------------------------------------------------------------------------! |
---|
577 | do microstep = 1, imicroco2 |
---|
578 | !----------------------------------------------------------------------------------------------------------------------! |
---|
579 | ! 4.2. Stepped entry for tendancies: At each micro timestep we add pdt in order to have a stepped entry |
---|
580 | !----------------------------------------------------------------------------------------------------------------------! |
---|
581 | do l = 1, nlay |
---|
582 | do ig = 1, ngrid |
---|
583 | ! on temperature |
---|
584 | sum_subpdt(ig,l) = sum_subpdt(ig,l) + pdt(ig,l) |
---|
585 | |
---|
586 | ! on tracers |
---|
587 | sum_subpdq(ig,l,igcm_dust_mass) = sum_subpdq(ig,l,igcm_dust_mass) + pdq(ig,l,igcm_dust_mass) |
---|
588 | |
---|
589 | sum_subpdq(ig,l,igcm_dust_number) = sum_subpdq(ig,l,igcm_dust_number) + pdq(ig,l,igcm_dust_number) |
---|
590 | |
---|
591 | sum_subpdq(ig,l,igcm_ccnco2_mass) = sum_subpdq(ig,l,igcm_ccnco2_mass) + pdq(ig,l,igcm_ccnco2_mass) |
---|
592 | |
---|
593 | sum_subpdq(ig,l,igcm_ccnco2_number) = sum_subpdq(ig,l,igcm_ccnco2_number) + pdq(ig,l,igcm_ccnco2_number) |
---|
594 | |
---|
595 | sum_subpdq(ig,l,igcm_co2_ice) = sum_subpdq(ig,l,igcm_co2_ice) + pdq(ig,l,igcm_co2_ice) |
---|
596 | |
---|
597 | sum_subpdq(ig,l,igcm_co2) = sum_subpdq(ig,l,igcm_co2) + pdq(ig,l,igcm_co2) |
---|
598 | |
---|
599 | if (meteo_flux) then |
---|
600 | sum_subpdq(ig,l,igcm_ccnco2_meteor_number) = sum_subpdq(ig,l,igcm_ccnco2_meteor_number) + & |
---|
601 | pdq(ig,l,igcm_ccnco2_meteor_number) |
---|
602 | |
---|
603 | sum_subpdq(ig,l,igcm_ccnco2_meteor_mass) = sum_subpdq(ig,l,igcm_ccnco2_meteor_mass) + & |
---|
604 | pdq(ig,l,igcm_ccnco2_meteor_mass) |
---|
605 | end if |
---|
606 | if (co2useh2o) then |
---|
607 | sum_subpdq(ig,l,igcm_h2o_ice) = sum_subpdq(ig,l,igcm_h2o_ice) + pdq(ig,l,igcm_h2o_ice) |
---|
608 | |
---|
609 | sum_subpdq(ig,l,igcm_ccn_mass) = sum_subpdq(ig,l,igcm_ccn_mass) + pdq(ig,l,igcm_ccn_mass) |
---|
610 | |
---|
611 | sum_subpdq(ig,l,igcm_ccn_number) = sum_subpdq(ig,l,igcm_ccn_number) + pdq(ig,l,igcm_ccn_number) |
---|
612 | |
---|
613 | sum_subpdq(ig,l,igcm_ccnco2_h2o_number) = sum_subpdq(ig,l,igcm_ccnco2_h2o_number) + & |
---|
614 | pdq(ig,l,igcm_ccnco2_h2o_number) |
---|
615 | |
---|
616 | sum_subpdq(ig,l,igcm_ccnco2_h2o_mass_ice) = sum_subpdq(ig,l,igcm_ccnco2_h2o_mass_ice) + & |
---|
617 | pdq(ig,l,igcm_ccnco2_h2o_mass_ice) |
---|
618 | |
---|
619 | sum_subpdq(ig,l,igcm_ccnco2_h2o_mass_ccn) = sum_subpdq(ig,l,igcm_ccnco2_h2o_mass_ccn) + & |
---|
620 | pdq(ig,l,igcm_ccnco2_h2o_mass_ccn) |
---|
621 | end if |
---|
622 | end do ! ngrid |
---|
623 | end do ! nlay |
---|
624 | !----------------------------------------------------------------------------------------------------------------------! |
---|
625 | ! 4.3. Main call to the cloud scheme |
---|
626 | !----------------------------------------------------------------------------------------------------------------------! |
---|
627 | call improvedco2clouds(ngrid, nlay, microtimestep, pplay, pplev, pteff, sum_subpdt, pqeff, sum_subpdq, & |
---|
628 | subpdqcloudco2, subpdtcloudco2, nq, tauscaling, rb_cldco2, sigma_iceco2, dev2) |
---|
629 | |
---|
630 | do l = 1, nlay |
---|
631 | do ig = 1, ngrid |
---|
632 | if(pq(ig,l,igcm_co2_ice) + microtimestep*(sum_subpdq(ig,l,igcm_co2_ice)+subpdqcloudco2(ig,l,igcm_co2_ice)) & |
---|
633 | <= 1.e-12) then |
---|
634 | subpdqcloudco2(ig,l,igcm_co2_ice) = -pq(ig,l,igcm_co2_ice)/microtimestep - sum_subpdq(ig,l,igcm_co2_ice) |
---|
635 | subpdqcloudco2(ig,l,igcm_co2) = -subpdqcloudco2(ig,l,igcm_co2_ice) |
---|
636 | end if |
---|
637 | |
---|
638 | if(pq(ig,l,igcm_co2) + microtimestep*(sum_subpdq(ig,l,igcm_co2)+subpdqcloudco2(ig,l,igcm_co2)) <= 1.e-12) then |
---|
639 | subpdqcloudco2(ig,l,igcm_co2) = - pq(ig,l,igcm_co2)/microtimestep - sum_subpdq(ig,l,igcm_co2) |
---|
640 | subpdqcloudco2(ig,l,igcm_co2_ice) = -subpdqcloudco2(ig,l,igcm_co2) |
---|
641 | end if |
---|
642 | |
---|
643 | ! ccnco2_number and ccnco2_mass |
---|
644 | if (((pq(ig,l,igcm_ccnco2_number)+(sum_subpdq(ig,l,igcm_ccnco2_number)+subpdqcloudco2(ig,l,igcm_ccnco2_number)) & |
---|
645 | *microtimestep)<=1.) .or. & |
---|
646 | (pq(ig,l,igcm_ccnco2_mass)+(sum_subpdq(ig,l,igcm_ccnco2_mass)+subpdqcloudco2(ig,l,igcm_ccnco2_mass)) & |
---|
647 | *microtimestep<=1e-20)) then |
---|
648 | subpdqcloudco2(ig,l,igcm_ccnco2_number) = - pq(ig,l,igcm_ccnco2_number)/microtimestep + 1. & |
---|
649 | - sum_subpdq(ig,l,igcm_ccnco2_number) |
---|
650 | subpdqcloudco2(ig,l,igcm_dust_number) = - subpdqcloudco2(ig,l,igcm_ccnco2_number) |
