[38] | 1 | SUBROUTINE callsedim(ngrid,nlay, ptimestep, |
---|
[411] | 2 | & pplev,zlev, zlay, pt, rdust, rice, |
---|
[358] | 3 | & rsedcloud,rhocloud, |
---|
[411] | 4 | & pq, pdqfi, pdqsed,pdqs_sed,nq, |
---|
| 5 | & tau, tauscaling) |
---|
[38] | 6 | IMPLICIT NONE |
---|
| 7 | |
---|
| 8 | c======================================================================= |
---|
| 9 | c Sedimentation of the Martian aerosols |
---|
| 10 | c depending on their density and radius |
---|
| 11 | c |
---|
| 12 | c F.Forget 1999 |
---|
| 13 | c |
---|
| 14 | c Modified by J.-B. Madeleine 2010: Now includes the doubleq |
---|
| 15 | c technique in order to have only one call to callsedim in |
---|
| 16 | c physiq.F. |
---|
| 17 | c |
---|
| 18 | c======================================================================= |
---|
| 19 | |
---|
| 20 | c----------------------------------------------------------------------- |
---|
| 21 | c declarations: |
---|
| 22 | c ------------- |
---|
| 23 | |
---|
| 24 | #include "dimensions.h" |
---|
| 25 | #include "dimphys.h" |
---|
| 26 | #include "comcstfi.h" |
---|
| 27 | #include "tracer.h" |
---|
| 28 | #include "callkeys.h" |
---|
| 29 | |
---|
| 30 | c |
---|
| 31 | c arguments: |
---|
| 32 | c ---------- |
---|
| 33 | |
---|
| 34 | INTEGER ngrid ! number of horizontal grid points |
---|
| 35 | INTEGER nlay ! number of atmospheric layers |
---|
| 36 | REAL ptimestep ! physics time step (s) |
---|
| 37 | REAL pplev(ngrid,nlay+1) ! pressure at inter-layers (Pa) |
---|
| 38 | REAL pt(ngrid,nlay) ! temperature at mid-layer (K) |
---|
| 39 | REAL zlev(ngrid,nlay+1) ! altitude at layer boundaries |
---|
| 40 | c Aerosol radius provided by the water ice microphysical scheme: |
---|
| 41 | REAL rdust(ngrid,nlay) ! Dust geometric mean radius (m) |
---|
| 42 | REAL rice(ngrid,nlay) ! Ice geometric mean radius (m) |
---|
| 43 | |
---|
| 44 | c Traceurs : |
---|
| 45 | integer nq ! number of tracers |
---|
| 46 | real pq(ngrid,nlay,nq) ! tracers (kg/kg) |
---|
| 47 | real pdqfi(ngrid,nlay,nq) ! tendency before sedimentation (kg/kg.s-1) |
---|
| 48 | real pdqsed(ngrid,nlay,nq) ! tendency due to sedimentation (kg/kg.s-1) |
---|
| 49 | real pdqs_sed(ngrid,nq) ! flux at surface (kg.m-2.s-1) |
---|
| 50 | |
---|
| 51 | c local: |
---|
| 52 | c ------ |
---|
| 53 | |
---|
| 54 | REAL CBRT |
---|
| 55 | EXTERNAL CBRT |
---|
| 56 | |
---|
| 57 | INTEGER l,ig, iq |
---|
| 58 | |
---|
| 59 | real zqi(ngridmx,nlayermx,nqmx) ! to locally store tracers |
---|
| 60 | real masse (ngridmx,nlayermx) ! Layer mass (kg.m-2) |
---|
| 61 | real epaisseur (ngridmx,nlayermx) ! Layer thickness (m) |
---|
| 62 | real wq(ngridmx,nlayermx+1) ! displaced tracer mass (kg.m-2) |
