[161] | 1 | ! |
---|
| 2 | ! AC 2011-01-05 |
---|
| 3 | ! |
---|
[185] | 4 | SUBROUTINE calltherm_interface (firstcall, & |
---|
[652] | 5 | & zzlev,zzlay, & |
---|
[161] | 6 | & ptimestep,pu,pv,pt,pq,pdu,pdv,pdt,pdq,q2, & |
---|
[185] | 7 | & pplay,pplev,pphi,zpopsk, & |
---|
[660] | 8 | & pdu_th,pdv_th,pdt_th,pdq_th,lmax,zmaxth,pbl_dtke, & |
---|
| 9 | & pdhdif,hfmax,wstar,sensibFlux) |
---|
[161] | 10 | |
---|
[342] | 11 | USE ioipsl_getincom |
---|
[161] | 12 | |
---|
| 13 | implicit none |
---|
| 14 | #include "callkeys.h" |
---|
[185] | 15 | #include "dimensions.h" |
---|
| 16 | #include "dimphys.h" |
---|
[342] | 17 | #include "comcstfi.h" |
---|
[508] | 18 | #include "tracer.h" |
---|
[185] | 19 | |
---|
[161] | 20 | !-------------------------------------------------------- |
---|
[342] | 21 | ! Input Variables |
---|
[161] | 22 | !-------------------------------------------------------- |
---|
| 23 | |
---|
[652] | 24 | ! REAL, INTENT(IN) :: long(ngridmx),lati(ngridmx) |
---|
[161] | 25 | REAL, INTENT(IN) :: ptimestep |
---|
[185] | 26 | REAL, INTENT(IN) :: pplev(ngridmx,nlayermx+1),pplay(ngridmx,nlayermx) |
---|
| 27 | REAL, INTENT(IN) :: pphi(ngridmx,nlayermx) |
---|
| 28 | REAL, INTENT(IN) :: pu(ngridmx,nlayermx),pv(ngridmx,nlayermx) |
---|
| 29 | REAL, INTENT(IN) :: pt(ngridmx,nlayermx),pq(ngridmx,nlayermx,nqmx) |
---|
| 30 | REAL, INTENT(IN) :: zzlay(ngridmx,nlayermx) |
---|
| 31 | REAL, INTENT(IN) :: zzlev(ngridmx,nlayermx+1) |
---|
[161] | 32 | LOGICAL, INTENT(IN) :: firstcall |
---|
[185] | 33 | REAL, INTENT(IN) :: pdu(ngridmx,nlayermx),pdv(ngridmx,nlayermx) |
---|
| 34 | REAL, INTENT(IN) :: pdq(ngridmx,nlayermx,nqmx),pdt(ngridmx,nlayermx) |
---|
| 35 | REAL, INTENT(IN) :: q2(ngridmx,nlayermx+1) |
---|
| 36 | REAL, INTENT(IN) :: zpopsk(ngridmx,nlayermx) |
---|
[660] | 37 | REAL, INTENT(IN) :: pdhdif(ngridmx,nlayermx) |
---|
| 38 | REAL, INTENT(IN) :: sensibFlux(ngridmx) |
---|
[161] | 39 | |
---|
| 40 | !-------------------------------------------------------- |
---|
[342] | 41 | ! Output Variables |
---|
[161] | 42 | !-------------------------------------------------------- |
---|
| 43 | |
---|
[342] | 44 | REAL, INTENT(OUT) :: pdu_th(ngridmx,nlayermx) |
---|
| 45 | REAL, INTENT(OUT) :: pdv_th(ngridmx,nlayermx) |
---|
| 46 | REAL, INTENT(OUT) :: pdt_th(ngridmx,nlayermx) |
---|
| 47 | REAL, INTENT(OUT) :: pdq_th(ngridmx,nlayermx,nqmx) |
---|
| 48 | INTEGER, INTENT(OUT) :: lmax(ngridmx) |
---|
| 49 | REAL, INTENT(OUT) :: zmaxth(ngridmx) |
---|
| 50 | REAL, INTENT(OUT) :: pbl_dtke(ngridmx,nlayermx+1) |
---|
[499] | 51 | REAL, INTENT(OUT) :: wstar(ngridmx) |
---|
[161] | 52 | |
---|
| 53 | !-------------------------------------------------------- |
---|
[342] | 54 | ! Thermals local variables |
---|
[161] | 55 | !-------------------------------------------------------- |
---|
[342] | 56 | REAL zu(ngridmx,nlayermx), zv(ngridmx,nlayermx) |
---|
| 57 | REAL zt(ngridmx,nlayermx) |
---|
[185] | 58 | REAL d_t_ajs(ngridmx,nlayermx) |
---|
| 59 | REAL d_u_ajs(ngridmx,nlayermx), d_q_ajs(ngridmx,nlayermx,nqmx) |
---|
| 60 | REAL d_v_ajs(ngridmx,nlayermx) |
---|
| 61 | REAL fm_therm(ngridmx,nlayermx+1), entr_therm(ngridmx,nlayermx) |
---|
