1 | ! |
---|
2 | ! AC 2011-01-05 |
---|
3 | ! |
---|
4 | SUBROUTINE calltherm_interface (firstcall, & |
---|
5 | & long,lati,zzlev,zzlay, & |
---|
6 | & ptimestep,pu,pv,pt,pq,pdu,pdv,pdt,pdq,q2, & |
---|
7 | & pplay,pplev,pphi,zpopsk, & |
---|
8 | & pdu_th,pdv_th,pdt_th,pdq_th,lmax,zmaxth,pbl_dtke,hfmax,wstar) |
---|
9 | |
---|
10 | USE ioipsl_getincom |
---|
11 | |
---|
12 | implicit none |
---|
13 | #include "callkeys.h" |
---|
14 | #include "dimensions.h" |
---|
15 | #include "dimphys.h" |
---|
16 | #include "comcstfi.h" |
---|
17 | #include "tracer.h" |
---|
18 | |
---|
19 | !-------------------------------------------------------- |
---|
20 | ! Input Variables |
---|
21 | !-------------------------------------------------------- |
---|
22 | |
---|
23 | REAL, INTENT(IN) :: ptimestep |
---|
24 | REAL, INTENT(IN) :: pplev(ngridmx,nlayermx+1),pplay(ngridmx,nlayermx) |
---|
25 | REAL, INTENT(IN) :: pphi(ngridmx,nlayermx) |
---|
26 | REAL, INTENT(IN) :: pu(ngridmx,nlayermx),pv(ngridmx,nlayermx) |
---|
27 | REAL, INTENT(IN) :: pt(ngridmx,nlayermx),pq(ngridmx,nlayermx,nqmx) |
---|
28 | REAL, INTENT(IN) :: zzlay(ngridmx,nlayermx) |
---|
29 | REAL, INTENT(IN) :: zzlev(ngridmx,nlayermx+1) |
---|
30 | LOGICAL, INTENT(IN) :: firstcall |
---|
31 | REAL, INTENT(IN) :: pdu(ngridmx,nlayermx),pdv(ngridmx,nlayermx) |
---|
32 | REAL, INTENT(IN) :: pdq(ngridmx,nlayermx,nqmx),pdt(ngridmx,nlayermx) |
---|
33 | REAL, INTENT(IN) :: q2(ngridmx,nlayermx+1) |
---|
34 | REAL, INTENT(IN) :: long(ngridmx),lati(ngridmx) |
---|
35 | REAL, INTENT(IN) :: zpopsk(ngridmx,nlayermx) |
---|
36 | |
---|
37 | !-------------------------------------------------------- |
---|
38 | ! Output Variables |
---|
39 | !-------------------------------------------------------- |
---|
40 | |
---|
41 | REAL, INTENT(OUT) :: pdu_th(ngridmx,nlayermx) |
---|
42 | REAL, INTENT(OUT) :: pdv_th(ngridmx,nlayermx) |
---|
43 | REAL, INTENT(OUT) :: pdt_th(ngridmx,nlayermx) |
---|
44 | REAL, INTENT(OUT) :: pdq_th(ngridmx,nlayermx,nqmx) |
---|
45 | INTEGER, INTENT(OUT) :: lmax(ngridmx) |
---|
46 | REAL, INTENT(OUT) :: zmaxth(ngridmx) |
---|
47 | REAL, INTENT(OUT) :: pbl_dtke(ngridmx,nlayermx+1) |
---|
48 | REAL, INTENT(OUT) :: wstar(ngridmx) |
---|
49 | |
---|
50 | !-------------------------------------------------------- |
---|
51 | ! Thermals local variables |
---|
52 | !-------------------------------------------------------- |
---|
53 | REAL zu(ngridmx,nlayermx), zv(ngridmx,nlayermx) |
---|
54 | REAL zt(ngridmx,nlayermx) |
---|
55 | REAL d_t_ajs(ngridmx,nlayermx) |
---|
56 | REAL d_u_ajs(ngridmx,nlayermx), d_q_ajs(ngridmx,nlayermx,nqmx) |
---|
57 | REAL d_v_ajs(ngridmx,nlayermx) |
---|
58 | REAL fm_therm(ngridmx,nlayermx+1), entr_therm(ngridmx,nlayermx) |