---|
[358] | 63 | real r0(ngridmx,nlayermx) ! geometric mean radius used for |
---|
| 64 | ! sedimentation (m) |
---|
| 65 | real r0dust(ngridmx,nlayermx) ! geometric mean radius used for |
---|
| 66 | ! dust (m) |
---|
| 67 | real r0ccn(ngridmx,nlayermx) ! geometric mean radius used for |
---|
| 68 | ! CCNs (m) |
---|
[38] | 69 | c Sedimentation radius of water ice |
---|
[358] | 70 | real rsedcloud(ngridmx,nlayermx) |
---|
| 71 | c Cloud density (kg.m-3) |
---|
| 72 | real rhocloud(ngridmx,nlayermx) |
---|
[411] | 73 | |
---|
| 74 | c for ice radius computation |
---|
| 75 | REAL ccn_factor |
---|
| 76 | REAL Mo,No |
---|
| 77 | REAL tau(ngrid,nlay), tauscaling(ngrid) |
---|
| 78 | REAL zlay(ngrid,nlay) ! altitude at the middle of the layers |
---|
| 79 | REAl ccntyp |
---|
[38] | 80 | |
---|
[358] | 81 | |
---|
[411] | 82 | |
---|
[38] | 83 | c Discrete size distributions (doubleq) |
---|
| 84 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 85 | c 1) Parameters used to represent the changes in fall |
---|
| 86 | c velocity as a function of particle size; |
---|
| 87 | integer nr,ir |
---|
| 88 | parameter (nr=12) !(nr=7) ! number of bins |
---|
| 89 | real rd(nr),qr(ngridmx,nlayermx,nr) |
---|
| 90 | real rdi(nr+1) ! extreme and intermediate radii |
---|
| 91 | real Sq(ngridmx,nlayermx) |
---|
| 92 | real rdmin,rdmax,rdimin,rdimax |
---|
| 93 | data rdmin/1.e-8/ !/1.e-7/ |
---|
| 94 | data rdmax/30.e-6/ |
---|
| 95 | data rdimin/1.e-10/ |
---|
| 96 | data rdimax/1e-4/ |
---|
| 97 | save rd, rdi |
---|
| 98 | |
---|
| 99 | c 2) Second size distribution for the log-normal integration |
---|
| 100 | c (the mass mixing ratio is computed for each radius) |
---|
| 101 | |
---|
| 102 | integer ninter, iint |
---|
| 103 | parameter (ninter=4) ! nombre de point entre chaque rayon rdi |
---|
| 104 | real rr(ninter,nr) |
---|
| 105 | save rr |
---|
| 106 | integer radpower |
---|
[358] | 107 | real sigma0 |
---|
[38] | 108 | |
---|
| 109 | c 3) Other local variables used in doubleq |
---|
| 110 | |
---|
| 111 | INTEGER idust_mass ! index of tracer containing dust mass |
---|
| 112 | ! mix. ratio |
---|
| 113 | INTEGER idust_number ! index of tracer containing dust number |
---|
| 114 | ! mix. ratio |
---|
[358] | 115 | INTEGER iccn_mass ! index of tracer containing CCN mass |
---|
| 116 | ! mix. ratio |
---|
| 117 | INTEGER iccn_number ! index of tracer containing CCN number |
---|
| 118 | ! mix. ratio |
---|
[38] | 119 | SAVE idust_mass,idust_number |
---|
[358] | 120 | SAVE iccn_mass,iccn_number |
---|
[38] | 121 | |
---|
| 122 | c Firstcall: |
---|
| 123 | |
---|
| 124 | LOGICAL firstcall |
---|
| 125 | SAVE firstcall |
---|
