1 | ! |
---|
2 | ! $Id: calltherm.F90 1428 2010-09-13 08:43:37Z fairhead $ |
---|
3 | ! |
---|
4 | subroutine calltherm_mars(ptimestep,zzlev,zzlay & |
---|
5 | & ,pplay,pplev,pphi & |
---|
6 | & ,u_seri,v_seri,t_seri,pq_therm,q2_therm & |
---|
7 | & ,d_u_ajs,d_v_ajs,d_t_ajs,d_q_ajs,dq2_therm & |
---|
8 | & ,fm_therm,entr_therm,detr_therm,lmax,zmaxth,& |
---|
9 | & zw2,fraca,zpopsk,ztla,heatFlux,heatFlux_down,& |
---|
10 | & buoyancyOut,buoyancyEst,hfmax,wmax) |
---|
11 | |
---|
12 | USE ioipsl_getincom |
---|
13 | implicit none |
---|
14 | |
---|
15 | #include "dimensions.h" |
---|
16 | #include "dimphys.h" |
---|
17 | #include "comcstfi.h" |
---|
18 | |
---|
19 | REAL ptimestep |
---|
20 | LOGICAL logexpr0, logexpr2(ngridmx,nlayermx), logexpr1(ngridmx) |
---|
21 | REAL fact |
---|
22 | INTEGER nbptspb,iq,l |
---|
23 | |
---|
24 | REAL, INTENT(IN) :: zzlay(ngridmx,nlayermx) |
---|
25 | REAL, INTENT(IN) :: zzlev(ngridmx,nlayermx+1) |
---|
26 | |
---|
27 | REAL u_seri(ngridmx,nlayermx),v_seri(ngridmx,nlayermx) |
---|
28 | REAL t_seri(ngridmx,nlayermx),pq_therm(ngridmx,nlayermx,nqmx) |
---|
29 | REAL q2_therm(ngridmx,nlayermx) |
---|
30 | REAL pplev(ngridmx,nlayermx+1) |
---|
31 | REAL pplay(ngridmx,nlayermx) |
---|
32 | REAL pphi(ngridmx,nlayermx) |
---|
33 | real zlev(ngridmx,nlayermx+1) |
---|
34 | !test: on sort lentr et a* pour alimenter KE |
---|
35 | REAL zw2(ngridmx,nlayermx+1),fraca(ngridmx,nlayermx+1) |
---|
36 | REAL zzw2(ngridmx,nlayermx+1) |
---|
37 | |
---|
38 | !FH Update Thermiques |
---|
39 | REAL d_t_ajs(ngridmx,nlayermx), d_q_ajs(ngridmx,nlayermx,nqmx) |
---|
40 | REAL d_u_ajs(ngridmx,nlayermx),d_v_ajs(ngridmx,nlayermx) |
---|
41 | REAL dq2_therm(ngridmx,nlayermx), dq2_the(ngridmx,nlayermx) |
---|
42 | real fm_therm(ngridmx,nlayermx+1) |
---|
43 | real entr_therm(ngridmx,nlayermx),detr_therm(ngridmx,nlayermx) |
---|
44 | REAL masse(ngridmx,nlayermx) |
---|
45 | |
---|
46 | !******************************************************** |
---|
47 | ! declarations |
---|
48 | real zpopsk(ngridmx,nlayermx) |
---|
49 | real ztla(ngridmx,nlayermx) |
---|
50 | real wmax(ngridmx) |
---|
51 | real hfmax(ngridmx) |
---|
52 | integer lmax(ngridmx) |
---|
53 | real lmax_real(ngridmx) |
---|
54 | real zmax(ngridmx),zmaxth(ngridmx) |
---|
55 | REAL zdz(ngridmx,nlayermx) |
---|
56 | |
---|
57 | |
---|
58 | !nouvelles variables pour la convection |
---|
59 | !RC |
---|
60 | !on garde le zmax du pas de temps precedent |
---|
61 | !******************************************************** |