---|
651 | |
---|
652 | subpdqcloudco2(ig,l,igcm_ccnco2_mass) = - pq(ig,l,igcm_ccnco2_mass)/microtimestep + 1e-20 & |
---|
653 | - sum_subpdq(ig,l,igcm_ccnco2_mass) |
---|
654 | subpdqcloudco2(ig,l,igcm_dust_mass) = - subpdqcloudco2(ig,l,igcm_ccnco2_mass) |
---|
655 | end if |
---|
656 | |
---|
657 | ! ccnco2_meteor_number and ccnco2_meteor_mass |
---|
658 | if (meteo_flux) then |
---|
659 | if (((pq(ig,l,igcm_ccnco2_meteor_number)+(sum_subpdq(ig,l,igcm_ccnco2_meteor_number)+ & |
---|
660 | subpdqcloudco2(ig,l,igcm_ccnco2_meteor_number))*microtimestep)<=1.) .or. & |
---|
661 | (pq(ig,l,igcm_ccnco2_meteor_mass)+(sum_subpdq(ig,l,igcm_ccnco2_meteor_mass)+ & |
---|
662 | subpdqcloudco2(ig,l,igcm_ccnco2_meteor_mass))*microtimestep<=1e-20)) then |
---|
663 | subpdqcloudco2(ig,l,igcm_ccnco2_meteor_number) = - pq(ig,l,igcm_ccnco2_meteor_number)/microtimestep + 1. & |
---|
664 | - sum_subpdq(ig,l,igcm_ccnco2_meteor_number) |
---|
665 | subpdqcloudco2(ig,l,igcm_ccnco2_meteor_mass) = - pq(ig,l,igcm_ccnco2_meteor_mass)/microtimestep + 1e-20 & |
---|
666 | - sum_subpdq(ig,l,igcm_ccnco2_meteor_mass) |
---|
667 | end if |
---|
668 | end if |
---|
669 | |
---|
670 | ! ccnco2_h2o_number and masses |
---|
671 | if (co2useh2o) then |
---|
672 | if (((pq(ig,l,igcm_ccnco2_h2o_number) + (sum_subpdq(ig,l,igcm_ccnco2_h2o_number) + & |
---|
673 | subpdqcloudco2(ig,l,igcm_ccnco2_h2o_number)) & |
---|
674 | *microtimestep)<=1.) .or. & |
---|
675 | (pq(ig,l,igcm_ccnco2_h2o_mass_ice)+pq(ig,l,igcm_ccnco2_h2o_mass_ccn) +& |
---|
676 | (sum_subpdq(ig,l,igcm_ccnco2_h2o_mass_ice)+subpdqcloudco2(ig,l,igcm_ccnco2_h2o_mass_ice) +& |
---|
677 | sum_subpdq(ig,l,igcm_ccnco2_h2o_mass_ccn)+subpdqcloudco2(ig,l,igcm_ccnco2_h2o_mass_ccn)) & |
---|
678 | *microtimestep<=1e-20)) then |
---|
679 | |
---|
680 | subpdqcloudco2(ig,l,igcm_ccnco2_h2o_number) = - pq(ig,l,igcm_ccnco2_h2o_number)/microtimestep + 1. & |
---|
681 | - sum_subpdq(ig,l,igcm_ccnco2_h2o_number) |
---|
682 | subpdqcloudco2(ig,l,igcm_ccn_number) = - subpdqcloudco2(ig,l,igcm_ccnco2_h2o_number) |
---|
683 | |
---|
684 | subpdqcloudco2(ig,l,igcm_ccnco2_h2o_mass_ice) = - pq(ig,l,igcm_ccnco2_h2o_mass_ice)/microtimestep + 1e-20 & |
---|
685 | - sum_subpdq(ig,l,igcm_ccnco2_h2o_mass_ice) |
---|
686 | |
---|
687 | subpdqcloudco2(ig,l,igcm_ccnco2_h2o_mass_ccn) = - pq(ig,l,igcm_ccnco2_h2o_mass_ccn)/microtimestep + 1e-20 & |
---|
688 | - sum_subpdq(ig,l,igcm_ccnco2_h2o_mass_ccn) |
---|
689 | |
---|
690 | subpdqcloudco2(ig,l,igcm_ccn_mass) = - subpdqcloudco2(ig,l,igcm_ccnco2_h2o_mass_ice) & |
---|
691 | - subpdqcloudco2(ig,l,igcm_ccnco2_h2o_mass_ccn) |
---|
692 | end if |
---|
693 | end if |
---|
694 | end do |
---|
695 | end do |
---|
696 | !----------------------------------------------------------------------------------------------------------------------! |
---|
697 | ! 4.4. Updating tendencies after cloud scheme |
---|
698 | !----------------------------------------------------------------------------------------------------------------------! |
---|
699 | do l = 1, nlay |
---|
700 | do ig = 1, ngrid |
---|
701 | sum_subpdt(ig,l) = sum_subpdt(ig,l) + subpdtcloudco2(ig,l) |
---|
702 | |
---|
703 | sum_subpdq(ig,l,igcm_dust_mass) = sum_subpdq(ig,l,igcm_dust_mass) + subpdqcloudco2(ig,l,igcm_dust_mass) |
---|
704 | |
---|
705 | sum_subpdq(ig,l,igcm_dust_number) = sum_subpdq(ig,l,igcm_dust_number) + subpdqcloudco2(ig,l,igcm_dust_number) |
---|
706 | |
---|
707 | sum_subpdq(ig,l,igcm_ccnco2_mass) = sum_subpdq(ig,l,igcm_ccnco2_mass) + subpdqcloudco2(ig,l,igcm_ccnco2_mass) |
---|
708 | |
---|
709 | sum_subpdq(ig,l,igcm_ccnco2_number) = sum_subpdq(ig,l,igcm_ccnco2_number) + & |
---|
710 | subpdqcloudco2(ig,l,igcm_ccnco2_number) |
---|
711 | |
---|
712 | sum_subpdq(ig,l,igcm_co2_ice) = sum_subpdq(ig,l,igcm_co2_ice) + subpdqcloudco2(ig,l,igcm_co2_ice) |
---|
713 | |
---|
714 | sum_subpdq(ig,l,igcm_co2) = sum_subpdq(ig,l,igcm_co2) + subpdqcloudco2(ig,l,igcm_co2) |
---|
715 | |
---|
716 | if (meteo_flux) then |
---|
717 | sum_subpdq(ig,l,igcm_ccnco2_meteor_mass) = sum_subpdq(ig,l,igcm_ccnco2_meteor_mass) + & |
---|
718 | subpdqcloudco2(ig,l,igcm_ccnco2_meteor_mass) |
---|
719 | |
---|
720 | sum_subpdq(ig,l,igcm_ccnco2_meteor_number) = sum_subpdq(ig,l,igcm_ccnco2_meteor_number) + & |
---|
721 | subpdqcloudco2(ig,l,igcm_ccnco2_meteor_number) |
---|
722 | end if |
---|
723 | if (co2useh2o) then |
---|
724 | sum_subpdq(ig,l,igcm_h2o_ice) = sum_subpdq(ig,l,igcm_h2o_ice) + subpdqcloudco2(ig,l,igcm_h2o_ice) |
---|
725 | |
---|
726 | sum_subpdq(ig,l,igcm_ccn_mass) = sum_subpdq(ig,l,igcm_ccn_mass) + subpdqcloudco2(ig,l,igcm_ccn_mass) |