| 126 | DATA firstcall/.true./ |
---|
| 127 | |
---|
| 128 | c ** un petit test de coherence |
---|
| 129 | c -------------------------- |
---|
| 130 | |
---|
| 131 | IF (firstcall) THEN |
---|
[411] | 132 | |
---|
[38] | 133 | IF(ngrid.NE.ngridmx) THEN |
---|
| 134 | PRINT*,'STOP dans callsedim' |
---|
| 135 | PRINT*,'probleme de dimensions :' |
---|
| 136 | PRINT*,'ngrid =',ngrid |
---|
| 137 | PRINT*,'ngridmx =',ngridmx |
---|
| 138 | STOP |
---|
| 139 | ENDIF |
---|
| 140 | |
---|
| 141 | c Doubleq: initialization |
---|
| 142 | IF (doubleq) THEN |
---|
| 143 | do ir=1,nr |
---|
| 144 | rd(ir)= rdmin*(rdmax/rdmin)**(float(ir-1)/float(nr-1)) |
---|
| 145 | end do |
---|
| 146 | rdi(1)=rdimin |
---|
| 147 | do ir=2,nr |
---|
| 148 | rdi(ir)= sqrt(rd(ir-1)*rd(ir)) |
---|
| 149 | end do |
---|
| 150 | rdi(nr+1)=rdimax |
---|
| 151 | |
---|
| 152 | do ir=1,nr |
---|
| 153 | do iint=1,ninter |
---|
| 154 | rr(iint,ir)= |
---|
| 155 | & rdi(ir)* |
---|
| 156 | & (rdi(ir+1)/rdi(ir))**(float(iint-1)/float(ninter-1)) |
---|
| 157 | c write(*,*) rr(iint,ir) |
---|
| 158 | end do |
---|
| 159 | end do |
---|
| 160 | |
---|
| 161 | ! identify tracers corresponding to mass mixing ratio and |
---|
| 162 | ! number mixing ratio |
---|
| 163 | idust_mass=0 ! dummy initialization |
---|
| 164 | idust_number=0 ! dummy initialization |
---|
| 165 | |
---|
| 166 | do iq=1,nq |
---|
| 167 | if (noms(iq).eq."dust_mass") then |
---|
| 168 | idust_mass=iq |
---|
| 169 | endif |
---|
| 170 | if (noms(iq).eq."dust_number") then |
---|
| 171 | idust_number=iq |
---|
| 172 | endif |
---|
| 173 | enddo |
---|
| 174 | |
---|
| 175 | ! check that we did find the tracers |
---|
| 176 | if ((idust_mass.eq.0).or.(idust_number.eq.0)) then |
---|
| 177 | write(*,*) 'callsedim: error! could not identify' |
---|
| 178 | write(*,*) ' tracers for dust mass and number mixing' |
---|
| 179 | write(*,*) ' ratio and doubleq is activated!' |
---|
| 180 | stop |
---|
| 181 | endif |
---|
| 182 | ENDIF !of if (doubleq) |
---|
| 183 | |
---|
[358] | 184 | IF (scavenging) THEN |
---|
| 185 | iccn_mass=0 |
---|
| 186 | iccn_number=0 |
---|
| 187 | do iq=1,nq |
---|
| 188 | if (noms(iq).eq."ccn_mass") then |
---|
| 189 | iccn_mass=iq |
---|
| 190 | endif |
---|
| 191 | if (noms(iq).eq."ccn_number") then |
---|
| 192 | iccn_number=iq |
---|
| 193 | endif |
---|
| 194 | enddo |
---|
| 195 | ! check that we did find the tracers |
---|
| 196 | if ((iccn_mass.eq.0).or.(iccn_number.eq.0)) then |
---|
| 197 | write(*,*) 'callsedim: error! could not identify' |
---|
| 198 | write(*,*) ' tracers for ccn mass and number mixing' |
---|
| 199 | write(*,*) ' ratio and scavenging is activated!' |
---|
| 200 | stop |
---|