[628] | 62 | REAL detr_therm(ngridmx,nlayermx),detrmod(ngridmx,nlayermx) |
---|
[185] | 63 | REAL zw2(ngridmx,nlayermx+1) |
---|
[512] | 64 | REAL fraca(ngridmx,nlayermx+1),zfraca(ngridmx,nlayermx+1) |
---|
[185] | 65 | REAL ztla(ngridmx,nlayermx) |
---|
| 66 | REAL q_therm(ngridmx,nlayermx), pq_therm(ngridmx,nlayermx,nqmx) |
---|
| 67 | REAL q2_therm(ngridmx,nlayermx), dq2_therm(ngridmx,nlayermx) |
---|
[342] | 68 | REAL lmax_real(ngridmx) |
---|
| 69 | REAL masse(ngridmx,nlayermx) |
---|
[161] | 70 | LOGICAL qtransport_thermals,dtke_thermals |
---|
[660] | 71 | INTEGER l,ig,iq,ii(1),k |
---|
[628] | 72 | CHARACTER (LEN=20) modname |
---|
[161] | 73 | |
---|
[342] | 74 | !-------------------------------------------------------- |
---|
| 75 | ! Local variables for sub-timestep |
---|
| 76 | !-------------------------------------------------------- |
---|
[161] | 77 | |
---|
[342] | 78 | REAL d_t_the(ngridmx,nlayermx), d_q_the(ngridmx,nlayermx,nqmx) |
---|
| 79 | REAL d_u_the(ngridmx,nlayermx),d_v_the(ngridmx,nlayermx) |
---|
| 80 | REAL dq2_the(ngridmx,nlayermx) |
---|
[561] | 81 | INTEGER isplit |
---|
| 82 | INTEGER,SAVE :: nsplit_thermals |
---|
| 83 | REAL, SAVE :: r_aspect_thermals |
---|
[342] | 84 | REAL fact |
---|
| 85 | REAL zfm_therm(ngridmx,nlayermx+1),zdt |
---|
| 86 | REAL zentr_therm(ngridmx,nlayermx),zdetr_therm(ngridmx,nlayermx) |
---|
| 87 | REAL zheatFlux(ngridmx,nlayermx) |
---|
| 88 | REAL zheatFlux_down(ngridmx,nlayermx) |
---|
| 89 | REAL zbuoyancyOut(ngridmx,nlayermx) |
---|
| 90 | REAL zbuoyancyEst(ngridmx,nlayermx) |
---|
| 91 | REAL zzw2(ngridmx,nlayermx+1) |
---|
| 92 | REAL zmax(ngridmx) |
---|
[628] | 93 | INTEGER ndt,zlmax |
---|
[342] | 94 | |
---|
| 95 | !-------------------------------------------------------- |
---|
| 96 | ! Diagnostics |
---|
| 97 | !-------------------------------------------------------- |
---|
| 98 | |
---|
[185] | 99 | REAL heatFlux(ngridmx,nlayermx) |
---|
| 100 | REAL heatFlux_down(ngridmx,nlayermx) |
---|
| 101 | REAL buoyancyOut(ngridmx,nlayermx) |
---|
| 102 | REAL buoyancyEst(ngridmx,nlayermx) |
---|
| 103 | REAL hfmax(ngridmx),wmax(ngridmx) |
---|
[499] | 104 | REAL pbl_teta(ngridmx),dteta(ngridmx,nlayermx) |
---|
[660] | 105 | REAL rpdhd(ngridmx,nlayermx) |
---|
| 106 | REAL wtdif(ngridmx,nlayermx),rho(ngridmx,nlayermx) |
---|
| 107 | REAL wtth(ngridmx,nlayermx) |
---|
[161] | 108 | |
---|
[508] | 109 | !-------------------------------------------------------- |
---|
| 110 | ! Theta_m |
---|
| 111 | !-------------------------------------------------------- |
---|
[342] | 112 | |
---|
[508] | 113 | INTEGER ico2 |
---|
| 114 | SAVE ico2 |
---|
[342] | 115 | |
---|
[161] | 116 | ! ********************************************************************** |
---|
[342] | 117 | ! Initialization |
---|
[161] | 118 | ! ********************************************************************** |
---|
| 119 | |
---|
[621] | 120 | lmax(:)=0 |
---|
[161] | 121 | pdu_th(:,:)=0. |
---|
| 122 | pdv_th(:,:)=0. |
---|
| 123 | pdt_th(:,:)=0. |
---|
| 124 | entr_therm(:,:)=0. |
---|
| 125 | detr_therm(:,:)=0. |
---|
| 126 | q2_therm(:,:)=0. |
---|
| 127 | dq2_therm(:,:)=0. |
---|
| 128 | ztla(:,:)=0. |
---|
| 129 | pbl_dtke(:,:)=0. |
---|
