1 | SUBROUTINE callsedim(ngrid,nlay, ptimestep, |
---|
2 | $ pplev,zlev, pt, rdust, rice, |
---|
3 | & pq, pdqfi, pdqsed,pdqs_sed,nq) |
---|
4 | IMPLICIT NONE |
---|
5 | |
---|
6 | c======================================================================= |
---|
7 | c Sedimentation of the Martian aerosols |
---|
8 | c depending on their density and radius |
---|
9 | c |
---|
10 | c F.Forget 1999 |
---|
11 | c |
---|
12 | c Modified by J.-B. Madeleine 2010: Now includes the doubleq |
---|
13 | c technique in order to have only one call to callsedim in |
---|
14 | c physiq.F. |
---|
15 | c |
---|
16 | c======================================================================= |
---|
17 | |
---|
18 | c----------------------------------------------------------------------- |
---|
19 | c declarations: |
---|
20 | c ------------- |
---|
21 | |
---|
22 | #include "dimensions.h" |
---|
23 | #include "dimphys.h" |
---|
24 | #include "comcstfi.h" |
---|
25 | #include "tracer.h" |
---|
26 | #include "callkeys.h" |
---|
27 | |
---|
28 | c |
---|
29 | c arguments: |
---|
30 | c ---------- |
---|
31 | |
---|
32 | INTEGER ngrid ! number of horizontal grid points |
---|
33 | INTEGER nlay ! number of atmospheric layers |
---|
34 | REAL ptimestep ! physics time step (s) |
---|
35 | REAL pplev(ngrid,nlay+1) ! pressure at inter-layers (Pa) |
---|
36 | REAL pt(ngrid,nlay) ! temperature at mid-layer (K) |
---|
37 | REAL zlev(ngrid,nlay+1) ! altitude at layer boundaries |
---|
38 | c Aerosol radius provided by the water ice microphysical scheme: |
---|
39 | REAL rdust(ngrid,nlay) ! Dust geometric mean radius (m) |
---|
40 | REAL rice(ngrid,nlay) ! Ice geometric mean radius (m) |
---|
41 | |
---|
42 | c Traceurs : |
---|
43 | integer nq ! number of tracers |
---|
44 | real pq(ngrid,nlay,nq) ! tracers (kg/kg) |
---|
45 | real pdqfi(ngrid,nlay,nq) ! tendency before sedimentation (kg/kg.s-1) |
---|
46 | real pdqsed(ngrid,nlay,nq) ! tendency due to sedimentation (kg/kg.s-1) |
---|
47 | real pdqs_sed(ngrid,nq) ! flux at surface (kg.m-2.s-1) |
---|
48 | |
---|
49 | c local: |
---|
50 | c ------ |
---|
51 | |
---|
52 | REAL CBRT |
---|
53 | EXTERNAL CBRT |
---|
54 | |
---|
55 | INTEGER l,ig, iq |
---|
56 | |
---|
57 | real zqi(ngridmx,nlayermx,nqmx) ! to locally store tracers |
---|
58 | real masse (ngridmx,nlayermx) ! Layer mass (kg.m-2) |
---|
59 | real epaisseur (ngridmx,nlayermx) ! Layer thickness (m) |
---|
60 | real wq(ngridmx,nlayermx+1) ! displaced tracer mass (kg.m-2) |
---|
61 | real r0(ngridmx,nlayermx) ! geometric mean doubleq radius (m) |
---|
62 | c Sedimentation radius of water ice |
---|
63 | real rfall(ngridmx,nlayermx) |
---|
64 | c Sedimentation effective variance of water ice |
---|
65 | REAL, PARAMETER :: nuice_sed = 0.45 !! TESTS_JB !! 0.1 avant |
---|
66 | |
---|
67 | c Discrete size distributions (doubleq) |
---|
68 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
69 | c 1) Parameters used to represent the changes in fall |
---|
70 | c velocity as a function of particle size; |
---|
71 | integer nr,ir |
---|
72 | parameter (nr=12) !(nr=7) ! number of bins |
---|
73 | real rd(nr),qr(ngridmx,nlayermx,nr) |
---|
74 | real rdi(nr+1) ! extreme and intermediate radii |
---|
75 | real Sq(ngridmx,nlayermx) |
---|
76 | real rdmin,rdmax,rdimin,rdimax |
---|
77 | data rdmin/1.e-8/ !/1.e-7/ |
---|
78 | data rdmax/30.e-6/ |
---|
