source: trunk/LMDZ.MARS/libf/phymars/calltherm_interface.F90 @ 623

Last change on this file since 623 was 623, checked in by acolaitis, 13 years ago

Thermals: since the correction of the advection scheme, it seems like momentum is too efficiently transported in the surface layer, leading to an instability that will crash the model in 3D. I am very sorry that I did not see that before ! So, I deactived the momentum transport in thermals temporarily so that I can find a fix. It seems like this propblem is not present on Earth, as the solution they adopt for that problem is not working for Mars.

File size: 16.3 KB
Line 
1!
2! AC 2011-01-05
3!
4      SUBROUTINE calltherm_interface (firstcall, &
5     & long,lati,zzlev,zzlay, &
6     & ptimestep,pu,pv,pt,pq,pdu,pdv,pdt,pdq,q2, &
7     & pplay,pplev,pphi,zpopsk, &
8     & pdu_th,pdv_th,pdt_th,pdq_th,lmax,zmaxth,pbl_dtke,hfmax,wstar)
9
10       USE ioipsl_getincom
11
12      implicit none
13#include "callkeys.h"
14#include "dimensions.h"
15#include "dimphys.h"
16#include "comcstfi.h"
17#include "tracer.h"
18
19!--------------------------------------------------------
20! Input Variables
21!--------------------------------------------------------
22
23      REAL, INTENT(IN) :: ptimestep
24      REAL, INTENT(IN) :: pplev(ngridmx,nlayermx+1),pplay(ngridmx,nlayermx)
25      REAL, INTENT(IN) :: pphi(ngridmx,nlayermx)
26      REAL, INTENT(IN) :: pu(ngridmx,nlayermx),pv(ngridmx,nlayermx)
27      REAL, INTENT(IN) :: pt(ngridmx,nlayermx),pq(ngridmx,nlayermx,nqmx)
28      REAL, INTENT(IN) :: zzlay(ngridmx,nlayermx)
29      REAL, INTENT(IN) :: zzlev(ngridmx,nlayermx+1)
30      LOGICAL, INTENT(IN) :: firstcall
31      REAL, INTENT(IN) :: pdu(ngridmx,nlayermx),pdv(ngridmx,nlayermx)
32      REAL, INTENT(IN) :: pdq(ngridmx,nlayermx,nqmx),pdt(ngridmx,nlayermx)
33      REAL, INTENT(IN) :: q2(ngridmx,nlayermx+1)
34      REAL, INTENT(IN) :: long(ngridmx),lati(ngridmx)
35      REAL, INTENT(IN) :: zpopsk(ngridmx,nlayermx)
36
37!--------------------------------------------------------
38! Output Variables
39!--------------------------------------------------------
40
41      REAL, INTENT(OUT) :: pdu_th(ngridmx,nlayermx)
42      REAL, INTENT(OUT) :: pdv_th(ngridmx,nlayermx)
43      REAL, INTENT(OUT) :: pdt_th(ngridmx,nlayermx)
44      REAL, INTENT(OUT) :: pdq_th(ngridmx,nlayermx,nqmx)
45      INTEGER, INTENT(OUT) :: lmax(ngridmx)
46      REAL, INTENT(OUT) :: zmaxth(ngridmx)
47      REAL, INTENT(OUT) :: pbl_dtke(ngridmx,nlayermx+1)
48      REAL, INTENT(OUT) :: wstar(ngridmx)
49
50!--------------------------------------------------------
51! Thermals local variables
52!--------------------------------------------------------
53      REAL zu(ngridmx,nlayermx), zv(ngridmx,nlayermx)
54      REAL zt(ngridmx,nlayermx)
55      REAL d_t_ajs(ngridmx,nlayermx)
56      REAL d_u_ajs(ngridmx,nlayermx), d_q_ajs(ngridmx,nlayermx,nqmx)
57      REAL d_v_ajs(ngridmx,nlayermx)
58      REAL fm_therm(ngridmx,nlayermx+1), entr_therm(ngridmx,nlayermx)
59      REAL detr_therm(ngridmx,nlayermx)
60      REAL zw2(ngridmx,nlayermx+1)
61      REAL fraca(ngridmx,nlayermx+1),zfraca(ngridmx,nlayermx+1)
62      REAL ztla(ngridmx,nlayermx)
63      REAL q_therm(ngridmx,nlayermx), pq_therm(ngridmx,nlayermx,nqmx)
64      REAL q2_therm(ngridmx,nlayermx), dq2_therm(ngridmx,nlayermx)
65      REAL lmax_real(ngridmx)
66      REAL masse(ngridmx,nlayermx)
67      LOGICAL qtransport_thermals,dtke_thermals
68      INTEGER l,ig,iq,ii(1)
69
70!--------------------------------------------------------
71! Local variables for sub-timestep
72!--------------------------------------------------------
73
74      REAL d_t_the(ngridmx,nlayermx), d_q_the(ngridmx,nlayermx,nqmx)
75      REAL d_u_the(ngridmx,nlayermx),d_v_the(ngridmx,nlayermx)
76      REAL dq2_the(ngridmx,nlayermx)
77      INTEGER isplit
78      INTEGER,SAVE :: nsplit_thermals
79      REAL, SAVE :: r_aspect_thermals
80      REAL fact
81      REAL zfm_therm(ngridmx,nlayermx+1),zdt