| 130 | fm_therm(:,:)=0. |
---|
| 131 | zw2(:,:)=0. |
---|
| 132 | fraca(:,:)=0. |
---|
[512] | 133 | zfraca(:,:)=0. |
---|
[161] | 134 | if (tracer) then |
---|
| 135 | pdq_th(:,:,:)=0. |
---|
| 136 | end if |
---|
[342] | 137 | d_t_ajs(:,:)=0. |
---|
| 138 | d_u_ajs(:,:)=0. |
---|
| 139 | d_v_ajs(:,:)=0. |
---|
| 140 | d_q_ajs(:,:,:)=0. |
---|
| 141 | heatFlux(:,:)=0. |
---|
| 142 | heatFlux_down(:,:)=0. |
---|
| 143 | buoyancyOut(:,:)=0. |
---|
| 144 | buoyancyEst(:,:)=0. |
---|
| 145 | zmaxth(:)=0. |
---|
| 146 | lmax_real(:)=0. |
---|
[161] | 147 | |
---|
| 148 | |
---|
[342] | 149 | ! ********************************************************************** |
---|
| 150 | ! Preparing inputs for the thermals |
---|
| 151 | ! ********************************************************************** |
---|
[161] | 152 | |
---|
[342] | 153 | zu(:,:)=pu(:,:)+pdu(:,:)*ptimestep |
---|
| 154 | zv(:,:)=pv(:,:)+pdv(:,:)*ptimestep |
---|
| 155 | zt(:,:)=pt(:,:)+pdt(:,:)*ptimestep |
---|
[161] | 156 | |
---|
[342] | 157 | pq_therm(:,:,:)=0. |
---|
| 158 | qtransport_thermals=.true. !! default setting |
---|
| 159 | !call getin("qtransport_thermals",qtransport_thermals) |
---|
[161] | 160 | |
---|
[342] | 161 | if(qtransport_thermals) then |
---|
| 162 | if(tracer) then |
---|
| 163 | pq_therm(:,:,:)=pq(:,:,:)+pdq(:,:,:)*ptimestep |
---|
| 164 | endif |
---|
| 165 | endif |
---|
[161] | 166 | |
---|
[544] | 167 | dtke_thermals=.false. !! default setting |
---|
| 168 | call getin("dtke_thermals",dtke_thermals) |
---|
| 169 | IF(dtke_thermals) THEN |
---|
| 170 | DO l=1,nlayermx |
---|
| 171 | q2_therm(:,l)=0.5*(q2(:,l)+q2(:,l+1)) |
---|
| 172 | ENDDO |
---|
| 173 | ENDIF |
---|
[342] | 174 | |
---|
| 175 | ! ********************************************************************** |
---|
[508] | 176 | ! Polar night mixing : theta_m |
---|
[342] | 177 | ! ********************************************************************** |
---|
[508] | 178 | |
---|
| 179 | if(firstcall) then |
---|
| 180 | ico2=0 |
---|
| 181 | if (tracer) then |
---|
| 182 | ! Prepare Special treatment if one of the tracers is CO2 gas |
---|
| 183 | do iq=1,nqmx |
---|
| 184 | if (noms(iq).eq."co2") then |
---|
| 185 | ico2=iq |
---|
| 186 | end if |
---|
| 187 | enddo |
---|
| 188 | endif |
---|
| 189 | endif !of if firstcall |
---|
| 190 | |
---|
| 191 | |
---|
[342] | 192 | ! ********************************************************************** |
---|
[508] | 193 | ! ********************************************************************** |
---|
| 194 | ! ********************************************************************** |
---|
[342] | 195 | ! CALLTHERM |
---|
| 196 | ! ********************************************************************** |
---|
| 197 | ! ********************************************************************** |
---|
| 198 | ! ********************************************************************** |
---|
| 199 | |
---|
[561] | 200 | ! r_aspect_thermals ! Mainly control the shape of the temperature profile |
---|
| 201 | ! in the surface layer. Decreasing it goes toward |
---|
| 202 | ! a convective-adjustment like profile. |
---|
| 203 | ! nsplit_thermals ! Sub-timestep for the thermals. Very dependant on the |