| 201 | endif |
---|
[411] | 202 | ELSE |
---|
| 203 | write(*,*) "water_param CCN reduc. fac. ", ccn_factor |
---|
| 204 | write(*,*) "Careful: only used when microphys=F, otherwise" |
---|
| 205 | write(*,*) " the contact parameter is used instead;" |
---|
[358] | 206 | ENDIF !of if (scavenging) |
---|
| 207 | |
---|
[38] | 208 | IF (water) THEN |
---|
| 209 | write(*,*) "water_param nueff Sedimentation:", nuice_sed |
---|
| 210 | IF (activice) THEN |
---|
| 211 | write(*,*) "water_param nueff Radiative:", nuice_ref |
---|
| 212 | ENDIF |
---|
| 213 | ENDIF |
---|
| 214 | |
---|
| 215 | firstcall=.false. |
---|
| 216 | ENDIF ! of IF (firstcall) |
---|
| 217 | |
---|
| 218 | c----------------------------------------------------------------------- |
---|
| 219 | c 1. Initialization |
---|
| 220 | c ----------------- |
---|
| 221 | |
---|
| 222 | zqi(1:ngrid,1:nlay,1:nqmx) = 0. |
---|
| 223 | c Updating the mass mixing ratio with the tendencies coming |
---|
| 224 | c from other parameterizations: |
---|
| 225 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 226 | |
---|
| 227 | do iq=1,nq |
---|
| 228 | do l=1,nlay |
---|
| 229 | do ig=1,ngrid |
---|
| 230 | zqi(ig,l,iq)=pq(ig,l,iq)+pdqfi(ig,l,iq)*ptimestep |
---|
| 231 | enddo |
---|
| 232 | enddo |
---|
| 233 | enddo |
---|
| 234 | |
---|
| 235 | c Computing the different layer properties |
---|
| 236 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 237 | c Mass (kg.m-2), thickness(m), crossing time (s) etc. |
---|
| 238 | |
---|
| 239 | do l=1,nlay |
---|
| 240 | do ig=1, ngrid |
---|
| 241 | masse(ig,l)=(pplev(ig,l) - pplev(ig,l+1)) /g |
---|
| 242 | epaisseur(ig,l)= zlev(ig,l+1) - zlev(ig,l) |
---|
| 243 | end do |
---|
| 244 | end do |
---|
| 245 | |
---|
| 246 | c ================================================================= |
---|
[358] | 247 | c Compute the geometric mean radius used for sedimentation |
---|
| 248 | |
---|
| 249 | if (doubleq) then |
---|
| 250 | do l=1,nlay |
---|
| 251 | do ig=1, ngrid |
---|
| 252 | r0dust(ig,l) = |
---|
| 253 | & CBRT(r3n_q*zqi(ig,l,idust_mass)/ |
---|
| 254 | & max(zqi(ig,l,idust_number),0.01)) |
---|
| 255 | r0dust(ig,l)=min(max(r0dust(ig,l),1.e-10),500.e-6) |
---|
| 256 | end do |
---|
| 257 | end do |
---|
| 258 | endif |
---|
| 259 | if (scavenging) then |
---|
| 260 | do l=1,nlay |
---|
| 261 | do ig=1, ngrid |
---|
| 262 | r0ccn(ig,l) = rsedcloud(ig,l)/(1.+nuice_sed)**4.5 |
---|
| 263 | end do |
---|
| 264 | end do |
---|
| 265 | endif |
---|
| 266 | |
---|
| 267 | c ================================================================= |
---|
[38] | 268 | do iq=1,nq |
---|
| 269 | if(radius(iq).gt.1.e-9) then ! no sedim for gaz |
---|