---|
62 | |
---|
63 | |
---|
64 | ! variables locales |
---|
65 | REAL d_t_the(ngridmx,nlayermx), d_q_the(ngridmx,nlayermx,nqmx) |
---|
66 | REAL d_u_the(ngridmx,nlayermx),d_v_the(ngridmx,nlayermx) |
---|
67 | ! |
---|
68 | integer isplit,nsplit_thermals |
---|
69 | real r_aspect_thermals |
---|
70 | |
---|
71 | real zfm_therm(ngridmx,nlayermx+1),zdt |
---|
72 | real zentr_therm(ngridmx,nlayermx),zdetr_therm(ngridmx,nlayermx) |
---|
73 | real heatFlux(ngridmx,nlayermx) |
---|
74 | real heatFlux_down(ngridmx,nlayermx) |
---|
75 | real buoyancyOut(ngridmx,nlayermx) |
---|
76 | real buoyancyEst(ngridmx,nlayermx) |
---|
77 | real zheatFlux(ngridmx,nlayermx) |
---|
78 | real zheatFlux_down(ngridmx,nlayermx) |
---|
79 | real zbuoyancyOut(ngridmx,nlayermx) |
---|
80 | real zbuoyancyEst(ngridmx,nlayermx) |
---|
81 | |
---|
82 | character (len=20) :: modname |
---|
83 | character (len=80) :: abort_message |
---|
84 | |
---|
85 | integer i,k |
---|
86 | logical, save :: first=.true. |
---|
87 | |
---|
88 | REAL tstart,tstop |
---|
89 | |
---|
90 | |
---|
91 | ! Modele du thermique |
---|
92 | ! =================== |
---|
93 | |
---|
94 | ! r_aspect_thermals ! ultimately conrols the amount of mass going through the thermals |
---|
95 | ! decreasing it increases the thermals effect. Tests at gcm resolution |
---|
96 | ! shows that too low values destabilize the model |
---|
97 | ! when changing this value, one should check that the surface layer model |
---|
98 | ! outputs the correct Cd*u and Ch*u through changing the gustiness coefficient beta |
---|
99 | |
---|
100 | |
---|
101 | #ifdef MESOSCALE |
---|
102 | !! valid for timesteps < 200s |
---|
103 | nsplit_thermals=2 |
---|
104 | r_aspect_thermals=0.7 |
---|
105 | #else |
---|
106 | nsplit_thermals=35 |
---|
107 | r_aspect_thermals=1.5 |
---|
108 | #endif |
---|
109 | |
---|
110 | call getin("nsplit_thermals",nsplit_thermals) |
---|
111 | call getin("r_aspect_thermals",r_aspect_thermals) |
---|
112 | |
---|
113 | fm_therm(:,:)=0. |
---|
114 | detr_therm(:,:)=0. |
---|
115 | entr_therm(:,:)=0. |
---|
116 | |
---|
117 | heatFlux(:,:)=0. |
---|
118 | heatFlux_down(:,:)=0. |
---|
119 | ! buoyancyOut(:,:)=0. |
---|
120 | ! buoyancyEst(:,:)=0. |
---|
121 | |
---|
122 | zw2(:,:)=0. |
---|
123 | zmaxth(:)=0. |
---|
124 | lmax_real(:)=0. |
---|
125 | |
---|
126 | zdt=ptimestep/REAL(nsplit_thermals) |
---|
127 | |
---|
128 | do isplit=1,nsplit_thermals |
---|
129 | |
---|
130 | ! call cpu_time(tstart) |
---|
131 | |
---|
132 | |