---|
727 | |
---|
728 | sum_subpdq(ig,l,igcm_ccn_number) = sum_subpdq(ig,l,igcm_ccn_number) + subpdqcloudco2(ig,l,igcm_ccn_number) |
---|
729 | |
---|
730 | sum_subpdq(ig,l,igcm_ccnco2_h2o_mass_ice) = sum_subpdq(ig,l,igcm_ccnco2_h2o_mass_ice) + & |
---|
731 | subpdqcloudco2(ig,l,igcm_ccnco2_h2o_mass_ice) |
---|
732 | |
---|
733 | sum_subpdq(ig,l,igcm_ccnco2_h2o_mass_ccn) = sum_subpdq(ig,l,igcm_ccnco2_h2o_mass_ccn) + & |
---|
734 | subpdqcloudco2(ig,l,igcm_ccnco2_h2o_mass_ccn) |
---|
735 | |
---|
736 | sum_subpdq(ig,l,igcm_ccnco2_h2o_number) = sum_subpdq(ig,l,igcm_ccnco2_h2o_number) + & |
---|
737 | subpdqcloudco2(ig,l,igcm_ccnco2_number) |
---|
738 | |
---|
739 | end if |
---|
740 | end do ! ngrid |
---|
741 | end do ! nlay |
---|
742 | !----------------------------------------------------------------------------------------------------------------------! |
---|
743 | ! 4.5. Gravitational sedimentation |
---|
744 | !----------------------------------------------------------------------------------------------------------------------! |
---|
745 | if (sedimentation) then |
---|
746 | !----------------------------------------------------------------------------------------------------------------------! |
---|
747 | ! 4.5.a. Compute cloud density |
---|
748 | !----------------------------------------------------------------------------------------------------------------------! |
---|
749 | do l = 1, nlay |
---|
750 | do ig = 1, ngrid |
---|
751 | ! temperature during the sedimentation process |
---|
752 | ztsed(ig,l) = pteff(ig,l) + sum_subpdt(ig,l) * microtimestep |
---|
753 | |
---|
754 | ! quantities tracers during the sedimentation process |
---|
755 | zqsed(ig,l,:) = pqeff(ig,l,:) + sum_subpdq(ig,l,:) * microtimestep |
---|
756 | |
---|
757 | ! assure positive value of co2_ice mmr, ccnco2 number, ccnco2 mass |
---|
758 | ! meteoritic particle are considered like dust, rho_dust |
---|
759 | Niceco2 = max(zqsed(ig,l,igcm_co2_ice), threshold) |
---|
760 | Nccnco2 = max(zqsed(ig,l,igcm_ccnco2_number), threshold) |
---|
761 | Qccnco2 = max(zqsed(ig,l,igcm_ccnco2_mass), threshold) |
---|
762 | |
---|
763 | Nccnco2_h2o = 0. |
---|
764 | Qccnco2_h2o = 0. |
---|
765 | if (co2useh2o) then |
---|
766 | Nccnco2_h2o = max(zqsed(ig,l,igcm_ccnco2_h2o_number), threshold) |
---|
767 | Qccnco2_h2o = max(zqsed(ig,l,igcm_ccnco2_h2o_mass_ice)+zqsed(ig,l,igcm_ccnco2_h2o_mass_ccn), threshold) |
---|
768 | Nccnco2 = Nccnco2 - Nccnco2_h2o |
---|
769 | Qccnco2 = Qccnco2 - Qccnco2_h2o |
---|
770 | if (Nccnco2 < 0.) then |
---|
771 | Nccnco2 = threshold |
---|
772 | Qccnco2 = threshold |
---|
773 | end if |
---|
774 | end if |
---|
775 | |
---|
776 | ! Get density cloud and co2 ice particle radius |
---|
777 | if (Niceco2/=0d0) then |
---|
778 | call updaterice_microco2(dble(Niceco2), dble(Qccnco2), dble(Nccnco2), dble(Qccnco2_h2o), dble(Nccnco2_h2o),& |
---|
779 | ztsed(ig,l), tauscaling(ig), riceco2(ig,l), rhocloudco2t(ig,l)) |
---|
780 | else |
---|
781 | riceco2(ig,l) = 0. |
---|
782 | rhocloudco2t(ig,l) = 0. |
---|
783 | end if |
---|
784 | end do ! ngrid |
---|
785 | end do ! nlay |
---|
786 | !----------------------------------------------------------------------------------------------------------------------! |
---|
787 | ! 4.5.b. Save actualized tracer values to compute sedimentation tendancies |
---|
788 | !----------------------------------------------------------------------------------------------------------------------! |
---|
789 | zqsed0(:,:,igcm_co2_ice) = zqsed(:,:,igcm_co2_ice) |
---|
790 | zqsed0(:,:,igcm_ccnco2_mass) = zqsed(:,:,igcm_ccnco2_mass) |
---|
791 | zqsed0(:,:,igcm_ccnco2_number) = zqsed(:,:,igcm_ccnco2_number) |
---|
792 | |
---|
793 | if (meteo_flux) then |
---|
794 | zqsed0(:,:,igcm_ccnco2_meteor_mass) = zqsed(:,:,igcm_ccnco2_meteor_mass) |
---|
795 | zqsed0(:,:,igcm_ccnco2_meteor_number) = zqsed(:,:,igcm_ccnco2_meteor_number) |
---|
796 | end if |
---|
797 | |
---|
798 | if (co2useh2o) then |
---|
799 | zqsed0(:,:,igcm_ccnco2_h2o_number) = zqsed(:,:,igcm_ccnco2_h2o_number) |
---|
800 | zqsed0(:,:,igcm_ccnco2_h2o_mass_ice) = zqsed(:,:,igcm_ccnco2_h2o_mass_ice) |
---|
801 | zqsed0(:,:,igcm_ccnco2_h2o_mass_ccn) = zqsed(:,:,igcm_ccnco2_h2o_mass_ccn) |
---|
802 | end if |
---|
803 | !----------------------------------------------------------------------------------------------------------------------! |
---|
804 | ! 4.5.c. Sedimentation of co2 ice |
---|
805 | !----------------------------------------------------------------------------------------------------------------------! |
---|