---|
| 204 | ! chosen timestep for the radiative transfer. |
---|
| 205 | ! It is recommended to run with 96 timestep per day and |
---|
| 206 | ! iradia = 1., configuration in which thermals can run |
---|
| 207 | ! very well with a sub-timestep of 10. |
---|
| 208 | IF (firstcall) THEN |
---|
[342] | 209 | #ifdef MESOSCALE |
---|
[561] | 210 | !! valid for timesteps < 200s |
---|
| 211 | nsplit_thermals=4 |
---|
| 212 | r_aspect_thermals=0.7 |
---|
[342] | 213 | #else |
---|
[592] | 214 | IF ((ptimestep .le. 3699.*24./96.) .and. (iradia .eq. 1)) THEN |
---|
[561] | 215 | nsplit_thermals=10 |
---|
| 216 | ELSE |
---|
| 217 | nsplit_thermals=35 |
---|
| 218 | ENDIF |
---|
[592] | 219 | r_aspect_thermals=1. |
---|
[342] | 220 | #endif |
---|
[561] | 221 | call getin("nsplit_thermals",nsplit_thermals) |
---|
| 222 | call getin("r_aspect_thermals",r_aspect_thermals) |
---|
| 223 | ENDIF |
---|
[342] | 224 | |
---|
| 225 | ! ********************************************************************** |
---|
| 226 | ! SUB-TIMESTEP LOOP |
---|
| 227 | ! ********************************************************************** |
---|
| 228 | |
---|
| 229 | zdt=ptimestep/REAL(nsplit_thermals) |
---|
| 230 | |
---|
| 231 | DO isplit=1,nsplit_thermals |
---|
| 232 | |
---|
| 233 | ! Initialization of intermediary variables |
---|
| 234 | |
---|
[628] | 235 | ! zfm_therm(:,:)=0. !init is done inside |
---|
| 236 | ! zentr_therm(:,:)=0. |
---|
| 237 | ! zdetr_therm(:,:)=0. |
---|
| 238 | ! zheatFlux(:,:)=0. |
---|
| 239 | ! zheatFlux_down(:,:)=0. |
---|
| 240 | ! zbuoyancyOut(:,:)=0. |
---|
| 241 | ! zbuoyancyEst(:,:)=0. |
---|
[342] | 242 | zzw2(:,:)=0. |
---|
| 243 | zmax(:)=0. |
---|
[621] | 244 | lmax(:)=0 |
---|
[628] | 245 | ! d_t_the(:,:)=0. !init is done inside |
---|
| 246 | |
---|
| 247 | ! d_u_the(:,:)=0. !transported outside |
---|
| 248 | ! d_v_the(:,:)=0. |
---|
[342] | 249 | dq2_the(:,:)=0. |
---|
[628] | 250 | |
---|
| 251 | if (nqmx .ne. 0 .and. ico2 .ne. 0) then |
---|
| 252 | d_q_the(:,:,ico2)=0. |
---|
[161] | 253 | endif |
---|
| 254 | |
---|
[342] | 255 | CALL thermcell_main_mars(zdt & |
---|
| 256 | & ,pplay,pplev,pphi,zzlev,zzlay & |
---|
| 257 | & ,zu,zv,zt,pq_therm,q2_therm & |
---|
| 258 | & ,d_u_the,d_v_the,d_t_the,d_q_the,dq2_the & |
---|
| 259 | & ,zfm_therm,zentr_therm,zdetr_therm,lmax,zmax & |
---|
| 260 | & ,r_aspect_thermals & |
---|
| 261 | & ,zzw2,fraca,zpopsk & |
---|
| 262 | & ,ztla,zheatFlux,zheatFlux_down & |
---|
| 263 | & ,zbuoyancyOut,zbuoyancyEst) |
---|
[161] | 264 | |
---|
[342] | 265 | fact=1./REAL(nsplit_thermals) |
---|
[161] | 266 | |
---|
[342] | 267 | d_t_the(:,:)=d_t_the(:,:)*ptimestep*fact |
---|
[628] | 268 | ! d_u_the(:,:)=d_u_the(:,:)*ptimestep*fact |
---|
| 269 | ! d_v_the(:,:)=d_v_the(:,:)*ptimestep*fact |
---|
| 270 | dq2_the(:,:)=dq2_the(:,:)*fact |
---|
[508] | 271 | if (ico2 .ne. 0) then |
---|
[624] | 272 | d_q_the(:,:,ico2)=d_q_the(:,:,ico2)*ptimestep*fact |
---|
[508] | 273 | endif |
---|
[161] | 274 | |
---|
[628] | 275 | zmaxth(:)=zmaxth(:)+zmax(:)*fact |
---|
| 276 | lmax_real(:)=lmax_real(:)+float(lmax(:))*fact |
---|
[342] | 277 | fm_therm(:,:)=fm_therm(:,:) & |
---|
| 278 | & +zfm_therm(:,:)*fact |