82      REAL zentr_therm(ngridmx,nlayermx),zdetr_therm(ngridmx,nlayermx)
83      REAL zheatFlux(ngridmx,nlayermx)
84      REAL zheatFlux_down(ngridmx,nlayermx)
85      REAL zbuoyancyOut(ngridmx,nlayermx)
86      REAL zbuoyancyEst(ngridmx,nlayermx)
87      REAL zzw2(ngridmx,nlayermx+1)
88      REAL zmax(ngridmx)
89
90!--------------------------------------------------------
91! Diagnostics
92!--------------------------------------------------------
93
94      REAL heatFlux(ngridmx,nlayermx)
95      REAL heatFlux_down(ngridmx,nlayermx)
96      REAL buoyancyOut(ngridmx,nlayermx)
97      REAL buoyancyEst(ngridmx,nlayermx)
98      REAL hfmax(ngridmx),wmax(ngridmx)
99      REAL pbl_teta(ngridmx),dteta(ngridmx,nlayermx)
100
101!--------------------------------------------------------
102! Theta_m
103!--------------------------------------------------------
104
105      INTEGER ico2
106      SAVE ico2
107
108! **********************************************************************
109! Initialization
110! **********************************************************************
111
112      lmax(:)=0
113      pdu_th(:,:)=0.
114      pdv_th(:,:)=0.
115      pdt_th(:,:)=0.
116      entr_therm(:,:)=0.
117      detr_therm(:,:)=0.
118      q2_therm(:,:)=0.
119      dq2_therm(:,:)=0.
120      ztla(:,:)=0.
121      pbl_dtke(:,:)=0.
122      fm_therm(:,:)=0.
123      zw2(:,:)=0.
124      fraca(:,:)=0.
125      zfraca(:,:)=0.
126      if (tracer) then
127         pdq_th(:,:,:)=0.
128      end if
129      d_t_ajs(:,:)=0.
130      d_u_ajs(:,:)=0.
131      d_v_ajs(:,:)=0.
132      d_q_ajs(:,:,:)=0.
133      heatFlux(:,:)=0.
134      heatFlux_down(:,:)=0.
135      buoyancyOut(:,:)=0.
136      buoyancyEst(:,:)=0.
137      zmaxth(:)=0.
138      lmax_real(:)=0.
139
140
141! **********************************************************************
142! Preparing inputs for the thermals
143! **********************************************************************
144
145       zu(:,:)=pu(:,:)+pdu(:,:)*ptimestep
146       zv(:,:)=pv(:,:)+pdv(:,:)*ptimestep
147       zt(:,:)=pt(:,:)+pdt(:,:)*ptimestep
148
149       pq_therm(:,:,:)=0.
150       qtransport_thermals=.true. !! default setting
151       !call getin("qtransport_thermals",qtransport_thermals)
152
153       if(qtransport_thermals) then
154          if(tracer) then
155                pq_therm(:,:,:)=pq(:,:,:)+pdq(:,:,:)*ptimestep
156          endif
157       endif
158
159       dtke_thermals=.false. !! default setting
160       call getin("dtke_thermals",dtke_thermals)
161       IF(dtke_thermals) THEN
162          DO l=1,nlayermx
163              q2_therm(:,l)=0.5*(q2(:,l)+q2(:,l+1))
164          ENDDO
165       ENDIF
166
167! **********************************************************************
168! Polar night mixing : theta_m
169! **********************************************************************
170
171      if(firstcall) then
172        ico2=0
173        if (tracer) then
174!     Prepare Special treatment if one of the tracers is CO2 gas
175           do iq=1,nqmx
176             if (noms(iq).eq."co2") then
177                ico2=iq
178             end if
179           enddo
180        endif
181      endif !of if firstcall
182
183
184! **********************************************************************
185! **********************************************************************
186! **********************************************************************
187! CALLTHERM
188! **********************************************************************
189! **********************************************************************
190! **********************************************************************
191
192!         r_aspect_thermals     ! Mainly control the shape of the temperature profile
193                                ! in the surface layer. Decreasing it goes toward
194                                ! a convective-adjustment like profile.