---|
59 | REAL detr_therm(ngridmx,nlayermx) |
---|
60 | REAL zw2(ngridmx,nlayermx+1) |
---|
61 | REAL fraca(ngridmx,nlayermx+1),zfraca(ngridmx,nlayermx+1) |
---|
62 | REAL ztla(ngridmx,nlayermx) |
---|
63 | REAL q_therm(ngridmx,nlayermx), pq_therm(ngridmx,nlayermx,nqmx) |
---|
64 | REAL q2_therm(ngridmx,nlayermx), dq2_therm(ngridmx,nlayermx) |
---|
65 | REAL lmax_real(ngridmx) |
---|
66 | REAL masse(ngridmx,nlayermx) |
---|
67 | REAL zdz(ngridmx,nlayermx) |
---|
68 | LOGICAL qtransport_thermals,dtke_thermals |
---|
69 | INTEGER l,ig,iq,ii(1) |
---|
70 | CHARACTER (LEN=20) :: modname |
---|
71 | |
---|
72 | !-------------------------------------------------------- |
---|
73 | ! Local variables for sub-timestep |
---|
74 | !-------------------------------------------------------- |
---|
75 | |
---|
76 | REAL d_t_the(ngridmx,nlayermx), d_q_the(ngridmx,nlayermx,nqmx) |
---|
77 | REAL d_u_the(ngridmx,nlayermx),d_v_the(ngridmx,nlayermx) |
---|
78 | REAL dq2_the(ngridmx,nlayermx) |
---|
79 | INTEGER isplit,nsplit_thermals |
---|
80 | REAL r_aspect_thermals |
---|
81 | REAL fact |
---|
82 | REAL zfm_therm(ngridmx,nlayermx+1),zdt |
---|
83 | REAL zentr_therm(ngridmx,nlayermx),zdetr_therm(ngridmx,nlayermx) |
---|
84 | REAL zheatFlux(ngridmx,nlayermx) |
---|
85 | REAL zheatFlux_down(ngridmx,nlayermx) |
---|
86 | REAL zbuoyancyOut(ngridmx,nlayermx) |
---|
87 | REAL zbuoyancyEst(ngridmx,nlayermx) |
---|
88 | REAL zzw2(ngridmx,nlayermx+1) |
---|
89 | REAL zmax(ngridmx) |
---|
90 | |
---|
91 | !-------------------------------------------------------- |
---|
92 | ! Diagnostics |
---|
93 | !-------------------------------------------------------- |
---|
94 | |
---|
95 | REAL heatFlux(ngridmx,nlayermx) |
---|
96 | REAL heatFlux_down(ngridmx,nlayermx) |
---|
97 | REAL buoyancyOut(ngridmx,nlayermx) |
---|
98 | REAL buoyancyEst(ngridmx,nlayermx) |
---|
99 | REAL hfmax(ngridmx),wmax(ngridmx) |
---|
100 | REAL pbl_teta(ngridmx),dteta(ngridmx,nlayermx) |
---|
101 | |
---|
102 | !-------------------------------------------------------- |
---|
103 | ! Theta_m |
---|
104 | !-------------------------------------------------------- |
---|
105 | |
---|
106 | INTEGER ico2 |
---|
107 | SAVE ico2 |
---|
108 | |
---|
109 | ! ********************************************************************** |
---|
110 | ! Initialization |
---|
111 | ! ********************************************************************** |
---|
112 | |
---|
113 | lmax(:)=0. |
---|
114 | pdu_th(:,:)=0. |
---|
115 | pdv_th(:,:)=0. |
---|
116 | pdt_th(:,:)=0. |
---|
117 | entr_therm(:,:)=0. |
---|
118 | detr_therm(:,:)=0. |
---|
119 | q2_therm(:,:)=0. |
---|
120 | dq2_therm(:,:)=0. |
---|
121 | ztla(:,:)=0. |
---|
122 | pbl_dtke(:,:)=0. |
---|