79 | data rdimin/1.e-10/ |
---|
80 | data rdimax/1e-4/ |
---|
81 | save rd, rdi |
---|
82 | |
---|
83 | c 2) Second size distribution for the log-normal integration |
---|
84 | c (the mass mixing ratio is computed for each radius) |
---|
85 | |
---|
86 | integer ninter, iint |
---|
87 | parameter (ninter=4) ! nombre de point entre chaque rayon rdi |
---|
88 | real rr(ninter,nr) |
---|
89 | save rr |
---|
90 | integer radpower |
---|
91 | |
---|
92 | c 3) Other local variables used in doubleq |
---|
93 | |
---|
94 | real reff(ngridmx,nlayermx,2) ! for diagnostic only |
---|
95 | INTEGER idust_mass ! index of tracer containing dust mass |
---|
96 | ! mix. ratio |
---|
97 | INTEGER idust_number ! index of tracer containing dust number |
---|
98 | ! mix. ratio |
---|
99 | SAVE idust_mass,idust_number |
---|
100 | |
---|
101 | c Firstcall: |
---|
102 | |
---|
103 | LOGICAL firstcall |
---|
104 | SAVE firstcall |
---|
105 | DATA firstcall/.true./ |
---|
106 | |
---|
107 | c ** un petit test de coherence |
---|
108 | c -------------------------- |
---|
109 | |
---|
110 | IF (firstcall) THEN |
---|
111 | IF(ngrid.NE.ngridmx) THEN |
---|
112 | PRINT*,'STOP dans callsedim' |
---|
113 | PRINT*,'probleme de dimensions :' |
---|
114 | PRINT*,'ngrid =',ngrid |
---|
115 | PRINT*,'ngridmx =',ngridmx |
---|
116 | STOP |
---|
117 | ENDIF |
---|
118 | |
---|
119 | c Doubleq: initialization |
---|
120 | IF (doubleq) THEN |
---|
121 | do ir=1,nr |
---|
122 | rd(ir)= rdmin*(rdmax/rdmin)**(float(ir-1)/float(nr-1)) |
---|
123 | end do |
---|
124 | rdi(1)=rdimin |
---|
125 | do ir=2,nr |
---|
126 | rdi(ir)= sqrt(rd(ir-1)*rd(ir)) |
---|
127 | end do |
---|
128 | rdi(nr+1)=rdimax |
---|
129 | |
---|
130 | do ir=1,nr |
---|
131 | do iint=1,ninter |
---|
132 | rr(iint,ir)= |
---|
133 | & rdi(ir)* |
---|
134 | & (rdi(ir+1)/rdi(ir))**(float(iint-1)/float(ninter-1)) |
---|
135 | c write(*,*) rr(iint,ir) |
---|
136 | end do |
---|
137 | end do |
---|
138 | |
---|
139 | ! identify tracers corresponding to mass mixing ratio and |
---|
140 | ! number mixing ratio |
---|
141 | idust_mass=0 ! dummy initialization |
---|
142 | idust_number=0 ! dummy initialization |
---|
143 | |
---|
144 | do iq=1,nq |
---|
145 | if (noms(iq).eq."dust_mass") then |
---|
146 | idust_mass=iq |
---|
147 | endif |
---|
148 | if (noms(iq).eq."dust_number") then |
---|
149 | idust_number=iq |
---|
150 | endif |
---|
151 | enddo |
---|
152 | |
---|
153 | ! check that we did find the tracers |
---|
154 | if ((idust_mass.eq.0).or.(idust_number.eq.0)) then |
---|
155 | write(*,*) 'callsedim: error! could not identify' |
---|
156 | write(*,*) ' tracers for dust mass and number mixing' |
---|
157 | write(*,*) ' ratio and doubleq is activated!' |
---|
158 | stop |
---|
159 | endif |
---|
160 | ENDIF !of if (doubleq) |
---|
161 | |
---|
162 | IF (water) THEN |
---|
163 | write(*,*) "water_param nueff Sedimentation:", nuice_sed |
---|
164 | IF (activice) THEN |
---|
165 | write(*,*) "water_param nueff Radiative:", nuice_ref |
---|
166 | ENDIF |
---|
167 | ENDIF |
---|
168 | |
---|
169 | firstcall=.false. |
---|
170 | ENDIF ! of IF (firstcall) |
---|
171 | |
---|
172 | c----------------------------------------------------------------------- |
---|
173 | c 1. Initialization |
---|
174 | c ----------------- |
---|
175 | |
---|
176 | zqi(1:ngrid,1:nlay,1:nqmx) = 0. |
---|