| 270 | |
---|
| 271 | c ----------------------------------------------------------------- |
---|
| 272 | c DOUBLEQ CASE |
---|
| 273 | c ----------------------------------------------------------------- |
---|
[358] | 274 | if ((doubleq.and. |
---|
[38] | 275 | & ((iq.eq.idust_mass).or. |
---|
[358] | 276 | & (iq.eq.idust_number))).or. |
---|
| 277 | & (scavenging.and. |
---|
| 278 | & ((iq.eq.iccn_mass).or. |
---|
| 279 | & (iq.eq.iccn_number)))) then |
---|
[38] | 280 | |
---|
| 281 | c Computing size distribution: |
---|
| 282 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 283 | |
---|
[358] | 284 | if ((iq.eq.idust_mass).or.(iq.eq.idust_number)) then |
---|
| 285 | do l=1,nlay |
---|
| 286 | do ig=1, ngrid |
---|
| 287 | r0(ig,l)=r0dust(ig,l) |
---|
| 288 | end do |
---|
[38] | 289 | end do |
---|
[358] | 290 | sigma0 = varian |
---|
| 291 | else |
---|
| 292 | do l=1,nlay |
---|
| 293 | do ig=1, ngrid |
---|
| 294 | r0(ig,l)=r0ccn(ig,l) |
---|
| 295 | end do |
---|
| 296 | end do |
---|
| 297 | sigma0 = sqrt(log(1.+nuice_sed)) |
---|
| 298 | endif |
---|
[38] | 299 | |
---|
| 300 | c Computing mass mixing ratio for each particle size |
---|
| 301 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[358] | 302 | IF ((iq.EQ.idust_mass).or.(iq.EQ.iccn_mass)) then |
---|
[38] | 303 | radpower = 2 |
---|
| 304 | ELSE |
---|
| 305 | radpower = -1 |
---|
| 306 | ENDIF |
---|
| 307 | Sq(1:ngrid,1:nlay) = 0. |
---|
| 308 | do ir=1,nr |
---|
| 309 | do l=1,nlay |
---|
| 310 | do ig=1,ngrid |
---|
| 311 | c **************** |
---|
| 312 | c Size distribution integration |
---|
| 313 | c (Trapezoid Integration Method) |
---|
| 314 | qr(ig,l,ir)=0.5*(rr(2,ir)-rr(1,ir))* |
---|
| 315 | & (rr(1,ir)**radpower)* |
---|
[358] | 316 | & exp(-(log(rr(1,ir)/r0(ig,l)))**2/(2*sigma0**2)) |
---|
[38] | 317 | do iint=2,ninter-1 |
---|
| 318 | qr(ig,l,ir)=qr(ig,l,ir) + |
---|
| 319 | & 0.5*(rr(iint+1,ir)-rr(iint-1,ir))* |
---|
| 320 | & (rr(iint,ir)**radpower)* |
---|
| 321 | & exp(-(log(rr(iint,ir)/r0(ig,l)))**2/ |
---|
[358] | 322 | & (2*sigma0**2)) |
---|
[38] | 323 | end do |
---|
| 324 | qr(ig,l,ir)=qr(ig,l,ir) + |
---|
| 325 | & 0.5*(rr(ninter,ir)-rr(ninter-1,ir))* |
---|
| 326 | & (rr(ninter,ir)**radpower)* |
---|
| 327 | & exp(-(log(rr(ninter,ir)/r0(ig,l)))**2/ |
---|
[358] | 328 | & (2*sigma0**2)) |
---|
[38] | 329 | |
---|
| 330 | c **************** old method (not recommended!) |
---|
| 331 | c qr(ig,l,ir)=(rd(ir)**(5-3*iq))* |
---|
[358] | 332 | c & exp( -(log(rd(ir)/r0(ig,l)))**2 / (2*sigma0**2) ) |
---|
[38] | 333 | c ****************************** |
---|
| 334 | |
---|
| 335 | Sq(ig,l)=Sq(ig,l)+qr(ig,l,ir) |
---|
| 336 | enddo |
---|
| 337 | enddo |