195!         nsplit_thermals       ! Sub-timestep for the thermals. Very dependant on the
196                                ! chosen timestep for the radiative transfer.
197                                ! It is recommended to run with 96 timestep per day and
198                                ! iradia = 1., configuration in which thermals can run
199                                ! very well with a sub-timestep of 10.
200         IF (firstcall) THEN
201#ifdef MESOSCALE
202            !! valid for timesteps < 200s
203            nsplit_thermals=4
204            r_aspect_thermals=0.7
205#else
206            IF ((ptimestep .le. 3699.*24./96.) .and. (iradia .eq. 1)) THEN
207               nsplit_thermals=10
208            ELSE
209               nsplit_thermals=35
210            ENDIF
211            r_aspect_thermals=1.
212#endif
213            call getin("nsplit_thermals",nsplit_thermals)
214            call getin("r_aspect_thermals",r_aspect_thermals)
215         ENDIF
216
217! **********************************************************************
218! SUB-TIMESTEP LOOP
219! **********************************************************************
220
221         zdt=ptimestep/REAL(nsplit_thermals)
222
223         DO isplit=1,nsplit_thermals
224
225! Initialization of intermediary variables
226
227         zfm_therm(:,:)=0.
228         zentr_therm(:,:)=0.
229         zdetr_therm(:,:)=0.
230         zheatFlux(:,:)=0.
231         zheatFlux_down(:,:)=0.
232         zbuoyancyOut(:,:)=0.
233         zbuoyancyEst(:,:)=0.
234         zzw2(:,:)=0.
235         zmax(:)=0.
236         lmax(:)=0
237         d_t_the(:,:)=0.
238         d_u_the(:,:)=0.
239         d_v_the(:,:)=0.
240         dq2_the(:,:)=0.
241         if (nqmx .ne. 0) then
242            d_q_the(:,:,:)=0.
243         endif
244
245             CALL thermcell_main_mars(zdt  &
246     &      ,pplay,pplev,pphi,zzlev,zzlay  &
247     &      ,zu,zv,zt,pq_therm,q2_therm  &
248     &      ,d_u_the,d_v_the,d_t_the,d_q_the,dq2_the  &
249     &      ,zfm_therm,zentr_therm,zdetr_therm,lmax,zmax  &
250     &      ,r_aspect_thermals &
251     &      ,zzw2,fraca,zpopsk &
252     &      ,ztla,zheatFlux,zheatFlux_down &
253     &      ,zbuoyancyOut,zbuoyancyEst)
254
255      fact=1./REAL(nsplit_thermals)
256
257            d_t_the(:,:)=d_t_the(:,:)*ptimestep*fact
258!            d_u_the(:,:)=d_u_the(:,:)*fact
259!            d_v_the(:,:)=d_v_the(:,:)*fact
260!            dq2_the(:,:)=dq2_the(:,:)*fact
261            if (ico2 .ne. 0) then
262               d_q_the(:,:,ico2)=d_q_the(:,:,ico2)*fact
263            endif
264
265             zmaxth(:)=zmaxth(:)+zmax(:)*fact
266             lmax_real(:)=lmax_real(:)+float(lmax(:))*fact
267            fm_therm(:,:)=fm_therm(:,:)  &
268     &      +zfm_therm(:,:)*fact
269            entr_therm(:,:)=entr_therm(:,:)  &
270     &       +zentr_therm(:,:)*fact
271            detr_therm(:,:)=detr_therm(:,:)  &
272     &       +zdetr_therm(:,:)*fact
273            zfraca(:,:)=zfraca(:,:) + fraca(:,:)*fact
274
275            heatFlux(:,:)=heatFlux(:,:) &
276     &       +zheatFlux(:,:)*fact
277            heatFlux_down(:,:)=heatFlux_down(:,:) &
278     &       +zheatFlux_down(:,:)*fact
279            buoyancyOut(:,:)=buoyancyOut(:,:) &
280     &       +zbuoyancyOut(:,:)*fact
281            buoyancyEst(:,:)=buoyancyEst(:,:) &
282     &       +zbuoyancyEst(:,:)*fact
283 
284
285            zw2(:,:)=zw2(:,:) + zzw2(:,:)*fact
286
287!  accumulation de la tendance