177 | c Updating the mass mixing ratio with the tendencies coming |
---|
178 | c from other parameterizations: |
---|
179 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
180 | |
---|
181 | do iq=1,nq |
---|
182 | do l=1,nlay |
---|
183 | do ig=1,ngrid |
---|
184 | zqi(ig,l,iq)=pq(ig,l,iq)+pdqfi(ig,l,iq)*ptimestep |
---|
185 | enddo |
---|
186 | enddo |
---|
187 | enddo |
---|
188 | |
---|
189 | c Computing the different layer properties |
---|
190 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
191 | c Mass (kg.m-2), thickness(m), crossing time (s) etc. |
---|
192 | |
---|
193 | do l=1,nlay |
---|
194 | do ig=1, ngrid |
---|
195 | masse(ig,l)=(pplev(ig,l) - pplev(ig,l+1)) /g |
---|
196 | epaisseur(ig,l)= zlev(ig,l+1) - zlev(ig,l) |
---|
197 | end do |
---|
198 | end do |
---|
199 | |
---|
200 | c ================================================================= |
---|
201 | do iq=1,nq |
---|
202 | if(radius(iq).gt.1.e-9) then ! no sedim for gaz |
---|
203 | |
---|
204 | c ----------------------------------------------------------------- |
---|
205 | c DOUBLEQ CASE |
---|
206 | c ----------------------------------------------------------------- |
---|
207 | if (doubleq.and. |
---|
208 | & ((iq.eq.idust_mass).or. |
---|
209 | & (iq.eq.idust_number))) then |
---|
210 | |
---|
211 | c Computing size distribution: |
---|
212 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
213 | |
---|
214 | do l=1,nlay |
---|
215 | do ig=1, ngrid |
---|
216 | r0(ig,l)= |
---|
217 | & CBRT(r3n_q*zqi(ig,l,idust_mass)/ |
---|
218 | & max(zqi(ig,l,idust_number),0.01)) |
---|
219 | r0(ig,l)=min(max(r0(ig,l),1.e-10),500.e-6) |
---|
220 | end do |
---|
221 | end do |
---|
222 | |
---|
223 | c Computing mass mixing ratio for each particle size |
---|
224 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
225 | IF (iq.EQ.idust_mass) then |
---|
226 | radpower = 2 |
---|
227 | ELSE |
---|
228 | radpower = -1 |
---|
229 | ENDIF |
---|
230 | Sq(1:ngrid,1:nlay) = 0. |
---|
231 | do ir=1,nr |
---|
232 | do l=1,nlay |
---|
233 | do ig=1,ngrid |
---|
234 | c **************** |
---|
235 | c Size distribution integration |
---|
236 | c (Trapezoid Integration Method) |
---|
237 | qr(ig,l,ir)=0.5*(rr(2,ir)-rr(1,ir))* |
---|
238 | & (rr(1,ir)**radpower)* |
---|
239 | & exp(-(log(rr(1,ir)/r0(ig,l)))**2/(2*varian**2)) |
---|
240 | do iint=2,ninter-1 |
---|
241 | qr(ig,l,ir)=qr(ig,l,ir) + |
---|
242 | & 0.5*(rr(iint+1,ir)-rr(iint-1,ir))* |
---|
243 | & (rr(iint,ir)**radpower)* |
---|
244 | & exp(-(log(rr(iint,ir)/r0(ig,l)))**2/ |
---|
245 | & (2*varian**2)) |
---|
246 | end do |
---|
247 | qr(ig,l,ir)=qr(ig,l,ir) + |
---|
248 | & 0.5*(rr(ninter,ir)-rr(ninter-1,ir))* |
---|
249 | & (rr(ninter,ir)**radpower)* |
---|
250 | & exp(-(log(rr(ninter,ir)/r0(ig,l)))**2/ |
---|
251 | & (2*varian**2)) |
---|
252 | |
---|
253 | c **************** old method (not recommended!) |
---|
254 | c qr(ig,l,ir)=(rd(ir)**(5-3*iq))* |
---|
255 | c & exp( -(log(rd(ir)/r0(ig,l)))**2 / (2*varian**2) ) |
---|
256 | c ****************************** |
---|
257 | |
---|
258 | Sq(ig,l)=Sq(ig,l)+qr(ig,l,ir) |
---|
259 | enddo |
---|
260 | enddo |
---|
261 | enddo |
---|
262 | |
---|
263 | do ir=1,nr |
---|
264 | do l=1,nlay |
---|
265 | do ig=1,ngrid |
---|
266 | qr(ig,l,ir) = zqi(ig,l,iq)*qr(ig,l,ir)/Sq(ig,l) |
---|
267 | enddo |
---|
268 | enddo |
---|
269 | enddo |
---|
270 | |
---|