123 | fm_therm(:,:)=0. |
---|
124 | zw2(:,:)=0. |
---|
125 | fraca(:,:)=0. |
---|
126 | zfraca(:,:)=0. |
---|
127 | if (tracer) then |
---|
128 | pdq_th(:,:,:)=0. |
---|
129 | end if |
---|
130 | d_t_ajs(:,:)=0. |
---|
131 | d_u_ajs(:,:)=0. |
---|
132 | d_v_ajs(:,:)=0. |
---|
133 | d_q_ajs(:,:,:)=0. |
---|
134 | heatFlux(:,:)=0. |
---|
135 | heatFlux_down(:,:)=0. |
---|
136 | buoyancyOut(:,:)=0. |
---|
137 | buoyancyEst(:,:)=0. |
---|
138 | zmaxth(:)=0. |
---|
139 | lmax_real(:)=0. |
---|
140 | |
---|
141 | |
---|
142 | ! ********************************************************************** |
---|
143 | ! Preparing inputs for the thermals |
---|
144 | ! ********************************************************************** |
---|
145 | |
---|
146 | zu(:,:)=pu(:,:)+pdu(:,:)*ptimestep |
---|
147 | zv(:,:)=pv(:,:)+pdv(:,:)*ptimestep |
---|
148 | zt(:,:)=pt(:,:)+pdt(:,:)*ptimestep |
---|
149 | |
---|
150 | pq_therm(:,:,:)=0. |
---|
151 | qtransport_thermals=.true. !! default setting |
---|
152 | !call getin("qtransport_thermals",qtransport_thermals) |
---|
153 | |
---|
154 | if(qtransport_thermals) then |
---|
155 | if(tracer) then |
---|
156 | pq_therm(:,:,:)=pq(:,:,:)+pdq(:,:,:)*ptimestep |
---|
157 | endif |
---|
158 | endif |
---|
159 | |
---|
160 | ! dtke_thermals=.false. !! default setting |
---|
161 | ! !call getin("dtke_thermals",dtke_thermals) |
---|
162 | ! |
---|
163 | ! IF(dtke_thermals) THEN |
---|
164 | ! DO l=1,nlayermx |
---|
165 | ! q2_therm(:,l)=0.5*(q2(:,l)+q2(:,l+1)) |
---|
166 | ! ENDDO |
---|
167 | ! ENDIF |
---|
168 | |
---|
169 | ! ********************************************************************** |
---|
170 | ! Polar night mixing : theta_m |
---|
171 | ! ********************************************************************** |
---|
172 | |
---|
173 | if(firstcall) then |
---|
174 | ico2=0 |
---|
175 | if (tracer) then |
---|
176 | ! Prepare Special treatment if one of the tracers is CO2 gas |
---|
177 | do iq=1,nqmx |
---|
178 | if (noms(iq).eq."co2") then |
---|
179 | ico2=iq |
---|
180 | end if |
---|
181 | enddo |
---|
182 | endif |
---|
183 | endif !of if firstcall |
---|
184 | |
---|
185 | |
---|
186 | ! ********************************************************************** |
---|
187 | ! ********************************************************************** |
---|
188 | ! ********************************************************************** |
---|
189 | ! CALLTHERM |
---|
190 | ! ********************************************************************** |
---|
191 | ! ********************************************************************** |
---|
192 | ! ********************************************************************** |
---|
193 | |
---|