---|
| 338 | enddo |
---|
| 339 | |
---|
| 340 | do ir=1,nr |
---|
| 341 | do l=1,nlay |
---|
| 342 | do ig=1,ngrid |
---|
| 343 | qr(ig,l,ir) = zqi(ig,l,iq)*qr(ig,l,ir)/Sq(ig,l) |
---|
| 344 | enddo |
---|
| 345 | enddo |
---|
| 346 | enddo |
---|
| 347 | |
---|
| 348 | c Computing sedimentation for each tracer |
---|
| 349 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 350 | |
---|
| 351 | zqi(1:ngrid,1:nlay,iq) = 0. |
---|
| 352 | pdqs_sed(1:ngrid,iq) = 0. |
---|
| 353 | |
---|
| 354 | do ir=1,nr |
---|
[358] | 355 | IF ((iq.EQ.idust_mass).or.(iq.EQ.idust_number)) then |
---|
| 356 | call newsedim(ngrid,nlay,1,1,ptimestep, |
---|
| 357 | & pplev,masse,epaisseur,pt,rd(ir),rho_dust,qr(1,1,ir), |
---|
| 358 | & wq,0.5) |
---|
| 359 | ELSE |
---|
| 360 | call newsedim(ngrid,nlay,1,ngrid*nlay,ptimestep, |
---|
| 361 | & pplev,masse,epaisseur,pt,rd(ir),rhocloud,qr(1,1,ir), |
---|
| 362 | & wq,1.0) |
---|
| 363 | ENDIF |
---|
[38] | 364 | |
---|
| 365 | c Tendencies |
---|
| 366 | c ~~~~~~~~~~ |
---|
| 367 | do ig=1,ngrid |
---|
| 368 | pdqs_sed(ig,iq) = pdqs_sed(ig,iq) |
---|
| 369 | & + wq(ig,1)/ptimestep |
---|
| 370 | end do |
---|
| 371 | DO l = 1, nlay |
---|
| 372 | DO ig=1,ngrid |
---|
| 373 | zqi(ig,l,iq)=zqi(ig,l,iq)+qr(ig,l,ir) |
---|
| 374 | ENDDO |
---|
| 375 | ENDDO |
---|
| 376 | enddo ! of do ir=1,nr |
---|
| 377 | c ----------------------------------------------------------------- |
---|
| 378 | c WATER CYCLE CASE |
---|
| 379 | c ----------------------------------------------------------------- |
---|
| 380 | else if (water.and.(iq.eq.igcm_h2o_ice)) then |
---|
[358] | 381 | if (microphys) then |
---|
[411] | 382 | call newsedim(ngrid,nlay,ngrid*nlay,ngrid*nlay, |
---|
| 383 | & ptimestep,pplev,masse,epaisseur,pt,rsedcloud,rhocloud, |
---|
| 384 | & zqi(1,1,iq),wq,1.0) |
---|
[358] | 385 | else |
---|
[411] | 386 | call newsedim(ngrid,nlay,ngrid*nlay,1, |
---|
| 387 | & ptimestep,pplev,masse,epaisseur,pt,rsedcloud,rho_q(iq), |
---|
| 388 | & zqi(1,1,iq),wq,1.0) |
---|
[358] | 389 | endif ! of if (microphys) |
---|
[38] | 390 | c Tendencies |
---|
| 391 | c ~~~~~~~~~~ |
---|
| 392 | do ig=1,ngrid |
---|
| 393 | pdqs_sed(ig,iq)=wq(ig,1)/ptimestep |
---|
| 394 | end do |
---|
| 395 | c ----------------------------------------------------------------- |
---|
| 396 | c GENERAL CASE |
---|
| 397 | c ----------------------------------------------------------------- |
---|
| 398 | else |
---|
[358] | 399 | call newsedim(ngrid,nlay,1,1,ptimestep, |
---|
[38] | 400 | & pplev,masse,epaisseur,pt,radius(iq),rho_q(iq), |
---|
| 401 | & zqi(1,1,iq),wq,1.0) |
---|
| 402 | c Tendencies |
---|
| 403 | c ~~~~~~~~~~ |
---|
| 404 | do ig=1,ngrid |