806 | do ig = 1, ngrid |
---|
807 | do l = 1, nlay |
---|
808 | rsedcloudco2(ig,l) = max( riceco2(ig,l)*(1.+nuiceco2_sed)*(1.+nuiceco2_sed)*(1.+nuiceco2_sed), & |
---|
809 | rdust(ig,l) ) |
---|
810 | end do |
---|
811 | end do |
---|
812 | |
---|
813 | wq(:,:) = 0. |
---|
814 | call newsedim(ngrid, nlay, ngrid*nlay, ngrid*nlay, microtimestep, pplev, masse, epaisseur, ztsed, & |
---|
815 | rsedcloudco2, rhocloudco2t, zqsed(:,:,igcm_co2_ice), wq, beta) |
---|
816 | |
---|
817 | do ig = 1, ngrid |
---|
818 | sum_subpdqs_sedco2(ig) = sum_subpdqs_sedco2(ig) + wq(ig,1) / microtimestep !wq est en kg.m-2 |
---|
819 | end do |
---|
820 | !----------------------------------------------------------------------------------------------------------------------! |
---|
821 | ! 4.5.d. Sedimentation for other tracers |
---|
822 | !----------------------------------------------------------------------------------------------------------------------! |
---|
823 | wq(:,:) = 0. |
---|
824 | ! for ccnco2_mass |
---|
825 | call newsedim(ngrid, nlay, ngrid*nlay, ngrid*nlay, microtimestep, pplev, masse, epaisseur, ztsed, & |
---|
826 | rsedcloudco2, rhocloudco2t, zqsed(:,:,igcm_ccnco2_mass), wq, beta) |
---|
827 | do ig = 1, ngrid |
---|
828 | sum_subpdqs_sedccn(ig,igcm_ccnco2_mass) = sum_subpdqs_sedccn(ig,igcm_ccnco2_mass) + wq(ig,1) / microtimestep |
---|
829 | end do |
---|
830 | |
---|
831 | wq(:,:) = 0. |
---|
832 | ! for ccnco2_number |
---|
833 | call newsedim(ngrid, nlay, ngrid*nlay, ngrid*nlay,microtimestep, pplev, masse, epaisseur, ztsed, & |
---|
834 | rsedcloudco2, rhocloudco2t, zqsed(:,:,igcm_ccnco2_number), wq, beta) |
---|
835 | do ig = 1, ngrid |
---|
836 | sum_subpdqs_sedccn(ig,igcm_ccnco2_number) = sum_subpdqs_sedccn(ig,igcm_ccnco2_number) + wq(ig,1) / microtimestep |
---|
837 | end do |
---|
838 | |
---|
839 | if (meteo_flux) then |
---|
840 | wq(:,:) = 0. |
---|
841 | ! for ccnco2_meteor_mass |
---|
842 | call newsedim(ngrid, nlay, ngrid*nlay, ngrid*nlay, microtimestep, pplev, masse, epaisseur, ztsed, & |
---|
843 | rsedcloudco2, rhocloudco2t, zqsed(:,:,igcm_ccnco2_meteor_mass), wq, beta) |
---|
844 | do ig = 1, ngrid |
---|
845 | sum_subpdqs_sedccn(ig,igcm_ccnco2_meteor_mass) = sum_subpdqs_sedccn(ig,igcm_ccnco2_meteor_mass) + & |
---|
846 | wq(ig,1)/ microtimestep |
---|
847 | end do |
---|
848 | |
---|
849 | wq(:,:) = 0. |
---|
850 | ! for ccnco2_meteor_number |
---|
851 | call newsedim(ngrid, nlay, ngrid*nlay, ngrid*nlay,microtimestep, pplev, masse, epaisseur, ztsed, & |
---|
852 | rsedcloudco2, rhocloudco2t, zqsed(:,:,igcm_ccnco2_meteor_number), wq, beta) |
---|
853 | do ig = 1, ngrid |
---|
854 | sum_subpdqs_sedccn(ig,igcm_ccnco2_meteor_number) = sum_subpdqs_sedccn(ig,igcm_ccnco2_meteor_number) + & |
---|
855 | wq(ig,1) / microtimestep |
---|
856 | end do |
---|
857 | end if |
---|
858 | ! for ccnco2_h2o_mass_ice |
---|
859 | if (co2useh2o) then |
---|
860 | wq(:,:) = 0. |
---|
861 | call newsedim(ngrid, nlay, ngrid*nlay, ngrid*nlay,microtimestep, pplev, masse, epaisseur, ztsed, & |
---|
862 | rsedcloudco2, rhocloudco2t, zqsed(:,:,igcm_ccnco2_h2o_mass_ice), wq, beta) |
---|
863 | do ig = 1, ngrid |
---|
864 | sum_subpdqs_sedccn(ig,igcm_ccnco2_h2o_mass_ice) = sum_subpdqs_sedccn(ig,igcm_ccnco2_h2o_mass_ice) + & |
---|
865 | wq(ig,1) / microtimestep |
---|
866 | end do |
---|
867 | |
---|
868 | wq(:,:) = 0. |
---|
869 | ! for ccnco2_h2o_mass_ccn |
---|
870 | call newsedim(ngrid, nlay, ngrid*nlay, ngrid*nlay,microtimestep, pplev, masse, epaisseur, ztsed, & |
---|
871 | rsedcloudco2, rhocloudco2t, zqsed(:,:,igcm_ccnco2_h2o_mass_ccn), wq, beta) |
---|
872 | do ig = 1, ngrid |
---|
873 | sum_subpdqs_sedccn(ig,igcm_ccnco2_h2o_mass_ccn) = sum_subpdqs_sedccn(ig,igcm_ccnco2_h2o_mass_ccn) + & |
---|
874 | wq(ig,1) / microtimestep |
---|
875 | end do |
---|
876 | |
---|
877 | wq(:,:) = 0. |
---|
878 | ! for ccnco2_h2o_number |
---|
879 | call newsedim(ngrid, nlay, ngrid*nlay, ngrid*nlay,microtimestep, pplev, masse, epaisseur, ztsed, & |
---|
880 | rsedcloudco2, rhocloudco2t, zqsed(:,:,igcm_ccnco2_h2o_number), wq, beta) |
---|
881 | do ig = 1, ngrid |
---|
882 | sum_subpdqs_sedccn(ig,igcm_ccnco2_h2o_number) = sum_subpdqs_sedccn(ig,igcm_ccnco2_h2o_number) + & |
---|
883 | wq(ig,1) / microtimestep |
---|
884 | end do |
---|
885 | end if |
---|
886 | !----------------------------------------------------------------------------------------------------------------------! |
---|
887 | ! 4.5.e. Compute tendencies due to the sedimation process |
---|
888 | !----------------------------------------------------------------------------------------------------------------------! |