194 | ! r_aspect_thermals ! ultimately conrols the amount of mass going through the thermals |
---|
195 | ! decreasing it increases the thermals effect. Tests at gcm resolution |
---|
196 | ! shows that too low values destabilize the model |
---|
197 | ! when changing this value, one should check that the surface layer model |
---|
198 | ! outputs the correct Cd*u and Ch*u through changing the gustiness coefficient beta |
---|
199 | |
---|
200 | #ifdef MESOSCALE |
---|
201 | !! valid for timesteps < 200s |
---|
202 | nsplit_thermals=2 |
---|
203 | r_aspect_thermals=0.7 |
---|
204 | #else |
---|
205 | nsplit_thermals=35 |
---|
206 | r_aspect_thermals=1.5 |
---|
207 | #endif |
---|
208 | call getin("nsplit_thermals",nsplit_thermals) |
---|
209 | call getin("r_aspect_thermals",r_aspect_thermals) |
---|
210 | |
---|
211 | ! ********************************************************************** |
---|
212 | ! SUB-TIMESTEP LOOP |
---|
213 | ! ********************************************************************** |
---|
214 | |
---|
215 | zdt=ptimestep/REAL(nsplit_thermals) |
---|
216 | |
---|
217 | DO isplit=1,nsplit_thermals |
---|
218 | |
---|
219 | ! Initialization of intermediary variables |
---|
220 | |
---|
221 | zfm_therm(:,:)=0. |
---|
222 | zentr_therm(:,:)=0. |
---|
223 | zdetr_therm(:,:)=0. |
---|
224 | zheatFlux(:,:)=0. |
---|
225 | zheatFlux_down(:,:)=0. |
---|
226 | zbuoyancyOut(:,:)=0. |
---|
227 | zbuoyancyEst(:,:)=0. |
---|
228 | zzw2(:,:)=0. |
---|
229 | zmax(:)=0. |
---|
230 | lmax(:)=0. |
---|
231 | d_t_the(:,:)=0. |
---|
232 | d_u_the(:,:)=0. |
---|
233 | d_v_the(:,:)=0. |
---|
234 | dq2_the(:,:)=0. |
---|
235 | if (nqmx .ne. 0) then |
---|
236 | d_q_the(:,:,:)=0. |
---|
237 | endif |
---|
238 | |
---|
239 | CALL thermcell_main_mars(zdt & |
---|
240 | & ,pplay,pplev,pphi,zzlev,zzlay & |
---|
241 | & ,zu,zv,zt,pq_therm,q2_therm & |
---|
242 | & ,d_u_the,d_v_the,d_t_the,d_q_the,dq2_the & |
---|
243 | & ,zfm_therm,zentr_therm,zdetr_therm,lmax,zmax & |
---|
244 | & ,r_aspect_thermals & |
---|
245 | & ,zzw2,fraca,zpopsk & |
---|
246 | & ,ztla,zheatFlux,zheatFlux_down & |
---|
247 | & ,zbuoyancyOut,zbuoyancyEst) |
---|
248 | |
---|
249 | fact=1./REAL(nsplit_thermals) |
---|
250 | |
---|
251 | d_t_the(:,:)=d_t_the(:,:)*ptimestep*fact |
---|
252 | ! d_u_the(:,:)=d_u_the(:,:)*fact |
---|
253 | ! d_v_the(:,:)=d_v_the(:,:)*fact |
---|
254 | ! dq2_the(:,:)=dq2_the(:,:)*fact |
---|
255 | if (ico2 .ne. 0) then |
---|
256 | d_q_the(:,:,ico2)=d_q_the(:,:,ico2)*fact |
---|
257 | endif |
---|
258 | |
---|
259 | zmaxth(:)=zmaxth(:)+zmax(:)*fact |
---|
260 | lmax_real(:)=lmax_real(:)+float(lmax(:))*fact |
---|
261 | fm_therm(:,:)=fm_therm(:,:) & |
---|
262 | & +zfm_therm(:,:)*fact |
---|
263 | entr_therm(:,:)=entr_therm(:,:) & |