---|
| 405 | pdqs_sed(ig,iq)=wq(ig,1)/ptimestep |
---|
| 406 | end do |
---|
| 407 | endif ! of if doubleq and if water |
---|
| 408 | c ----------------------------------------------------------------- |
---|
| 409 | |
---|
[358] | 410 | c Compute the final tendency: |
---|
| 411 | c --------------------------- |
---|
[38] | 412 | DO l = 1, nlay |
---|
| 413 | DO ig=1,ngrid |
---|
| 414 | pdqsed(ig,l,iq)=(zqi(ig,l,iq)- |
---|
| 415 | $ (pq(ig,l,iq) + pdqfi(ig,l,iq)*ptimestep))/ptimestep |
---|
| 416 | ENDDO |
---|
| 417 | ENDDO |
---|
| 418 | |
---|
| 419 | endif ! of if(radius(iq).gt.1.e-9) |
---|
| 420 | c ================================================================= |
---|
| 421 | enddo ! of do iq=1,nq |
---|
| 422 | |
---|
[358] | 423 | c Update the dust particle size "rdust" |
---|
| 424 | c ------------------------------------- |
---|
| 425 | DO l = 1, nlay |
---|
| 426 | DO ig=1,ngrid |
---|
| 427 | rdust(ig,l)= |
---|
| 428 | & CBRT(r3n_q*zqi(ig,l,idust_mass)/ |
---|
| 429 | & max(zqi(ig,l,idust_number),0.01)) |
---|
| 430 | rdust(ig,l)=min(max(rdust(ig,l),1.e-10),500.e-6) |
---|
| 431 | ENDDO |
---|
| 432 | ENDDO |
---|
[411] | 433 | |
---|
| 434 | c Update the ice particle size "rice" |
---|
| 435 | c ------------------------------------- |
---|
| 436 | IF(scavenging) THEN |
---|
| 437 | DO l = 1, nlay |
---|
| 438 | DO ig=1,ngrid |
---|
| 439 | Mo = zqi(ig,l,igcm_h2o_ice) + |
---|
| 440 | & zqi(ig,l,iccn_mass)* tauscaling(ig) + 1.e-30 |
---|
| 441 | No = zqi(ig,l,iccn_number)* tauscaling(ig)+ 1.e-30 |
---|
| 442 | rhocloud(ig,l) = zqi(ig,l,igcm_h2o_ice) / Mo * rho_ice |
---|
| 443 | & +zqi(ig,l,iccn_mass)* tauscaling(ig) |
---|
| 444 | & / Mo * rho_dust |
---|
| 445 | rhocloud(ig,l) = |
---|
| 446 | & min(max(rhocloud(ig,l),rho_ice),rho_dust) |
---|
| 447 | rice(ig,l) = |
---|
| 448 | & ( Mo / No * 0.75 / pi / rhocloud(ig,l) ) **(1./3.) |
---|
| 449 | if ((Mo.lt.1.e-20) .or. (No.le.1)) rice(ig,l) = 1.e-8 |
---|
| 450 | c print*, "Mice,Mo, No",zqi(ig,l,igcm_h2o_ice),Mo, No |
---|
| 451 | c print*, "rice, rho apres", rice(ig,l), rhocloud(ig,l) |
---|
| 452 | |
---|
| 453 | ENDDO |
---|
| 454 | ENDDO |
---|
| 455 | ELSE |
---|
| 456 | DO l = 1, nlay |
---|
| 457 | DO ig=1,ngrid |
---|
| 458 | ccntyp = |
---|
| 459 | & 1.3e+8*max(tau(ig,1),0.001)/0.1*exp(-zlay(ig,l)/10000.) |
---|
| 460 | ccntyp = ccntyp /ccn_factor |
---|
| 461 | rice(ig,l)=max( CBRT ( (zqi(ig,l,igcm_h2o_ice)/rho_ice |
---|
| 462 | & +ccntyp*(4./3.)*pi*rdust(ig,l)**3.) |
---|
| 463 | & /(ccntyp*4./3.*pi) ), rdust(ig,l)) |
---|
| 464 | ENDDO |
---|
| 465 | ENDDO |
---|
| 466 | ENDIF |
---|
[358] | 467 | |
---|
[38] | 468 | RETURN |
---|
| 469 | END |
---|
| 470 | |
---|