---|
889 | do l = 1, nlay |
---|
890 | do ig = 1, ngrid |
---|
891 | subpdqsed(ig,l,igcm_ccnco2_mass) = ( zqsed(ig,l,igcm_ccnco2_mass) - zqsed0(ig,l,igcm_ccnco2_mass) ) & |
---|
892 | / microtimestep |
---|
893 | |
---|
894 | subpdqsed(ig,l,igcm_ccnco2_number) = ( zqsed(ig,l,igcm_ccnco2_number) - zqsed0(ig,l,igcm_ccnco2_number) )& |
---|
895 | / microtimestep |
---|
896 | |
---|
897 | subpdqsed(ig,l,igcm_co2_ice) = ( zqsed(ig,l,igcm_co2_ice) - zqsed0(ig,l,igcm_co2_ice) ) / microtimestep |
---|
898 | |
---|
899 | if (meteo_flux) then |
---|
900 | subpdqsed(ig,l,igcm_ccnco2_meteor_mass) = ( zqsed(ig,l,igcm_ccnco2_meteor_mass) - & |
---|
901 | zqsed0(ig,l,igcm_ccnco2_meteor_mass) ) / microtimestep |
---|
902 | |
---|
903 | subpdqsed(ig,l,igcm_ccnco2_meteor_number) = ( zqsed(ig,l,igcm_ccnco2_meteor_number) - & |
---|
904 | zqsed0(ig,l,igcm_ccnco2_meteor_number) ) / microtimestep |
---|
905 | end if |
---|
906 | if (co2useh2o) then |
---|
907 | subpdqsed(ig,l,igcm_ccnco2_h2o_number) = ( zqsed(ig,l,igcm_ccnco2_h2o_number) - & |
---|
908 | zqsed0(ig,l,igcm_ccnco2_h2o_number) ) / microtimestep |
---|
909 | |
---|
910 | subpdqsed(ig,l,igcm_ccnco2_h2o_mass_ice) = ( zqsed(ig,l,igcm_ccnco2_h2o_mass_ice) - & |
---|
911 | zqsed0(ig,l,igcm_ccnco2_h2o_mass_ice) ) / microtimestep |
---|
912 | |
---|
913 | subpdqsed(ig,l,igcm_ccnco2_h2o_mass_ccn) = ( zqsed(ig,l,igcm_ccnco2_h2o_mass_ccn) - & |
---|
914 | zqsed0(ig,l,igcm_ccnco2_h2o_mass_ccn) ) / microtimestep |
---|
915 | end if |
---|
916 | end do |
---|
917 | end do |
---|
918 | ! update subtimestep tendencies with sedimentation input |
---|
919 | do l = 1, nlay |
---|
920 | do ig = 1, ngrid |
---|
921 | sum_subpdq(ig,l,igcm_ccnco2_mass) = sum_subpdq(ig,l,igcm_ccnco2_mass) + subpdqsed(ig,l,igcm_ccnco2_mass) |
---|
922 | |
---|
923 | sum_subpdq(ig,l,igcm_ccnco2_number) = sum_subpdq(ig,l,igcm_ccnco2_number) + subpdqsed(ig,l,igcm_ccnco2_number) |
---|
924 | |
---|
925 | sum_subpdq(ig,l,igcm_co2_ice) = sum_subpdq(ig,l,igcm_co2_ice) + subpdqsed(ig,l,igcm_co2_ice) |
---|
926 | if (meteo_flux) then |
---|
927 | sum_subpdq(ig,l,igcm_ccnco2_meteor_mass) = sum_subpdq(ig,l,igcm_ccnco2_meteor_mass) + & |
---|
928 | subpdqsed(ig,l,igcm_ccnco2_meteor_mass) |
---|
929 | |
---|
930 | sum_subpdq(ig,l,igcm_ccnco2_meteor_number) = sum_subpdq(ig,l,igcm_ccnco2_meteor_number) + & |
---|
931 | subpdqsed(ig,l,igcm_ccnco2_meteor_number) |
---|
932 | end if |
---|
933 | if (co2useh2o) then |
---|
934 | sum_subpdq(ig,l,igcm_ccnco2_h2o_mass_ice) = sum_subpdq(ig,l,igcm_ccnco2_h2o_mass_ice) + & |
---|
935 | subpdqsed(ig,l,igcm_ccnco2_h2o_mass_ice) |
---|
936 | |
---|
937 | sum_subpdq(ig,l,igcm_ccnco2_h2o_mass_ccn) = sum_subpdq(ig,l,igcm_ccnco2_h2o_mass_ccn) + & |
---|
938 | subpdqsed(ig,l,igcm_ccnco2_h2o_mass_ccn) |
---|
939 | |
---|
940 | sum_subpdq(ig,l,igcm_ccnco2_h2o_number) = sum_subpdq(ig,l,igcm_ccnco2_h2o_number) + & |
---|
941 | subpdqsed(ig,l,igcm_ccnco2_h2o_number) |
---|
942 | end if |
---|
943 | end do |
---|
944 | end do |
---|
945 | end if !(end if sedimentation) |
---|
946 | end do ! of do microstep = 1, imicroco2 |
---|
947 | !----------------------------------------------------------------------------------------------------------------------! |
---|
948 | ! 5. Compute final tendencies after time loop |
---|
949 | !----------------------------------------------------------------------------------------------------------------------! |
---|
950 | ! condensation/sublimation rate in the atmosphere (kg.kg-1.s-1) |
---|
951 | do l = nlay, 1, -1 |
---|
952 | do ig = 1, ngrid |
---|
953 | pcondicea(ig,l) = sum_subpdq(ig,l,igcm_co2_ice) / real(imicroco2) |
---|
954 | end do |
---|
955 | end do |
---|
956 | |
---|
957 | ! CO2 flux at surface (kg.m-2.s-1) |
---|
958 | do ig = 1, ngrid |
---|
959 | pdqs_sedco2(ig) = sum_subpdqs_sedco2(ig) / real(imicroco2) |
---|
960 | pdqs_sedccn(ig,:) = sum_subpdqs_sedccn(ig,:) / real(imicroco2) |
---|
961 | end do |
---|
962 | |
---|
963 | ! temperature tendency (T.s-1) |
---|
964 | do l = 1, nlay |
---|
965 | do ig = 1, ngrid |
---|
966 | pdtcloudco2(ig,l) = ( sum_subpdt(ig,l)/real(imicroco2) ) - pdt(ig,l) |
---|
967 | if (pdtcloudco2(ig,l) /= pdtcloudco2(ig,l)) then |
---|
968 | write(*,*)ig,l,pdtcloudco2(ig,l), pdt(ig,l), sum_subpdt(ig,l) |
---|
969 | call abort_physic('co2clouds', 'ptdcloudco2 is NaN', 1) |
---|
970 | end if |
---|
971 | end do |
---|
972 | end do |
---|
973 | |
---|
974 | ! tracers tendencies |
---|
975 | do l = 1, nlay |
---|
976 | do ig = 1, ngrid |
---|
977 | pdqcloudco2(ig,l,igcm_co2) = 0. ! here is the trick, this tendency is computed in co2condens |