288
289            d_t_ajs(:,:)=d_t_ajs(:,:)+d_t_the(:,:)
290!           d_u_ajs(:,:)=d_u_ajs(:,:)+d_u_the(:,:)
291!           d_v_ajs(:,:)=d_v_ajs(:,:)+d_v_the(:,:)
292            if (ico2 .ne. 0) then
293               d_q_ajs(:,:,ico2)=d_q_ajs(:,:,ico2)+d_q_the(:,:,ico2)
294            endif
295!            dq2_therm(:,:)=dq2_therm(:,:)+dq2_the(:,:)
296!  incrementation des variables meteo
297
298            zt(:,:) = zt(:,:) + d_t_the(:,:)
299!            zu(:,:) = zu(:,:) + d_u_the(:,:)
300!            zv(:,:) = zv(:,:) + d_v_the(:,:)
301            if (ico2 .ne. 0) then
302             pq_therm(:,:,ico2) = &
303     &          pq_therm(:,:,ico2) + d_q_the(:,:,ico2)*ptimestep
304            endif
305!            q2_therm(:,:) = q2_therm(:,:) + dq2_therm(:,:)
306
307
308         ENDDO ! isplit
309!****************************************************************
310
311      lmax(:)=nint(lmax_real(:))
312
313! Now that we have computed total entrainment and detrainment, we can
314! advect u, v, and q in thermals. (theta already advected). We can do
315! that separatly because u,v,and q are not used in thermcell_main for
316! any thermals-related computation : they are purely passive.
317
318! mass of cells
319      do l=1,nlayermx
320         masse(:,l)=(pplev(:,l)-pplev(:,l+1))/g
321      enddo
322
323!      call thermcell_dqup(ngridmx,nlayermx,ptimestep                &
324!     &      ,fm_therm,entr_therm,  &
325!     &     masse,zu,d_u_ajs)
326!
327!      call thermcell_dqup(ngridmx,nlayermx,ptimestep    &
328!     &       ,fm_therm,entr_therm,  &
329!     &     masse,zv,d_v_ajs)
330
331      if (nqmx .ne. 0.) then
332      DO iq=1,nqmx
333      if (iq .ne. ico2) then
334      call thermcell_dqup(ngridmx,nlayermx,ptimestep     &
335     &     ,fm_therm,entr_therm,  &
336     &    masse,pq_therm(:,:,iq),d_q_ajs(:,:,iq))
337      endif
338      ENDDO
339      endif
340
341      if (dtke_thermals) then
342      call thermcell_dqup(ngridmx,nlayermx,ptimestep     &
343     &     ,fm_therm,entr_therm,  &
344     &    masse,q2_therm,dq2_therm)
345      endif
346
347      DO ig=1,ngridmx
348         hfmax(ig)=MAXVAL(heatFlux(ig,:)+heatFlux_down(ig,:))
349         wmax(ig)=MAXVAL(zw2(ig,:))
350      ENDDO
351
352! **********************************************************************
353! **********************************************************************
354! **********************************************************************
355! CALLTHERM END
356! **********************************************************************
357! **********************************************************************
358! **********************************************************************
359
360
361! **********************************************************************
362! Preparing outputs
363! **********************************************************************
364
365! Winds and tracers PDU, PDV, and PDQ are DERIVATIVES
366
367           pdu_th(:,:)=d_u_ajs(:,:)
368           pdv_th(:,:)=d_v_ajs(:,:)
369
370           if(qtransport_thermals) then
371              if(tracer) then
372                  pdq_th(:,:,:)=d_q_ajs(:,:,:)
373              endif
374           endif
375
376           IF(dtke_thermals) THEN
377              DO l=2,nlayermx
378                 pbl_dtke(:,l)=0.5*(dq2_therm(:,l-1)+dq2_therm(:,l))
379              ENDDO
380 
381              pbl_dtke(:,1)=0.5*dq2_therm(:,1)
382              pbl_dtke(:,nlayermx+1)=0.