---|
133 | ! On reinitialise les flux de masse a zero pour le cumul en |
---|
134 | ! cas de splitting |
---|
135 | |
---|
136 | zfm_therm(:,:)=0. |
---|
137 | zentr_therm(:,:)=0. |
---|
138 | zdetr_therm(:,:)=0. |
---|
139 | ! |
---|
140 | zheatFlux(:,:)=0. |
---|
141 | zheatFlux_down(:,:)=0. |
---|
142 | ! zbuoyancyOut(:,:)=0. |
---|
143 | ! zbuoyancyEst(:,:)=0. |
---|
144 | |
---|
145 | zzw2(:,:)=0. |
---|
146 | zmax(:)=0. |
---|
147 | lmax(:)=0. |
---|
148 | |
---|
149 | d_t_the(:,:)=0. |
---|
150 | d_u_the(:,:)=0. |
---|
151 | d_v_the(:,:)=0. |
---|
152 | ! dq2_the(:,:)=0. |
---|
153 | if (nqmx .ne. 0) then |
---|
154 | d_q_the(:,:,:)=0. |
---|
155 | endif |
---|
156 | |
---|
157 | CALL thermcell_main_mars(zdt & |
---|
158 | ! CALL thermcell_main_mars_coupled_v2(zdt & |
---|
159 | & ,pplay,pplev,pphi,zzlev,zzlay & |
---|
160 | & ,u_seri,v_seri,t_seri,pq_therm,q2_therm & |
---|
161 | & ,d_u_the,d_v_the,d_t_the,d_q_the,dq2_the & |
---|
162 | & ,zfm_therm,zentr_therm,zdetr_therm,lmax,zmax & |
---|
163 | & ,r_aspect_thermals & |
---|
164 | & ,zzw2,fraca,zpopsk & |
---|
165 | & ,ztla,zheatFlux,zheatFlux_down & |
---|
166 | & ,zbuoyancyOut,zbuoyancyEst) |
---|
167 | |
---|
168 | fact=1./REAL(nsplit_thermals) |
---|
169 | ! transformation de la derivee en tendance |
---|
170 | |
---|
171 | d_t_the(:,:)=d_t_the(:,:)*ptimestep*fact |
---|
172 | ! d_u_the(:,:)=d_u_the(:,:)*fact |
---|
173 | ! d_v_the(:,:)=d_v_the(:,:)*fact |
---|
174 | ! dq2_the(:,:)=dq2_the(:,:)*fact |
---|
175 | |
---|
176 | ! if (nqmx .ne. 0) then |
---|
177 | ! d_q_the(:,:,:)=d_q_the(:,:,:)*fact |
---|
178 | ! endif |
---|
179 | |
---|
180 | zmaxth(:)=zmaxth(:)+zmax(:)*fact |
---|
181 | lmax_real(:)=lmax_real(:)+float(lmax(:))*fact |
---|
182 | fm_therm(:,:)=fm_therm(:,:) & |
---|
183 | & +zfm_therm(:,:)*fact |
---|
184 | entr_therm(:,:)=entr_therm(:,:) & |
---|
185 | & +zentr_therm(:,:)*fact |
---|
186 | detr_therm(:,:)=detr_therm(:,:) & |
---|
187 | & +zdetr_therm(:,:)*fact |
---|
188 | |
---|
189 | heatFlux(:,:)=heatFlux(:,:) & |
---|
190 | & +zheatFlux(:,:)*fact |
---|
191 | heatFlux_down(:,:)=heatFlux_down(:,:) & |
---|
192 | & +zheatFlux_down(:,:)*fact |
---|
193 | ! buoyancyOut(:,:)=buoyancyOut(:,:) & |
---|
194 | ! & +zbuoyancyOut(:,:)*fact |
---|
195 | ! buoyancyEst(:,:)=buoyancyEst(:,:) & |
---|
196 | ! & +zbuoyancyEst(:,:)*fact |
---|
197 | |
---|
198 | zw2(:,:)=zw2(:,:) + zzw2(:,:)*fact |
---|
199 | |
---|
200 | ! accumulation de la tendance |
---|
201 | |
---|
202 | d_t_ajs(:,:)=d_t_ajs(:,:)+d_t_the(:,:) |