---|
978 | |
---|
979 | pdqcloudco2(ig,l,igcm_co2_ice) = ( sum_subpdq(ig,l,igcm_co2_ice) / real(imicroco2) ) - pdq(ig,l,igcm_co2_ice) |
---|
980 | |
---|
981 | pdqcloudco2(ig,l,igcm_ccnco2_mass) = ( sum_subpdq(ig,l,igcm_ccnco2_mass)/real(imicroco2) ) - & |
---|
982 | pdq(ig,l,igcm_ccnco2_mass) |
---|
983 | |
---|
984 | pdqcloudco2(ig,l,igcm_ccnco2_number) = ( sum_subpdq(ig,l,igcm_ccnco2_number) / real(imicroco2) ) - & |
---|
985 | pdq(ig,l,igcm_ccnco2_number) |
---|
986 | |
---|
987 | pdqcloudco2(ig,l,igcm_dust_mass) = ( sum_subpdq(ig,l,igcm_dust_mass) / real(imicroco2) ) - & |
---|
988 | pdq(ig,l,igcm_dust_mass) |
---|
989 | |
---|
990 | pdqcloudco2(ig,l,igcm_dust_number) = ( sum_subpdq(ig,l,igcm_dust_number)/real(imicroco2) ) - & |
---|
991 | pdq(ig,l,igcm_dust_number) |
---|
992 | |
---|
993 | if (meteo_flux) then |
---|
994 | pdqcloudco2(ig,l,igcm_ccnco2_meteor_mass) = ( sum_subpdq(ig,l,igcm_ccnco2_meteor_mass)/real(imicroco2) ) & |
---|
995 | - pdq(ig,l,igcm_ccnco2_meteor_mass) |
---|
996 | |
---|
997 | pdqcloudco2(ig,l,igcm_ccnco2_meteor_number) = ( sum_subpdq(ig,l,igcm_ccnco2_meteor_number) / real(imicroco2) ) & |
---|
998 | - pdq(ig,l,igcm_ccnco2_meteor_number) |
---|
999 | end if |
---|
1000 | if (co2useh2o) then |
---|
1001 | pdqcloudco2(ig,l,igcm_h2o_ice) = ( sum_subpdq(ig,l,igcm_h2o_ice) / real(imicroco2) ) - & |
---|
1002 | pdq(ig,l,igcm_h2o_ice) |
---|
1003 | |
---|
1004 | pdqcloudco2(ig,l,igcm_ccn_mass) = ( sum_subpdq(ig,l,igcm_ccn_mass) / real(imicroco2) ) - & |
---|
1005 | pdq(ig,l,igcm_ccn_mass) |
---|
1006 | |
---|
1007 | pdqcloudco2(ig,l,igcm_ccn_number) = ( sum_subpdq(ig,l,igcm_ccn_number) / real(imicroco2) ) - & |
---|
1008 | pdq(ig,l,igcm_ccn_number) |
---|
1009 | |
---|
1010 | pdqcloudco2(ig,l,igcm_ccnco2_h2o_number) = ( sum_subpdq(ig,l,igcm_ccnco2_h2o_number) / real(imicroco2) ) - & |
---|
1011 | pdq(ig,l,igcm_ccnco2_h2o_number) |
---|
1012 | |
---|
1013 | pdqcloudco2(ig,l,igcm_ccnco2_h2o_mass_ice) = ( sum_subpdq(ig,l,igcm_ccnco2_h2o_mass_ice) / real(imicroco2) ) - & |
---|
1014 | pdq(ig,l,igcm_ccnco2_h2o_mass_ice) |
---|
1015 | |
---|
1016 | pdqcloudco2(ig,l,igcm_ccnco2_h2o_mass_ccn) = ( sum_subpdq(ig,l,igcm_ccnco2_h2o_mass_ccn) / real(imicroco2) )- & |
---|
1017 | pdq(ig,l,igcm_ccnco2_h2o_mass_ccn) |
---|
1018 | |
---|
1019 | end if |
---|
1020 | end do ! ngrid |
---|
1021 | end do ! nlay |
---|
1022 | !----------------------------------------------------------------------------------------------------------------------! |
---|
1023 | ! 6. Update clouds physical values in the cloud (for output) |
---|
1024 | !----------------------------------------------------------------------------------------------------------------------! |
---|
1025 | ! 6.1. Update density of co2 ice, riceco2 and opacity |
---|
1026 | !----------------------------------------------------------------------------------------------------------------------! |
---|
1027 | do l = 1, nlay |
---|
1028 | do ig = 1, ngrid |
---|
1029 | Niceco2 = pqeff(ig,l,igcm_co2_ice) + ( pdq(ig,l,igcm_co2_ice) + pdqcloudco2(ig,l,igcm_co2_ice) ) * ptimestep |
---|
1030 | Niceco2 = max(Niceco2, threshold) |
---|
1031 | |
---|
1032 | ! meteoritic particles are considered like dust, => rho_dust |
---|
1033 | Nccnco2 = max( (pqeff(ig,l,igcm_ccnco2_number) + (pdq(ig,l,igcm_ccnco2_number) + & |
---|
1034 | pdqcloudco2(ig,l, igcm_ccnco2_number)) * ptimestep) & |
---|
1035 | , threshold) |
---|
1036 | |
---|
1037 | Qccnco2 = max( (pqeff(ig,l,igcm_ccnco2_mass) + (pdq(ig,l,igcm_ccnco2_mass) + & |
---|
1038 | pdqcloudco2(ig,l, igcm_ccnco2_mass)) * ptimestep)& |
---|
1039 | , threshold) |
---|
1040 | |
---|
1041 | myT = pteff(ig,l) + (pdt(ig,l)+pdtcloudco2(ig,l))*ptimestep |
---|
1042 | |
---|
1043 | Nccnco2_h2o = 0. |
---|
1044 | Qccnco2_h2o = 0. |
---|
1045 | if (co2useh2o) then |
---|
1046 | Nccnco2_h2o = max( (pqeff(ig,l,igcm_ccnco2_h2o_number) + (pdq(ig,l,igcm_ccnco2_h2o_number) + & |
---|
1047 | pdqcloudco2(ig,l, igcm_ccnco2_h2o_number)) * ptimestep) & |
---|
1048 | , threshold) |
---|
1049 | |
---|
1050 | Qccnco2_h2o = max( (pqeff(ig,l,igcm_ccnco2_h2o_mass_ice) + pqeff(ig,l,igcm_ccnco2_h2o_mass_ccn) + & |
---|
1051 | (pdq(ig,l,igcm_ccnco2_h2o_mass_ice) + pdq(ig,l,igcm_ccnco2_h2o_mass_ccn) + & |
---|
1052 | pdqcloudco2(ig,l,igcm_ccnco2_h2o_mass_ice) + pdqcloudco2(ig,l,igcm_ccnco2_h2o_mass_ccn)) * & |
---|
1053 | ptimestep)& |
---|
1054 | , threshold) |
---|
1055 | Nccnco2 = Nccnco2 - Nccnco2_h2o |
---|
1056 | Qccnco2 = Qccnco2 - Qccnco2_h2o |
---|
1057 | if (Nccnco2 <= 0) then |
---|
1058 | Nccnco2 = threshold |
---|
1059 | Qccnco2 = threshold |