---|
264 | & +zentr_therm(:,:)*fact |
---|
265 | detr_therm(:,:)=detr_therm(:,:) & |
---|
266 | & +zdetr_therm(:,:)*fact |
---|
267 | zfraca(:,:)=zfraca(:,:) + fraca(:,:)*fact |
---|
268 | |
---|
269 | heatFlux(:,:)=heatFlux(:,:) & |
---|
270 | & +zheatFlux(:,:)*fact |
---|
271 | heatFlux_down(:,:)=heatFlux_down(:,:) & |
---|
272 | & +zheatFlux_down(:,:)*fact |
---|
273 | buoyancyOut(:,:)=buoyancyOut(:,:) & |
---|
274 | & +zbuoyancyOut(:,:)*fact |
---|
275 | buoyancyEst(:,:)=buoyancyEst(:,:) & |
---|
276 | & +zbuoyancyEst(:,:)*fact |
---|
277 | |
---|
278 | |
---|
279 | zw2(:,:)=zw2(:,:) + zzw2(:,:)*fact |
---|
280 | |
---|
281 | ! accumulation de la tendance |
---|
282 | |
---|
283 | d_t_ajs(:,:)=d_t_ajs(:,:)+d_t_the(:,:) |
---|
284 | ! d_u_ajs(:,:)=d_u_ajs(:,:)+d_u_the(:,:) |
---|
285 | ! d_v_ajs(:,:)=d_v_ajs(:,:)+d_v_the(:,:) |
---|
286 | if (ico2 .ne. 0) then |
---|
287 | d_q_ajs(:,:,ico2)=d_q_ajs(:,:,ico2)+d_q_the(:,:,ico2) |
---|
288 | endif |
---|
289 | ! dq2_therm(:,:)=dq2_therm(:,:)+dq2_the(:,:) |
---|
290 | ! incrementation des variables meteo |
---|
291 | |
---|
292 | zt(:,:) = zt(:,:) + d_t_the(:,:) |
---|
293 | ! zu(:,:) = zu(:,:) + d_u_the(:,:) |
---|
294 | ! zv(:,:) = zv(:,:) + d_v_the(:,:) |
---|
295 | if (ico2 .ne. 0) then |
---|
296 | pq_therm(:,:,ico2) = & |
---|
297 | & pq_therm(:,:,ico2) + d_q_the(:,:,ico2)*ptimestep |
---|
298 | endif |
---|
299 | ! q2_therm(:,:) = q2_therm(:,:) + dq2_therm(:,:) |
---|
300 | |
---|
301 | |
---|
302 | ENDDO ! isplit |
---|
303 | !**************************************************************** |
---|
304 | |
---|
305 | ! Now that we have computed total entrainment and detrainment, we can |
---|
306 | ! advect u, v, and q in thermals. (theta already advected). We can do |
---|
307 | ! that separatly because u,v,and q are not used in thermcell_main for |
---|
308 | ! any thermals-related computation : they are purely passive. |
---|
309 | |
---|
310 | ! mass of cells |
---|
311 | do l=1,nlayermx |
---|
312 | masse(:,l)=(pplev(:,l)-pplev(:,l+1))/g |
---|
313 | enddo |
---|
314 | |
---|
315 | ! thickness of layers |
---|
316 | do l=1,nlayermx |
---|
317 | zdz(:,l)=zzlev(:,l+1)-zzlev(:,l) |
---|
318 | enddo |
---|
319 | |
---|
320 | modname='momentum' |
---|
321 | call thermcell_dqup(ngridmx,nlayermx,ptimestep & |
---|
322 | & ,fm_therm,entr_therm,detr_therm, & |
---|
323 | & masse,zu,d_u_ajs,modname,zdz) |
---|
324 | |
---|
325 | call thermcell_dqup(ngridmx,nlayermx,ptimestep & |
---|
326 | & ,fm_therm,entr_therm,detr_therm, & |
---|
327 | & masse,zv,d_v_ajs,modname,zdz) |
---|
328 | |
---|
329 | if (nqmx .ne. 0.) then |
---|
330 | modname='tracer' |
---|
331 | DO iq=1,nqmx |
---|
332 | if (iq .ne. ico2) then |
---|