---|
| 279 | entr_therm(:,:)=entr_therm(:,:) & |
---|
| 280 | & +zentr_therm(:,:)*fact |
---|
| 281 | detr_therm(:,:)=detr_therm(:,:) & |
---|
| 282 | & +zdetr_therm(:,:)*fact |
---|
[512] | 283 | zfraca(:,:)=zfraca(:,:) + fraca(:,:)*fact |
---|
[342] | 284 | |
---|
| 285 | heatFlux(:,:)=heatFlux(:,:) & |
---|
| 286 | & +zheatFlux(:,:)*fact |
---|
| 287 | heatFlux_down(:,:)=heatFlux_down(:,:) & |
---|
| 288 | & +zheatFlux_down(:,:)*fact |
---|
[508] | 289 | buoyancyOut(:,:)=buoyancyOut(:,:) & |
---|
| 290 | & +zbuoyancyOut(:,:)*fact |
---|
| 291 | buoyancyEst(:,:)=buoyancyEst(:,:) & |
---|
| 292 | & +zbuoyancyEst(:,:)*fact |
---|
[512] | 293 | |
---|
[342] | 294 | |
---|
| 295 | zw2(:,:)=zw2(:,:) + zzw2(:,:)*fact |
---|
| 296 | |
---|
| 297 | ! accumulation de la tendance |
---|
| 298 | |
---|
[624] | 299 | d_t_ajs(:,:)=d_t_ajs(:,:)+d_t_the(:,:) |
---|
[628] | 300 | ! d_u_ajs(:,:)=d_u_ajs(:,:)+d_u_the(:,:) |
---|
| 301 | ! d_v_ajs(:,:)=d_v_ajs(:,:)+d_v_the(:,:) |
---|
[508] | 302 | if (ico2 .ne. 0) then |
---|
| 303 | d_q_ajs(:,:,ico2)=d_q_ajs(:,:,ico2)+d_q_the(:,:,ico2) |
---|
| 304 | endif |
---|
[342] | 305 | ! dq2_therm(:,:)=dq2_therm(:,:)+dq2_the(:,:) |
---|
| 306 | ! incrementation des variables meteo |
---|
| 307 | |
---|
| 308 | zt(:,:) = zt(:,:) + d_t_the(:,:) |
---|
[628] | 309 | ! zu(:,:) = zu(:,:) + d_u_the(:,:) |
---|
| 310 | ! zv(:,:) = zv(:,:) + d_v_the(:,:) |
---|
[508] | 311 | if (ico2 .ne. 0) then |
---|
| 312 | pq_therm(:,:,ico2) = & |
---|
[624] | 313 | & pq_therm(:,:,ico2) + d_q_the(:,:,ico2) |
---|
[508] | 314 | endif |
---|
[342] | 315 | ! q2_therm(:,:) = q2_therm(:,:) + dq2_therm(:,:) |
---|
| 316 | |
---|
| 317 | |
---|
| 318 | ENDDO ! isplit |
---|
| 319 | !**************************************************************** |
---|
| 320 | |
---|
[621] | 321 | lmax(:)=nint(lmax_real(:)) |
---|
[628] | 322 | zlmax=MAXVAL(lmax(:))+2 |
---|
| 323 | if (zlmax .ge. nlayermx) then |
---|
| 324 | print*,'thermals have reached last layer of the model' |
---|
| 325 | print*,'this is not good !' |
---|
| 326 | endif |
---|
[621] | 327 | |
---|
[628] | 328 | |
---|
[342] | 329 | ! Now that we have computed total entrainment and detrainment, we can |
---|
| 330 | ! advect u, v, and q in thermals. (theta already advected). We can do |
---|
| 331 | ! that separatly because u,v,and q are not used in thermcell_main for |
---|
| 332 | ! any thermals-related computation : they are purely passive. |
---|
| 333 | |
---|
| 334 | ! mass of cells |
---|
| 335 | do l=1,nlayermx |
---|
| 336 | masse(:,l)=(pplev(:,l)-pplev(:,l+1))/g |
---|
| 337 | enddo |
---|
| 338 | |
---|
[628] | 339 | detrmod(:,:)=0. |
---|
| 340 | do l=1,zlmax |
---|
| 341 | do ig=1,ngridmx |
---|
| 342 | detrmod(ig,l)=fm_therm(ig,l)-fm_therm(ig,l+1) & |
---|
| 343 | & +entr_therm(ig,l) |
---|
| 344 | if (detrmod(ig,l).lt.0.) then |
---|
| 345 | entr_therm(ig,l)=entr_therm(ig,l)-detrmod(ig,l) |
---|
| 346 | detrmod(ig,l)=0. |
---|
| 347 | endif |
---|
| 348 | enddo |
---|
| 349 | enddo |
---|
| 350 | ndt=10 |
---|
| 351 | call thermcell_dqup(ngridmx,nlayermx,ptimestep & |
---|
| 352 | & ,fm_therm,entr_therm,detrmod, & |
---|
| 353 | & masse,zu,d_u_ajs,ndt,zlmax) |
---|
[342] | 354 | |
---|