383           ENDIF
384
385
386! Temperature PDT is a TENDANCY
387           pdt_th(:,:)=d_t_ajs(:,:)/ptimestep
388
389
390! **********************************************************************
391! Compute the free convection velocity scale for vdifc
392! **********************************************************************
393
394
395! Potential temperature gradient
396
397      dteta(:,nlayermx)=0.
398      DO l=1,nlayermx-1
399         DO ig=1, ngridmx
400            dteta(ig,l) = ((zt(ig,l+1)-zt(ig,l))/zpopsk(ig,l))          &
401     &              /(zzlay(ig,l+1)-zzlay(ig,l))
402         ENDDO
403      ENDDO
404
405! Computation of the pbl mixed layer temperature
406
407      DO ig=1, ngridmx
408         ii=MINLOC(abs(dteta(ig,1:lmax(ig))))
409         pbl_teta(ig) = zt(ig,ii(1))/zpopsk(ig,ii(1))
410      ENDDO
411
412! We follow Spiga et. al 2010 (QJRMS)
413! ------------
414
415      DO ig=1, ngridmx
416         IF (zmax(ig) .gt. 0.) THEN
417            wstar(ig)=(g*zmaxth(ig)*hfmax(ig)/pbl_teta(ig))**(1./3.)
418         ELSE
419            wstar(ig)=0.
420         ENDIF
421      ENDDO
422
423
424
425! **********************************************************************
426! Diagnostics
427! **********************************************************************
428       
429        if(outptherm) then
430        if (ngridmx .eq. 1) then
431        call WRITEDIAGFI(ngridmx,'entr_therm','entrainement thermique',&
432     &                       'kg/m-2',1,entr_therm)
433        call WRITEDIAGFI(ngridmx,'detr_therm','detrainement thermique',&
434     &                       'kg/m-2',1,detr_therm)
435        call WRITEDIAGFI(ngridmx,'fm_therm','flux masse thermique',&
436     &                       'kg/m-2',1,fm_therm)
437        call WRITEDIAGFI(ngridmx,'zw2','vitesse verticale thermique',&
438     &                       'm/s',1,zw2)
439        call WRITEDIAGFI(ngridmx,'heatFlux_up','heatFlux_updraft',&
440     &                       'SI',1,heatFlux)
441       call WRITEDIAGFI(ngridmx,'heatFlux_down','heatFlux_downdraft',&
442     &                       'SI',1,heatFlux_down)
443        call WRITEDIAGFI(ngridmx,'fraca','fraction coverage',&
444     &                       'percent',1,fraca)
445        call WRITEDIAGFI(ngridmx,'buoyancyOut','buoyancyOut',&
446     &                       'm.s-2',1,buoyancyOut)
447        call WRITEDIAGFI(ngridmx,'buoyancyEst','buoyancyEst',&
448     &                       'm.s-2',1,buoyancyEst)
449        call WRITEDIAGFI(ngridmx,'d_t_th',  &
450     &         'tendance temp TH','K',1,d_t_ajs)
451        call WRITEDIAGFI(ngridmx,'d_q_th',  &
452     &         'tendance traceur TH','kg/kg',1,d_q_ajs)
453        call WRITEDIAGFI(ngridmx,'zmax',  &
454     &         'pbl height','m',0,zmaxth)
455      else
456
457        call WRITEDIAGFI(ngridmx,'entr_therm','entrainement thermique',&
458     &                       'kg/m-2',3,entr_therm)
459        call WRITEDIAGFI(ngridmx,'detr_therm','detrainement thermique',&
460     &                       'kg/m-2',3,detr_therm)
461        call WRITEDIAGFI(ngridmx,'fm_therm','flux masse thermique',&
462     &                       'kg/m-2',3,fm_therm)
463        call WRITEDIAGFI(ngridmx,'zw2','vitesse verticale thermique',&
464     &                       'm/s',3,zw2)
465        call WRITEDIAGFI(ngridmx,'heatFlux','heatFlux',&
466     &                       'SI',3,heatFlux)
467        call WRITEDIAGFI(ngridmx,'buoyancyOut','buoyancyOut',&
468     &                       'SI',3,buoyancyOut)
469        call WRITEDIAGFI(ngridmx,'d_t_th',  &
470     &         'tendance temp TH','K',3,d_t_ajs)
471
472      endif
473      endif
474
475       END
Note: See TracBrowser for help on using the repository browser.