333 | call thermcell_dqup(ngridmx,nlayermx,ptimestep & |
---|
334 | & ,fm_therm,entr_therm,detr_therm, & |
---|
335 | & masse,pq_therm(:,:,iq),d_q_ajs(:,:,iq),modname,zdz) |
---|
336 | endif |
---|
337 | ENDDO |
---|
338 | endif |
---|
339 | |
---|
340 | DO ig=1,ngridmx |
---|
341 | hfmax(ig)=MAXVAL(heatFlux(ig,:)+heatFlux_down(ig,:)) |
---|
342 | wmax(ig)=MAXVAL(zw2(ig,:)) |
---|
343 | ENDDO |
---|
344 | |
---|
345 | lmax(:)=nint(lmax_real(:)) |
---|
346 | |
---|
347 | ! ********************************************************************** |
---|
348 | ! ********************************************************************** |
---|
349 | ! ********************************************************************** |
---|
350 | ! CALLTHERM END |
---|
351 | ! ********************************************************************** |
---|
352 | ! ********************************************************************** |
---|
353 | ! ********************************************************************** |
---|
354 | |
---|
355 | |
---|
356 | ! ********************************************************************** |
---|
357 | ! Preparing outputs |
---|
358 | ! ********************************************************************** |
---|
359 | |
---|
360 | ! Winds and tracers PDU, PDV, and PDQ are DERIVATIVES |
---|
361 | |
---|
362 | pdu_th(:,:)=d_u_ajs(:,:) |
---|
363 | pdv_th(:,:)=d_v_ajs(:,:) |
---|
364 | |
---|
365 | if(qtransport_thermals) then |
---|
366 | if(tracer) then |
---|
367 | pdq_th(:,:,:)=d_q_ajs(:,:,:) |
---|
368 | endif |
---|
369 | endif |
---|
370 | |
---|
371 | ! IF(dtke_thermals) THEN |
---|
372 | ! DO l=2,nlayermx |
---|
373 | ! pbl_dtke(:,l)=0.5*(dq2_therm(:,l-1)+dq2_therm(:,l)) |
---|
374 | ! ENDDO |
---|
375 | ! |
---|
376 | ! pbl_dtke(:,1)=0.5*dq2_therm(:,1) |
---|
377 | ! pbl_dtke(:,nlayermx+1)=0. |
---|
378 | ! ENDIF |
---|
379 | |
---|
380 | |
---|
381 | ! Temperature PDT is a TENDANCY |
---|
382 | pdt_th(:,:)=d_t_ajs(:,:)/ptimestep |
---|
383 | |
---|
384 | |
---|
385 | ! ********************************************************************** |
---|
386 | ! Compute the free convection velocity scale for vdifc |
---|
387 | ! ********************************************************************** |
---|
388 | |
---|
389 | |
---|
390 | ! Potential temperature gradient |
---|
391 | |
---|
392 | dteta(:,nlayermx)=0. |
---|
393 | DO l=1,nlayermx-1 |
---|
394 | DO ig=1, ngridmx |
---|
395 | dteta(ig,l) = ((zt(ig,l+1)-zt(ig,l))/zpopsk(ig,l)) & |
---|
396 | & /(zzlay(ig,l+1)-zzlay(ig,l)) |
---|
397 | ENDDO |
---|
398 | ENDDO |
---|
399 | |
---|
400 | ! Computation of the pbl mixed layer temperature |
---|
401 | |
---|
402 | DO ig=1, ngridmx |
---|
403 | ii=MINLOC(abs(dteta(ig,1:lmax(ig)))) |
---|