[628] | 355 | call thermcell_dqup(ngridmx,nlayermx,ptimestep & |
---|
| 356 | & ,fm_therm,entr_therm,detrmod, & |
---|
| 357 | & masse,zv,d_v_ajs,ndt,zlmax) |
---|
| 358 | |
---|
[342] | 359 | if (nqmx .ne. 0.) then |
---|
| 360 | DO iq=1,nqmx |
---|
[508] | 361 | if (iq .ne. ico2) then |
---|
[342] | 362 | call thermcell_dqup(ngridmx,nlayermx,ptimestep & |
---|
[628] | 363 | & ,fm_therm,entr_therm,detrmod, & |
---|
| 364 | & masse,pq_therm(:,:,iq),d_q_ajs(:,:,iq),ndt,zlmax) |
---|
[508] | 365 | endif |
---|
[342] | 366 | ENDDO |
---|
| 367 | endif |
---|
| 368 | |
---|
[544] | 369 | if (dtke_thermals) then |
---|
[628] | 370 | detrmod(:,:)=0. |
---|
[652] | 371 | ndt=10 |
---|
[628] | 372 | do l=1,zlmax |
---|
| 373 | do ig=1,ngridmx |
---|
| 374 | detrmod(ig,l)=fm_therm(ig,l)-fm_therm(ig,l+1) & |
---|
| 375 | & +entr_therm(ig,l) |
---|
| 376 | if (detrmod(ig,l).lt.0.) then |
---|
| 377 | entr_therm(ig,l)=entr_therm(ig,l)-detrmod(ig,l) |
---|
| 378 | detrmod(ig,l)=0. |
---|
| 379 | endif |
---|
| 380 | enddo |
---|
| 381 | enddo |
---|
[544] | 382 | call thermcell_dqup(ngridmx,nlayermx,ptimestep & |
---|
[628] | 383 | & ,fm_therm,entr_therm,detrmod, & |
---|
| 384 | & masse,q2_therm,dq2_therm,ndt,zlmax) |
---|
[544] | 385 | endif |
---|
| 386 | |
---|
[342] | 387 | DO ig=1,ngridmx |
---|
| 388 | wmax(ig)=MAXVAL(zw2(ig,:)) |
---|
| 389 | ENDDO |
---|
| 390 | |
---|
| 391 | ! ********************************************************************** |
---|
| 392 | ! ********************************************************************** |
---|
| 393 | ! ********************************************************************** |
---|
| 394 | ! CALLTHERM END |
---|
| 395 | ! ********************************************************************** |
---|
| 396 | ! ********************************************************************** |
---|
| 397 | ! ********************************************************************** |
---|
| 398 | |
---|
| 399 | |
---|
| 400 | ! ********************************************************************** |
---|
| 401 | ! Preparing outputs |
---|
| 402 | ! ********************************************************************** |
---|
| 403 | |
---|
[628] | 404 | do l=1,zlmax |
---|
| 405 | pdu_th(:,l)=d_u_ajs(:,l) |
---|
| 406 | pdv_th(:,l)=d_v_ajs(:,l) |
---|
| 407 | enddo |
---|
[342] | 408 | |
---|
[161] | 409 | if(qtransport_thermals) then |
---|
[342] | 410 | if(tracer) then |
---|
[625] | 411 | do iq=1,nqmx |
---|
| 412 | if (iq .ne. ico2) then |
---|
[628] | 413 | do l=1,zlmax |
---|
| 414 | pdq_th(:,l,iq)=d_q_ajs(:,l,iq) |
---|
| 415 | enddo |
---|
[625] | 416 | else |
---|
[628] | 417 | do l=1,zlmax |
---|
| 418 | pdq_th(:,l,iq)=d_q_ajs(:,l,iq)/ptimestep |
---|
| 419 | enddo |
---|
[625] | 420 | endif |
---|
| 421 | enddo |
---|
[342] | 422 | endif |
---|
[161] | 423 | endif |
---|
| 424 | |
---|
[544] | 425 | IF(dtke_thermals) THEN |
---|
| 426 | DO l=2,nlayermx |
---|
| 427 | pbl_dtke(:,l)=0.5*(dq2_therm(:,l-1)+dq2_therm(:,l)) |
---|
| 428 | ENDDO |
---|
| 429 | |
---|
| 430 | pbl_dtke(:,1)=0.5*dq2_therm(:,1) |
---|
| 431 | pbl_dtke(:,nlayermx+1)=0. |
---|
| 432 | ENDIF |
---|
[161] | 433 | |
---|
[628] | 434 | do l=1,zlmax |
---|