---|
203 | ! d_u_ajs(:,:)=d_u_ajs(:,:)+d_u_the(:,:) |
---|
204 | ! d_v_ajs(:,:)=d_v_ajs(:,:)+d_v_the(:,:) |
---|
205 | ! d_q_ajs(:,:,:)=d_q_ajs(:,:,:)+d_q_the(:,:,:) |
---|
206 | ! dq2_therm(:,:)=dq2_therm(:,:)+dq2_the(:,:) |
---|
207 | ! incrementation des variables meteo |
---|
208 | |
---|
209 | t_seri(:,:) = t_seri(:,:) + d_t_the(:,:) |
---|
210 | ! u_seri(:,:) = u_seri(:,:) + d_u_the(:,:) |
---|
211 | ! v_seri(:,:) = v_seri(:,:) + d_v_the(:,:) |
---|
212 | ! pq_therm(:,:,:) = pq_therm(:,:,:) + d_q_the(:,:,:) |
---|
213 | ! q2_therm(:,:) = q2_therm(:,:) + dq2_therm(:,:) |
---|
214 | |
---|
215 | |
---|
216 | ! call cpu_time(tstop) |
---|
217 | ! print*,'elapsed time in thermals : ',tstop-tstart |
---|
218 | |
---|
219 | enddo ! isplit |
---|
220 | |
---|
221 | |
---|
222 | !**************************************************************** |
---|
223 | |
---|
224 | ! Now that we have computed total entrainment and detrainment, we can |
---|
225 | ! advect u, v, and q in thermals. (theta already advected). We can do |
---|
226 | ! that separatly because u,v,and q are not used in thermcell_main for |
---|
227 | ! any thermals-related computation : they are purely passive. |
---|
228 | |
---|
229 | !calcul de la masse |
---|
230 | do l=1,nlayermx |
---|
231 | masse(:,l)=(pplev(:,l)-pplev(:,l+1))/g |
---|
232 | enddo |
---|
233 | |
---|
234 | !calcul de l'epaisseur des couches |
---|
235 | do l=1,nlayermx |
---|
236 | zdz(:,l)=zzlev(:,l+1)-zzlev(:,l) |
---|
237 | enddo |
---|
238 | |
---|
239 | |
---|
240 | modname='momentum' |
---|
241 | call thermcell_dqup(ngridmx,nlayermx,ptimestep & |
---|
242 | & ,fm_therm,entr_therm,detr_therm, & |
---|
243 | & masse,u_seri,d_u_ajs,modname,zdz) |
---|
244 | |
---|
245 | call thermcell_dqup(ngridmx,nlayermx,ptimestep & |
---|
246 | & ,fm_therm,entr_therm,detr_therm, & |
---|
247 | & masse,v_seri,d_v_ajs,modname,zdz) |
---|
248 | |
---|
249 | if (nqmx .ne. 0.) then |
---|
250 | modname='tracer' |
---|
251 | DO iq=1,nqmx |
---|
252 | call thermcell_dqup(ngridmx,nlayermx,ptimestep & |
---|
253 | & ,fm_therm,entr_therm,detr_therm, & |
---|
254 | & masse,pq_therm(:,:,iq),d_q_ajs(:,:,iq),modname,zdz) |
---|
255 | |
---|
256 | ENDDO |
---|
257 | endif |
---|
258 | |
---|
259 | DO i=1,ngridmx |
---|
260 | hfmax(i)=MAXVAL(heatFlux(i,:)+heatFlux_down(i,:)) |
---|
261 | wmax(i)=MAXVAL(zw2(i,:)) |
---|
262 | ENDDO |
---|
263 | |
---|
264 | lmax(:)=nint(lmax_real(:)) |
---|
265 | |
---|
266 | return |
---|
267 | |
---|
268 | end |
---|