---|
1060 | end if |
---|
1061 | end if |
---|
1062 | |
---|
1063 | ! Compute particle size |
---|
1064 | call updaterice_microco2(dble(Niceco2), dble(Qccnco2), dble(Nccnco2), dble(Qccnco2_h2o), dble(Nccnco2_h2o), myT, & |
---|
1065 | tauscaling(ig), riceco2(ig,l), rhocloudco2(ig,l)) |
---|
1066 | |
---|
1067 | ! Compute opacities |
---|
1068 | if ( (Niceco2 >= threshold_2 .and. (Nccnco2+Nccnco2_h2o)*tauscaling(ig) >= 1.) ) then |
---|
1069 | n_derf = derf( (rb_cldco2(1)-log(riceco2(ig,l))) *dev2) |
---|
1070 | Qext1bins2(ig,l) = 0. |
---|
1071 | do i = 1, nbinco2_cld |
---|
1072 | n_aer(i) = -0.5 * (Nccnco2+Nccnco2_h2o)*tauscaling(ig) * n_derf |
---|
1073 | |
---|
1074 | n_derf = derf((rb_cldco2(i+1)-log(riceco2(ig,l))) *dev2) |
---|
1075 | n_aer(i) = n_aer(i) + (0.5 * (Nccnco2+Nccnco2_h2o)*tauscaling(ig) * n_derf) |
---|
1076 | |
---|
1077 | Qext1bins2(ig,l) = Qext1bins2(ig,l) + Qext1bins(i) * n_aer(i) |
---|
1078 | end do |
---|
1079 | else |
---|
1080 | riceco2(ig,l) = 0. |
---|
1081 | Qext1bins2(ig,l) = 0. |
---|
1082 | end if |
---|
1083 | !----------------------------------------------------------------------------------------------------------------------! |
---|
1084 | ! 6.2. Update rice and rdust |
---|
1085 | !----------------------------------------------------------------------------------------------------------------------! |
---|
1086 | ! update rice water only if co2 use h2o ice as CCN |
---|
1087 | if (co2useh2o) then |
---|
1088 | call updaterice_micro( & |
---|
1089 | pqeff(ig,l,igcm_h2o_ice) + (pdq(ig,l,igcm_h2o_ice) + pdqcloudco2(ig,l,igcm_h2o_ice))*ptimestep, & |
---|
1090 | pqeff(ig,l,igcm_ccn_mass) + (pdq(ig,l,igcm_ccn_mass) + pdqcloudco2(ig,l,igcm_ccn_mass))*ptimestep, & |
---|
1091 | pqeff(ig,l,igcm_ccn_number) + (pdq(ig,l,igcm_ccn_number) + pdqcloudco2(ig,l,igcm_ccn_number))*ptimestep, & |
---|
1092 | tauscaling(ig),rice(ig,l),rhocloud(ig,l)) |
---|
1093 | end if |
---|
1094 | |
---|
1095 | ! update rdust |
---|
1096 | call updaterdust( & |
---|
1097 | pqeff(ig,l,igcm_dust_mass) + (pdq(ig,l,igcm_dust_mass) + pdqcloudco2(ig,l,igcm_dust_mass))*ptimestep, & |
---|
1098 | pqeff(ig,l,igcm_dust_number) + (pdq(ig,l,igcm_dust_number) + pdqcloudco2(ig,l,igcm_dust_number))*ptimestep, & |
---|
1099 | rdust(ig,l)) |
---|
1100 | end do ! ngrid |
---|
1101 | end do ! nlay |
---|
1102 | !----------------------------------------------------------------------------------------------------------------------! |
---|
1103 | ! 7. A correction if a lot of subliming CO2 fills the 1st layer FF (04/2005). Then that should not affect the ice |
---|
1104 | ! particle radius |
---|
1105 | !----------------------------------------------------------------------------------------------------------------------! |
---|
1106 | do ig = 1, ngrid |
---|
1107 | if ( pdpsrf(ig)*ptimestep > 0.9*(pplev(ig,1)-pplev(ig,2))) then |
---|
1108 | |
---|
1109 | if ( pdpsrf(ig)*ptimestep > 0.9*(pplev(ig,1)-pplev(ig,3)) ) then |
---|
1110 | riceco2(ig,2) = riceco2(ig,3) |
---|
1111 | end if |
---|
1112 | |
---|
1113 | riceco2(ig,1) = riceco2(ig,2) |
---|
1114 | end if |
---|
1115 | end do |
---|
1116 | !----------------------------------------------------------------------------------------------------------------------! |
---|
1117 | ! 8. CO2 saturated quantities |
---|
1118 | !----------------------------------------------------------------------------------------------------------------------! |
---|
1119 | ! 8.1 Compute CO2 saturation in layers |
---|
1120 | !----------------------------------------------------------------------------------------------------------------------! |
---|
1121 | call co2sat(ngrid*nlay, pteff+(pdt+pdtcloudco2)*ptimestep, zqsatco2) |
---|
1122 | !----------------------------------------------------------------------------------------------------------------------! |
---|
1123 | ! 8.2 Compute CO2 saturated quantities in layers |
---|
1124 | !----------------------------------------------------------------------------------------------------------------------! |
---|
1125 | do l = 1, nlay |
---|
1126 | do ig = 1, ngrid |
---|
1127 | satuco2(ig,l) = ( pqeff(ig,l,igcm_co2) + (pdq(ig,l,igcm_co2) + pdqcloudco2(ig,l,igcm_co2))*ptimestep ) * & |
---|
1128 | (mmean(ig,l)/(mco2*1e3)) * pplay(ig,l) / zqsatco2(ig,l) |
---|
1129 | end do |
---|
1130 | end do |
---|
1131 | !----------------------------------------------------------------------------------------------------------------------! |
---|
1132 | ! 9. Everything modified by CO2 microphysics must be wrt co2cloudfrac |
---|