| 435 | pdt_th(:,l)=d_t_ajs(:,l)/ptimestep |
---|
| 436 | enddo |
---|
[342] | 437 | |
---|
[499] | 438 | |
---|
[342] | 439 | ! ********************************************************************** |
---|
[499] | 440 | ! Compute the free convection velocity scale for vdifc |
---|
| 441 | ! ********************************************************************** |
---|
| 442 | |
---|
| 443 | |
---|
| 444 | ! Potential temperature gradient |
---|
| 445 | |
---|
| 446 | dteta(:,nlayermx)=0. |
---|
| 447 | DO l=1,nlayermx-1 |
---|
| 448 | DO ig=1, ngridmx |
---|
| 449 | dteta(ig,l) = ((zt(ig,l+1)-zt(ig,l))/zpopsk(ig,l)) & |
---|
| 450 | & /(zzlay(ig,l+1)-zzlay(ig,l)) |
---|
| 451 | ENDDO |
---|
| 452 | ENDDO |
---|
| 453 | |
---|
| 454 | ! Computation of the pbl mixed layer temperature |
---|
| 455 | |
---|
| 456 | DO ig=1, ngridmx |
---|
| 457 | ii=MINLOC(abs(dteta(ig,1:lmax(ig)))) |
---|
| 458 | pbl_teta(ig) = zt(ig,ii(1))/zpopsk(ig,ii(1)) |
---|
| 459 | ENDDO |
---|
| 460 | |
---|
[660] | 461 | ! we must add the heat flux from the diffusion scheme to hfmax |
---|
| 462 | |
---|
| 463 | ! compute rho as it is after the diffusion |
---|
| 464 | |
---|
| 465 | rho(:,:)=pplay(:,:) & |
---|
| 466 | & /(r*(pt(:,:)+pdhdif(:,:)*zpopsk(:,:)*ptimestep)) |
---|
| 467 | |
---|
| 468 | ! integrate -rho*pdhdif |
---|
| 469 | |
---|
| 470 | rpdhd(:,:)=0. |
---|
| 471 | |
---|
| 472 | DO ig=1,ngridmx |
---|
| 473 | DO l=1,lmax(ig) |
---|
| 474 | rpdhd(ig,l)=0. |
---|
| 475 | DO k=1,l |
---|
| 476 | rpdhd(ig,l)=rpdhd(ig,l)-rho(ig,k)*pdhdif(ig,k)* & |
---|
| 477 | & (zzlev(ig,k+1)-zzlev(ig,k)) |
---|
| 478 | ENDDO |
---|
| 479 | rpdhd(ig,l)=rpdhd(ig,l)-sensibFlux(ig)/cpp |
---|
| 480 | ENDDO |
---|
| 481 | ENDDO |
---|
| 482 | |
---|
| 483 | ! compute w'teta' from diffusion |
---|
| 484 | |
---|
| 485 | wtdif(:,:)=rpdhd(:,:)/rho(:,:) |
---|
| 486 | |
---|
| 487 | ! compute rho as it is after the thermals |
---|
| 488 | |
---|
| 489 | rho(:,:)=pplay(:,:)/(r*(zt(:,:))) |
---|
| 490 | ! integrate -rho*pdhdif |
---|
| 491 | |
---|
| 492 | DO ig=1,ngridmx |
---|
| 493 | DO l=1,lmax(ig) |
---|
| 494 | rpdhd(ig,l)=0. |
---|
| 495 | DO k=1,l |
---|
| 496 | rpdhd(ig,l)=rpdhd(ig,l)-rho(ig,k)*(pdt_th(ig,k)/zpopsk(ig,k))* & |
---|
| 497 | & (zzlev(ig,k+1)-zzlev(ig,k)) |
---|
| 498 | ENDDO |
---|
| 499 | rpdhd(ig,l)=rpdhd(ig,l)+ & |
---|
| 500 | & rho(ig,1)*(heatFlux(ig,1)+heatFlux_down(ig,1)) |
---|
| 501 | ENDDO |
---|
| 502 | ENDDO |
---|
| 503 | rpdhd(:,nlayermx)=0. |
---|
| 504 | |
---|
| 505 | ! compute w'teta' from thermals |
---|
| 506 | |
---|
| 507 | wtth(:,:)=rpdhd(:,:)/rho(:,:) |
---|
| 508 | |
---|
| 509 | ! We get the max heat flux from thermals and add the contribution from the diffusion |
---|
| 510 | |
---|
| 511 | DO ig=1,ngridmx |
---|
| 512 | hfmax(ig)=MAXVAL(wtth(ig,:)+wtdif(ig,:)) |
---|
| 513 | ENDDO |
---|
[499] | 514 | ! We follow Spiga et. al 2010 (QJRMS) |
---|
| 515 | ! ------------ |
---|
| 516 | |
---|
| 517 | DO ig=1, ngridmx |
---|
| 518 | IF (zmax(ig) .gt. 0.) THEN |
---|
| 519 | wstar(ig)=(g*zmaxth(ig)*hfmax(ig)/pbl_teta(ig))**(1./3.) |
---|
| 520 | ELSE |
---|
| 521 | wstar(ig)=0. |
---|
| 522 | ENDIF |
---|
| 523 | ENDDO |
---|
| 524 | |
---|
| 525 | |
---|
| 526 | |