271 | c Computing sedimentation for each tracer |
---|
272 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
273 | |
---|
274 | c call zerophys(ngridmx*nlayermx,zqi(1,1,iq)) |
---|
275 | zqi(1:ngrid,1:nlay,iq) = 0. |
---|
276 | c call zerophys(ngridmx,pdqs_sed(1,iq)) |
---|
277 | pdqs_sed(1:ngrid,iq) = 0. |
---|
278 | |
---|
279 | do ir=1,nr |
---|
280 | call newsedim(ngrid,nlay,1,ptimestep, |
---|
281 | & pplev,masse,epaisseur,pt,rd(ir),rho_dust,qr(1,1,ir), |
---|
282 | & wq,0.5) |
---|
283 | |
---|
284 | c Tendencies |
---|
285 | c ~~~~~~~~~~ |
---|
286 | do ig=1,ngrid |
---|
287 | pdqs_sed(ig,iq) = pdqs_sed(ig,iq) |
---|
288 | & + wq(ig,1)/ptimestep |
---|
289 | end do |
---|
290 | DO l = 1, nlay |
---|
291 | DO ig=1,ngrid |
---|
292 | zqi(ig,l,iq)=zqi(ig,l,iq)+qr(ig,l,ir) |
---|
293 | ENDDO |
---|
294 | ENDDO |
---|
295 | enddo ! of do ir=1,nr |
---|
296 | c ----------------------------------------------------------------- |
---|
297 | c WATER CYCLE CASE |
---|
298 | c ----------------------------------------------------------------- |
---|
299 | else if (water.and.(iq.eq.igcm_h2o_ice)) then |
---|
300 | c if (doubleq) then |
---|
301 | c do l=1,nlay |
---|
302 | c do ig=1,ngrid |
---|
303 | c rfall(ig,l)=max( rice(ig,l),rdust(ig,l) ) |
---|
304 | c rfall(ig,l)=min(rfall(ig,l),1.e-4) |
---|
305 | c enddo |
---|
306 | c enddo ! of do l=1,nlay |
---|
307 | c else |
---|
308 | do l=1,nlay |
---|
309 | do ig=1,ngrid |
---|
310 | c For water cycle, a typical dust size is assumed: |
---|
311 | c r(z)=r0*exp(-z/H) with r0=0.8 micron and H=18 km. |
---|
312 | c rfall(ig,l)=max( rice(ig,l)*1.5,rdust(ig,l) ) |
---|
313 | rfall(ig,l)=max( rice(ig,l)*(1.+nuice_sed)**3., |
---|
314 | & rdust(ig,l) ) |
---|
315 | c modif FranckMM pour ameliorer cycle H2O: rfall= 20 microns |
---|
316 | c mars commente pour l'instant rfall(ig,l)=20.e-6 |
---|
317 | rfall(ig,l)=min(rfall(ig,l),1.e-4) |
---|
318 | enddo |
---|
319 | enddo ! of do l=1,nlay |
---|
320 | c endif |
---|
321 | call newsedim(ngrid,nlay,ngrid*nlay,ptimestep, |
---|
322 | & pplev,masse,epaisseur,pt,rfall,rho_q(iq),zqi(1,1,iq), |
---|
323 | & wq,1.0) |
---|
324 | c Tendencies |
---|
325 | c ~~~~~~~~~~ |
---|
326 | do ig=1,ngrid |
---|
327 | pdqs_sed(ig,iq)=wq(ig,1)/ptimestep |
---|
328 | end do |
---|
329 | c ----------------------------------------------------------------- |
---|
330 | c GENERAL CASE |
---|
331 | c ----------------------------------------------------------------- |
---|
332 | else |
---|
333 | call newsedim(ngrid,nlay,1,ptimestep, |
---|
334 | & pplev,masse,epaisseur,pt,radius(iq),rho_q(iq), |
---|
335 | & zqi(1,1,iq),wq,1.0) |
---|
336 | c Tendencies |
---|
337 | c ~~~~~~~~~~ |
---|
338 | do ig=1,ngrid |
---|
339 | pdqs_sed(ig,iq)=wq(ig,1)/ptimestep |
---|
340 | end do |
---|
341 | endif ! of if doubleq and if water |
---|
342 | c ----------------------------------------------------------------- |
---|
343 | |
---|
344 | DO l = 1, nlay |
---|
345 | DO ig=1,ngrid |
---|
346 | pdqsed(ig,l,iq)=(zqi(ig,l,iq)- |
---|
347 | $ (pq(ig,l,iq) + pdqfi(ig,l,iq)*ptimestep))/ptimestep |
---|
348 | ENDDO |
---|
349 | ENDDO |
---|
350 | |
---|
351 | endif ! of if(radius(iq).gt.1.e-9) |
---|
352 | c ================================================================= |
---|
353 | enddo ! of do iq=1,nq |
---|
354 | |
---|
355 | RETURN |
---|
356 | END |
---|
357 | |
---|