404 | pbl_teta(ig) = zt(ig,ii(1))/zpopsk(ig,ii(1)) |
---|
405 | ENDDO |
---|
406 | |
---|
407 | ! We follow Spiga et. al 2010 (QJRMS) |
---|
408 | ! ------------ |
---|
409 | |
---|
410 | DO ig=1, ngridmx |
---|
411 | IF (zmax(ig) .gt. 0.) THEN |
---|
412 | wstar(ig)=(g*zmaxth(ig)*hfmax(ig)/pbl_teta(ig))**(1./3.) |
---|
413 | ELSE |
---|
414 | wstar(ig)=0. |
---|
415 | ENDIF |
---|
416 | ENDDO |
---|
417 | |
---|
418 | |
---|
419 | |
---|
420 | ! ********************************************************************** |
---|
421 | ! Diagnostics |
---|
422 | ! ********************************************************************** |
---|
423 | |
---|
424 | if(outptherm) then |
---|
425 | if (ngridmx .eq. 1) then |
---|
426 | call WRITEDIAGFI(ngridmx,'entr_therm','entrainement thermique',& |
---|
427 | & 'kg/m-2',1,entr_therm) |
---|
428 | call WRITEDIAGFI(ngridmx,'detr_therm','detrainement thermique',& |
---|
429 | & 'kg/m-2',1,detr_therm) |
---|
430 | call WRITEDIAGFI(ngridmx,'fm_therm','flux masse thermique',& |
---|
431 | & 'kg/m-2',1,fm_therm) |
---|
432 | call WRITEDIAGFI(ngridmx,'zw2','vitesse verticale thermique',& |
---|
433 | & 'm/s',1,zw2) |
---|
434 | call WRITEDIAGFI(ngridmx,'heatFlux_up','heatFlux_updraft',& |
---|
435 | & 'SI',1,heatFlux) |
---|
436 | call WRITEDIAGFI(ngridmx,'heatFlux_down','heatFlux_downdraft',& |
---|
437 | & 'SI',1,heatFlux_down) |
---|
438 | call WRITEDIAGFI(ngridmx,'fraca','fraction coverage',& |
---|
439 | & 'percent',1,fraca) |
---|
440 | call WRITEDIAGFI(ngridmx,'buoyancyOut','buoyancyOut',& |
---|
441 | & 'm.s-2',1,buoyancyOut) |
---|
442 | call WRITEDIAGFI(ngridmx,'buoyancyEst','buoyancyEst',& |
---|
443 | & 'm.s-2',1,buoyancyEst) |
---|
444 | call WRITEDIAGFI(ngridmx,'d_t_th', & |
---|
445 | & 'tendance temp TH','K',1,d_t_ajs) |
---|
446 | call WRITEDIAGFI(ngridmx,'zmax', & |
---|
447 | & 'pbl height','m',0,zmaxth) |
---|
448 | else |
---|
449 | |
---|
450 | call WRITEDIAGFI(ngridmx,'entr_therm','entrainement thermique',& |
---|
451 | & 'kg/m-2',3,entr_therm) |
---|
452 | call WRITEDIAGFI(ngridmx,'detr_therm','detrainement thermique',& |
---|
453 | & 'kg/m-2',3,detr_therm) |
---|
454 | call WRITEDIAGFI(ngridmx,'fm_therm','flux masse thermique',& |
---|
455 | & 'kg/m-2',3,fm_therm) |
---|
456 | call WRITEDIAGFI(ngridmx,'zw2','vitesse verticale thermique',& |
---|
457 | & 'm/s',3,zw2) |
---|
458 | call WRITEDIAGFI(ngridmx,'heatFlux','heatFlux',& |
---|
459 | & 'SI',3,heatFlux) |
---|
460 | call WRITEDIAGFI(ngridmx,'buoyancyOut','buoyancyOut',& |
---|
461 | & 'SI',3,buoyancyOut) |
---|
462 | call WRITEDIAGFI(ngridmx,'d_t_th', & |
---|
463 | & 'tendance temp TH','K',3,d_t_ajs) |
---|
464 | |
---|
465 | endif |
---|
466 | endif |
---|
467 | |
---|
468 | END |
---|