1133 | !----------------------------------------------------------------------------------------------------------------------! |
---|
1134 | if (CLFvaryingCO2) then |
---|
1135 | do l = 1, nlay |
---|
1136 | do ig = 1, ngrid |
---|
1137 | pdqcloudco2(ig,l,igcm_ccnco2_mass) = pdqcloudco2(ig,l,igcm_ccnco2_mass) * co2cloudfrac(ig,l) |
---|
1138 | |
---|
1139 | pdqcloudco2(ig,l,igcm_ccnco2_number) = pdqcloudco2(ig,l,igcm_ccnco2_number) * co2cloudfrac(ig,l) |
---|
1140 | |
---|
1141 | pdqcloudco2(ig,l,igcm_dust_mass) = pdqcloudco2(ig,l,igcm_dust_mass) * co2cloudfrac(ig,l) |
---|
1142 | |
---|
1143 | pdqcloudco2(ig,l,igcm_dust_number) = pdqcloudco2(ig,l,igcm_dust_number) * co2cloudfrac(ig,l) |
---|
1144 | |
---|
1145 | pdqcloudco2(ig,l,igcm_co2_ice) = pdqcloudco2(ig,l,igcm_co2_ice) * co2cloudfrac(ig,l) |
---|
1146 | |
---|
1147 | pdqcloudco2(ig,l,igcm_co2) = pdqcloudco2(ig,l,igcm_co2) * co2cloudfrac(ig,l) |
---|
1148 | |
---|
1149 | pdtcloudco2(ig,l) = pdtcloudco2(ig,l) * co2cloudfrac(ig,l) |
---|
1150 | |
---|
1151 | Qext1bins2(ig,l) = Qext1bins2(ig,l) * co2cloudfrac(ig,l) |
---|
1152 | |
---|
1153 | if (meteo_flux) then |
---|
1154 | pdqcloudco2(ig,l,igcm_ccnco2_meteor_mass) = pdqcloudco2(ig,l,igcm_ccnco2_meteor_mass) * co2cloudfrac(ig,l) |
---|
1155 | |
---|
1156 | pdqcloudco2(ig,l,igcm_ccnco2_meteor_number) = pdqcloudco2(ig,l,igcm_ccnco2_meteor_number) * co2cloudfrac(ig,l) |
---|
1157 | end if |
---|
1158 | if (co2useh2o) then |
---|
1159 | pdqcloudco2(ig,l,igcm_h2o_ice) = pdqcloudco2(ig,l,igcm_h2o_ice) * co2cloudfrac(ig,l) |
---|
1160 | |
---|
1161 | pdqcloudco2(ig,l,igcm_ccn_mass) = pdqcloudco2(ig,l,igcm_ccn_mass) * co2cloudfrac(ig,l) |
---|
1162 | |
---|
1163 | pdqcloudco2(ig,l,igcm_ccn_number) = pdqcloudco2(ig,l,igcm_ccn_number) * co2cloudfrac(ig,l) |
---|
1164 | |
---|
1165 | pdqcloudco2(ig,l,igcm_ccnco2_h2o_mass_ice) = pdqcloudco2(ig,l,igcm_ccnco2_h2o_mass_ice) * co2cloudfrac(ig,l) |
---|
1166 | |
---|
1167 | pdqcloudco2(ig,l,igcm_ccnco2_h2o_mass_ccn) = pdqcloudco2(ig,l,igcm_ccnco2_h2o_mass_ccn) * co2cloudfrac(ig,l) |
---|
1168 | |
---|
1169 | pdqcloudco2(ig,l,igcm_ccnco2_h2o_number) = pdqcloudco2(ig,l,igcm_ccnco2_h2o_number) * co2cloudfrac(ig,l) |
---|
1170 | end if |
---|
1171 | end do ! ngrid |
---|
1172 | end do ! nlay |
---|
1173 | end if ! if CLFvaryingCO2 is true |
---|
1174 | !----------------------------------------------------------------------------------------------------------------------! |
---|
1175 | ! 10. Compute opacity at 1 micron: Opacity in mesh ig is the sum over l of Qext1bins2. Is this true ? |
---|
1176 | !----------------------------------------------------------------------------------------------------------------------! |
---|
1177 | tau1mic(:)=0. |
---|
1178 | do l = 1, nlay |
---|
1179 | do ig = 1, ngrid |
---|
1180 | tau1mic(ig) = tau1mic(ig) + Qext1bins2(ig,l) |
---|
1181 | end do |
---|
1182 | end do |
---|
1183 | !----------------------------------------------------------------------------------------------------------------------! |
---|
1184 | ! 11. Write outputs in diagfi.nc |
---|
1185 | !----------------------------------------------------------------------------------------------------------------------! |
---|
1186 | call write_output( "satuco2", "vap in satu", " ", satuco2(:,:)) |
---|
1187 | |
---|
1188 | call write_output( "precip_co2_ice_rate", "surface deposition rate of co2 ice", "kg.m-2.s-1", pdqs_sedco2(:)) |
---|
1189 | |
---|
1190 | call write_output( "co2ice_cond_rate", "CO2 condensation rate in atm layers", "kg.kg-1.s-1", pcondicea(:,:)) |
---|
1191 | |
---|
1192 | call write_output( "pdtcloudco2", "temperature variation of CO2 latent heat", "K.s-1", pdtcloudco2(:,:)) |
---|
1193 | |
---|
1194 | call write_output( "riceco2", "ice radius", "m", riceco2(:,:)) |
---|
1195 | |
---|
1196 | call write_output( "Tau3D1mic", " co2 ice opacities", " ", Qext1bins2(:,:)) |
---|
1197 | |
---|
1198 | call write_output( "tau1mic", "co2 ice opacity 1 micron", " ", tau1mic(:)) |
---|
1199 | |
---|
1200 | if (CLFvaryingCO2) then |
---|
1201 | call write_output( "co2cloudfrac", "co2 cloud fraction", " ", co2cloudfrac(:,:)) |
---|
1202 | end if |
---|
1203 | !======================================================================================================================! |
---|
1204 | ! END =================================================================================================================! |
---|
1205 | !======================================================================================================================! |
---|
1206 | end subroutine co2cloud |
---|
1207 | |
---|
1208 | end module co2cloud_mod |
---|