---|
| 527 | ! ********************************************************************** |
---|
[342] | 528 | ! Diagnostics |
---|
| 529 | ! ********************************************************************** |
---|
[161] | 530 | |
---|
| 531 | if(outptherm) then |
---|
[185] | 532 | if (ngridmx .eq. 1) then |
---|
| 533 | call WRITEDIAGFI(ngridmx,'entr_therm','entrainement thermique',& |
---|
[161] | 534 | & 'kg/m-2',1,entr_therm) |
---|
[185] | 535 | call WRITEDIAGFI(ngridmx,'detr_therm','detrainement thermique',& |
---|
[161] | 536 | & 'kg/m-2',1,detr_therm) |
---|
[185] | 537 | call WRITEDIAGFI(ngridmx,'fm_therm','flux masse thermique',& |
---|
[161] | 538 | & 'kg/m-2',1,fm_therm) |
---|
[185] | 539 | call WRITEDIAGFI(ngridmx,'zw2','vitesse verticale thermique',& |
---|
[161] | 540 | & 'm/s',1,zw2) |
---|
[185] | 541 | call WRITEDIAGFI(ngridmx,'heatFlux_up','heatFlux_updraft',& |
---|
[161] | 542 | & 'SI',1,heatFlux) |
---|
[185] | 543 | call WRITEDIAGFI(ngridmx,'heatFlux_down','heatFlux_downdraft',& |
---|
[161] | 544 | & 'SI',1,heatFlux_down) |
---|
[185] | 545 | call WRITEDIAGFI(ngridmx,'fraca','fraction coverage',& |
---|
[161] | 546 | & 'percent',1,fraca) |
---|
[185] | 547 | call WRITEDIAGFI(ngridmx,'buoyancyOut','buoyancyOut',& |
---|
[161] | 548 | & 'm.s-2',1,buoyancyOut) |
---|
[185] | 549 | call WRITEDIAGFI(ngridmx,'buoyancyEst','buoyancyEst',& |
---|
[161] | 550 | & 'm.s-2',1,buoyancyEst) |
---|
[185] | 551 | call WRITEDIAGFI(ngridmx,'d_t_th', & |
---|
[161] | 552 | & 'tendance temp TH','K',1,d_t_ajs) |
---|
[619] | 553 | call WRITEDIAGFI(ngridmx,'d_q_th', & |
---|
| 554 | & 'tendance traceur TH','kg/kg',1,d_q_ajs) |
---|
[185] | 555 | call WRITEDIAGFI(ngridmx,'zmax', & |
---|
[342] | 556 | & 'pbl height','m',0,zmaxth) |
---|
[624] | 557 | call WRITEDIAGFI(ngridmx,'d_u_th', & |
---|
| 558 | & 'tendance moment','m/s',1,pdu_th) |
---|
[660] | 559 | call WRITEDIAGFI(ngridmx,'wtdif', & |
---|
| 560 | & 'heat flux from diffusion','K.m/s',1,wtdif) |
---|
| 561 | call WRITEDIAGFI(ngridmx,'wtth', & |
---|
| 562 | & 'heat flux from thermals','K.m/s',1,wtth) |
---|
| 563 | call WRITEDIAGFI(ngridmx,'wttot', & |
---|
| 564 | & 'heat flux PBL','K.m/s',1,wtdif(:,:)+wtth(:,:)) |
---|
| 565 | |
---|
[161] | 566 | else |
---|
| 567 | |
---|
[185] | 568 | call WRITEDIAGFI(ngridmx,'entr_therm','entrainement thermique',& |
---|
[161] | 569 | & 'kg/m-2',3,entr_therm) |
---|
[185] | 570 | call WRITEDIAGFI(ngridmx,'detr_therm','detrainement thermique',& |
---|
[161] | 571 | & 'kg/m-2',3,detr_therm) |
---|
[185] | 572 | call WRITEDIAGFI(ngridmx,'fm_therm','flux masse thermique',& |
---|
[161] | 573 | & 'kg/m-2',3,fm_therm) |
---|
[185] | 574 | call WRITEDIAGFI(ngridmx,'zw2','vitesse verticale thermique',& |
---|
[161] | 575 | & 'm/s',3,zw2) |
---|
[185] | 576 | call WRITEDIAGFI(ngridmx,'heatFlux','heatFlux',& |
---|
[161] | 577 | & 'SI',3,heatFlux) |
---|
[185] | 578 | call WRITEDIAGFI(ngridmx,'buoyancyOut','buoyancyOut',& |
---|
[161] | 579 | & 'SI',3,buoyancyOut) |
---|
[185] | 580 | call WRITEDIAGFI(ngridmx,'d_t_th', & |
---|
[161] | 581 | & 'tendance temp TH','K',3,d_t_ajs) |
---|
| 582 | |
---|
| 583 | endif |
---|
| 584 | endif |
---|
| 585 | |
---|
| 586 | END |
---|